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Abstract. Relational data is complex. This complexity makes one of
the basic steps of ILP difficult: understanding the data and results. If
the user cannot easily understand it, he draws incomplete conclusions.
The situation is very much as in the parable of the blind men and the
elephant that appears in many cultures. In this tale the blind work inde-
pendently and with quite different pieces of information, thereby drawing
very different conclusions about the nature of the beast. In contrast, vi-
sual representations make it easy to shift from one perspective to another
while exploring and analyzing data. This paper describes a method for
embedding interpretations and queries into a single, common Euclidean
space based on their co-proven statistics. We demonstrate our method
on real-world datasets showing that ILP results can indeed be captured
at a glance.

1 Introduction

Once upon a time, there lived six blind men in a village. One day the villagers
told them, “Hey, there is an elephant in the village today.” They had no idea
what an elephant is. They decided, “Even though we would not be able to see
it, let us go and feel it anyway.” All of them went where the elephant was and
touched the elephant. Each man encountered a different aspect of the elephant
and drew a different inference as to its essential nature. One walked into its
side, concluding that an elephant is like a wall. Another, prodded by the tusk,
declared that an elephant is like a spear. The chap hanging onto the tail was
convinced that he had found a sort of rope. The essential nature of the elephant
remained undiscovered.

The tale is that of “The Blind and the Elephant”, which appears in many
cultures. It illustrates the problem many ILP users face, to make sense of rela-
tional data and models, the elephants, before applying their algorithms or while
interpreting the results. Due to the complexity of the data and the models, the
user can only touch small parts of them, like specific queries. Hence, he often
gets only a narrow and fragmented understanding of their meaning.
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In contrast, visual representations make it easy to shift from one perspective
to another while exploring and analyzing data. How to visually explore relational
data and queries jointly, however, has not received a lot of attention within the
ILP community. This can be explained by the fact that relational data involves
objects of several very different types without a natural measure of similarity.

Our paper addresses this problem by creating embeddings from statistical
associations. Observing that interpretations can be seen as documents, atoms
as words appearing in the documents, and queries as topics, we compute their
empirical co-occurrence statistics and find Euclidean embeddings of these items
representing their statistics3.

2 Euclidean Embedding of Co-proven Queries

Computing joint embeddings of interpretations K and queries Q essentially re-
quires three steps: (1) collecting embeddable queries, (2) embedding queries and
interpretations into a single Euclidean space, and – as an optional postprocessing
step – (3) labelling the representation by extracting local representatives.

Step 1 – Queries: Given a finite set K of observed interpretations, any ILP
algorithm can be used to preselect embeddable queries Q for K. In this paper, we
use Molfea [5] and C-armr4 [2] to mine databases of molecules. Both systems are
inspired by the Agrawal’s Apriori algorithm [1]: they construct general queries
and specialize them only if they are frequent. Only queries more frequent than
some threshold are retained and further expanded, i.e., specialized. While Molfea
constructs linear fragments only (atom, bond, atom, . . . ), C-armr constructs
general queries and can take background knowledge into account as well. In
addition to the queries, we also store the interpretations in which they were
true. This will prove useful for the next step and can efficiently be represented
in a binary matrix C ∈ {0, 1}|Q|×|K| , where |Q| is the number of queries and
|K| is the number of observed interpretations.

Step 2 – Embedding: We wish to model the statistical dependence be-
tween K and Q through mappings φ : K 7→ Rd and ψ : Q 7→ Rd for a given
dimensionality d. These mappings should reflect the dependence between K and
Q such that the co-occurrence Cqk of some k ∈ K and q ∈ Q determines the
distance between φ(k) and ψ(q).

This is exactly what Globerson et al.’s CODE algorithm [4] does. CODE
models the empirical joint distribution p̄(k, q) ∝ Cqk over K and Q as exponen-
tials of Euclidean distances in a low-dimensional embedding space. The positions
of the points are selected in a maximum-likelihood fashion. More precisely, we
consider an asymmetric co-occurence model of interpretations and queries,

pQK(k, q) ≡ 1
Z
· p̄(k) · exp(−‖φ(k)− ψ(q)‖2),

3 Embedding algorithms often use Euclidean distances in some feature space as a mea-
sure of similarity. However, we deal with objects of different types having different
representations, making this approach less appealing.

4 in the CLASSIC’CL implementation [9]



where k is an interpretation and q a query. Z =
∑

k,q p̄(k) exp(−‖φ(k)−ψ(q)‖2)
is a normalization term to avoid the trivial solution. We multiply by the empirical
marginal p̄(k) such that the number of queries which are true in an interpretation
does not influence the embedding. Now, CODE initially assigns random positions
to all queries and interpretations in φ and ψ. It then changes φ and ψ so that
they maximize the likelihood

∑
k,q p̄(k, q) log pQK(k, q), see [4] for details.

For our problem at hand, however, the results are unsatisfactory: using pQK

only, CODE tends to map the interpretations to a circle. This can be explained
by the fact that the marginal distribution of interpretations is almost uniform
in our case. To generate more expressive embeddings, we use the interpretations
and queries to generate a non-binary query-query co-occurence matrix D = CCT

and model pQQ(q, q′) ∝ Dqq′ . This co-proven statistics of queries q and q′ should
be represented by distances in the embedding as

pQQ (q, q′) ≡ 1
Z
· exp(−‖ψ(q)− ψ(q′)‖2) .

Again, we assign initial positions randomly but now adapt them so that they
maximize the “log-likelihood” of the combined models∑

k,q
p̄(k, q) log pQK(k, q) + |K|/|Q| ·

∑
q,q′ p̄ (q, q′) log pQQ (q, q′) .

Step 3 – Condensation: Literally thousands of queries and instances can
be embedded into a single Euclidean space and can – as a whole – provide
useful insights into the structure of the data. However, we would also like to get
a grasp on what queries in certain regions focus on. To do so, we propose to
single out queries q in an iterated fashion. Specifically, we assign to each query
q the weight w(q) = F (q)/ length(q), where F (q) is q’s F1 or F2-measure, see
e.g. [7], and length(q) is its description length. We now locally remove queries
with a low weight in a two-step process. First, we build the k-nearest neighbour
graph of the embedded queries. From the weight, we subtract the weight of its
graph neighbours, thereby removing large-scale differences. Second, we increase
weights of queries with lower weighted neighbours and decrease weights which
have higher weighted neighbours. The last step is repeated until the number of
queries q with a positive weight is not changing anymore. In other words, we
prefer short queries with high F-measures on a local neighbourhood.

3 Showcases

We tested our approach on several real-world datasets for the two-dimensional
case. To provide a qualitative assessment of our method, we apply it to datasets
where some structures or models have already been discovered.

On Mutgenesis [8], the problem is to predict the mutagenicity of a set of
compounds. In our experiments, we use the atom and bond structure information
only (including the predefined predicate like ball3s, ring size 5s, and others).
The dataset consists of 230 compounds (138 positives, 92 negatives). The 2D
Euclidean embedding is shown and discussed in Fig. 1.



Fig. 1. Mutagenesis embedding. We show all frequent queries (triangles) distinct
w.r.t. the interpretations. Black/colored queries have low/high precision, small/large
queries have low/high recall. Red/green queries indicate negative/positive class. The
queries with textual descriptions were automatically selected, the trivial key attribute
was omitted in all but the central queries. The embedding reflects rules we could
induce employing Srinivasan’s ALEPH on the same dataset such as active(A) :-

attyp(A,B,29), ring size 5s(A) or active(A) :- ball3s(A).

The Estrogen database was extracted from the EPA’s DSSTox NCTRER
Database5. The original dataset was published by Fang et al. [3], and is spe-
cially designed to evaluate QSAR approaches. The NCTRER database provides
activity classifications for a total of 232 chemical compounds, which have been
tested regarding their binding activities for the estrogen receptor. The database
contains a diverse set of natural, synthetic, and environmental estrogens, and
is considered to cover most known estrogenic classes spanning a wide range of
biological activity [3]. Here, “activity” is an empirically measured value between
0 and 100, which we averaged and used as a query’s color. The 2D Euclidean
embedding is shown and discussed in Fig. 2.

The DTP AIDS Antiviral Screening Database originating from the NCI’s
development therapeutics program NCI/NIH6 consists of SMILES representa-
tions of 41,768 chemical compounds [6]. Each data entry is classified as either
active, moderately active, or inactive. A total of 417 compounds are classified
as active, 1,069 as moderately active, and 40,282 as inactive. We have converted
this dataset into SDF format using the OpenBabel toolkit and randomly sampled
400 active and 400 moderate/inactive compounds. The 2D Euclidean embedding
is shown and discussed in Fig. 3.

5 http://www.epa.gov/ncct/dsstox/sdf nctrer.html
6 http://dtp.nci.nih.gov/



Fig. 2. Estrogen embedding. The coding is as in Fig. 1; only black/colored queries
indicate now low/high activity. In their original publication Fang et al. have identified
that a phenolic ring connected by one to three atoms to another benzene ring is one of
the key features that have to be present regarding the likelihood of a compound being
a ER ligand. A phenolic ring is a 6-carbon benzene ring with an attached hydroxyl
(OH) group. In the embedding, it can be seen that this is reflected in features like
C-C-C=C-O, which indicates that there is a path of one carbon atom to (a part of) a
ring structure (C-C=C) connected to an oxygen.

4 Concluding Remarks

In our opinion, to unveil its full power, ILP must incorporate visual analysis
methods. With the work presented here, we have made a step in this direction.
We have presented the first method for embedding interpretations and queries
into the same Euclidean space based on their co-occurrence statistics. As our
experiments demonstrate, the spatial relationships in the resulting embedding
are intuitive and can indeed reveal useful and important insights at a glance.
Aside from their value for visual analysis, embeddings are also an important
tool in unsupervised learning and as a preprocessing step for supervised learning
algorithms. In future research, we will explore this direction.
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