On the Relationship between L ogical Bayesian Networ ks
and Probabilistic L ogic Programming based on the
Distribution Semantics

Daan Fierens

K.U.Leuven, Dept. of Computer Science, Celestijnenladd®’2@001 Heverlee, Belgium,
Daan. Fi erens@s. kul euven. be

Abstract. A significant part of current research on ILP deals with pholistic
logical models. Over the last decade many logics or languémerepresenting
such models have been introduced. There is currently a geealtfor insight into
the relationships between all these languages. One cldasgiages are those
that extend probabilistic models with elements of logichsas in the language of
Logical Bayesian Networks (LBNs). Some other languagdsvothe converse
strategy of extending logic programs with a probabilisgéenantics, often in a
way similar to that of Sato’s distribution semantics.

In this paper we study the relationship between the langoag®8Ns and lan-
guages based on the distribution semantics. Concreteljefiree a mapping from
LBNs to theories in the Independent Choice Logic (ICL). Wepadhow that this
mapping provides us with a learning algorithm for ICL.

1 Context: Probabilistic ILP and Statistical Relational Learning

The fields of probabilistic inductive logic programming @pebilistic ILP) and statis-
tical relational learning (SRL) have recently witnessedrgé interest in probabilistic
logical models and languages for representing such modglSéveral popular lan-
guages deal with probabilistic extensions of logic proggaByntactically one typically
uses logic programs in which facts, clauses, or heads o$etaare annotated with prob-
abilities. Semantically one often relies (explicitly orpiititly) on Sato’sdistribution
semantics (DS]10]. We refer to languages that fit this descriptione¥s languages
Examples are PRISM [3, Ch.4], the Independent Choice LagjicHrobLog [4] and
even Logic Programs with Annotated Disjunctions [11]. @thepular languages deal
with extensions of probabilistic graphical models to thiatienal case. For instance,
Markov Logic [7, Ch.12] and Relational Markov Networks [6] are based on undi-
rected models, while many other languages are based onatiremdels: Relational
Bayesian Networks [3, Ch.13], Probabilistic Relational ddts [7, Ch.5], Bayesian
Logic Programs [7, Ch.10], BLOG [7, Ch.12]pgical Bayesian Networks (LBN®), 6]
and others. In this paper we focus on the language of LBNs;wisistrongly related
to other languages based on Bayesian networks, especlaflg 8nhd PRMs [5].

2 Problem Statement, Goal and Contributions

The plethora of languages in SRL and probabilistic ILP is stimes referred to as ‘al-
phabet soup’ (consisting of the acronyms of the many langs)ag here is currently a

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).

great need for insight into the relationships between ek#languages [2]. The goal of
this paper is to study the relationship between LBNs and D§uages. For concrete-
ness, we focus on one particular DS language, namelintfependent Choice Logic
(ICL) [9], but our discussion largely applies also to each of tireoDS languages.

One tool for obtaining insight into the relationships betwéehe various languages
is to define translations or mappings between them [3, CHL3R2]. In this paper we
show that each LBN can be mapped to an equivalent ICL thebiyi& our first con-
tribution). Based on this mapping, we show how the existegyrhing algorithms for
LBNSs can serve as a basis for learning ICL theories (secontfibation).

We proceed as follows. First we briefly review ICL and LBNs.efihwe explain
how to map an LBN to an equivalent ICL theory. Finally, we ddes the problem of
learning ICL theories from data (by means of the algorithegetbped for LBNS).

3 Independent Choice Logic (ICL)

In the definitions below we assume the existence of two disg#ts of atoms: the set of
base atomand the set oflerived atomsAn alternativeis a (finite) set of base atoms.

An ICL theoryis a triple (R, A,), with R an acyclic logic program4 a set of
alternative$, and P, a probability distribution over each alternative. Morerfially P,
is defined as a function that assigns to each atdmeach alternative a numb&% («)
€ [0, 1] such that for each alternative ¢ A: >, Po(a) = 1. The logic programi?
is constrained in the sense that the heads of the rules canifiptvith base atoms (only
with derived atoms). The set of alternativdds constrained in the sense that no atom
in any alternative can unify with any other atom in the sama different alternative.
These constraints aR and.A are needed to allow for an ‘independent choice’ of a base
atom from each (grounded) alternative.

The semantics of an ICL theory is that it defineprabability distribution over
possible worldsA possible worldis an interpretation of all (base and derived) atoms.
The distribution over possible worlds is derived from thstidibution P, and the logic
programgR as follows. Atotal choiceis a set of ground base atoms that can be obtained
by selecting from each grounding of each alternativeliexactly one atom. To each
total choiceC corresponds one possible world. In this world an atom isifraed only
if the atom is entailed by’ and R, or formally, if it is in the stable modélof C' U R.
The probability of this world is the same as that of its totadiceC: [.. FPo(c).

The above definitions are essentially those of Poole [9][88T For the purpose
of this paper, we need one extension to these definitionsexttension of ICL with
aggregates. Concretely, we allow aggregate literals irbttkes of the clauses of the
logic programR (see the example in Section 5). For this we need an extensitie o
stable model semantics towards logic programs with agéeegd/e use the extension
of Pelov et al. [8]. One potential complication with usingstim ICL is that all stable
models in ICL are required to be unique and two-valued [9}Phe stable models of
Pelov et al. satisfy these requirements for logic progrdrasdre ‘aggregate stratified’
[8]. Fortunately, all programs that we consider in this pape indeed stratified.

L In this paper we assume that there is a finite number of aligesaand thatR is functor free.
2 For negation free programs, the stable model is equal teetist Herbrand model.

4 Logical Bayesian Networks (L BNs)

In LBNs [5, 6] we assume that there are some predicates thetmdiee the domain
of discourse and that there is no uncertainty about thesigates. For example, in a
university domain we could have predicatgadent/1, course/1 andtakes/2. The
semantics of an LBN is only defined with respect to a givenrpritation of these
predicates. We refer to such an interpretation ampat interpretatiorfor that LBN.

In LBNs, special predicates are used to represent randoigbles (RVs). We re-
fer to such predicates and the corresponding atonpasabilistic predicates/atoms
A ground probabilistic atom represents a specific RV, whit@a-ground probabilistic
atom represents a ‘parameterized’ RV. Each probabilisédipatep/n has an associ-
ated ‘random variable declaration’, or brieflgclaration which specifies which RVs
built from p/n exist for a certain input interpretation. Each probahdigredicate also
has an associatednge which specifies the (finite) set of values that these RVsalea t
In our university example, probabilistic predicates conddyrade/2 with declaration
random(grade(S, C)) « student(S), course(C), takes(S, C) and rangg good, ok,
bad}, andgraduates/1 with declaration-andom(graduates(S)) «— student(S) and
range{yes,no}. When given an input interpretatiah(that specifies for instance the
predicatesstudent/1, course/1, andtakes/2), we can use the declarations to obtain
the set of all RVs that are defined forWe denote this set bRV(1).

Another concept in LBNs is that offarst-order logical probability treor a prob-
abilistic predicatep/n. This is a decision tree in which each internal node contains
boolean test, and each leaf node contains a probabilitytaisbn on the range af/n.
The purpose of such a tree is to specify how RVs built from tresljizatep /n depend
on the other RVs. An example of a tree fpraduates(S) is given in Figure 1. As this
tree shows, two types of tests can be used in internal notedirst type is a test on the
value of a parameterized RV such@side(S, C)=bad. Free logical variables in such
tests are (implicitly) existentially quantified, hencestitést checks whether there is a
courseC for which the given studerff has grade ‘bad’. The second type is a test on an
aggregate function such asode(grade(S, C))=good, which checks whether the most
frequent grade of' is ‘good’.

’ grade(S,C) = bad ‘

’ mode(grade(S,C2)) = good ‘ (yes: 0.9 no: O.l)

(yes: 0.6 no: 0.4) (yes: 0.2 no: 0.8)

Fig. 1. A probability tree forgraduate$S). The logical variable§’ andC?2 in the tests in internal
nodes are calleffee If a test in a node succeeds, the left branch is taken, otbertve right.

An LBN consists of one declaration and logical probability treedach proba-
bilistic predicate. Given an input interpretatidénthe trees in an LBN determine a de-
pendency relation between the RVSRV (1), called theparent relation If this parent
relation is acyclic, then we call alegal input interpretatiorfor that LBN.

The semantics of an LBN is thatritaps each legal input interpretatidrto a prob-
ability distribution over the possible worlds fdr Each possible world is a joint state
of the RVs inRV(I). The probability of a world is defined as a product of conditib
probabilities, like in a Bayesian network. The conditiopedbability distribution for a
particular RV given its parents is defined by the correspoggdrobability tree.

5 Mappingan LBN toan ICL Theory

Poole already showed that any discrete Bayesian networkearapped to an ICL the-
ory that specifies the same probability distribution [3,8hn this work we essentially
extend this propositional result to the first-order case.

Given an LBN, we want to find an ‘equivalent’ ICL theory. A tetbal complication
is that an ICL theory directly determines a probability dizition, while an LBN maps
input interpretations to probability distributions. Henee define the mapping problem
as follows: givenan LBN L, find a logic programR, a set of alternativesl, and a
probability distribution?, over each alternative, such tiat any input interpretatiof
that is legal forZ, the probability distributiorP, 5 v of £ for I is equal to the probability
distribution P; 1, of the ICL theory(RU I, A,). We refer to the triplé R, A,) as
theequivalent ICL theorpf the LBN 2 It turns out that finding this is always possible.
In other wordsany L BN can be mapped to an equivalent ICL theory.

To map an LBN to an equivalent ICL theory, we need to map théaldity tree
(and declaration) of each probabilistic predicate in thé&lLBhis mapping can be done
for each probabilistic predicate separately. In other wptide mapping is local.

To map the probability tree of a probabilistic predicate, we map each path (from
the root to a leaf) in the tree to an ICL clatge«— b and a corresponding alternativie
The headh is a non-ground atom built from the predicaten, with m=n+1 (the last
argument indicates the value of the corresponding paraipeteRV [3, Ch.8]). The
bodyb contains literals describing the path to the leaf and alstains a unique base
atom. The alternativd specifies the probability distribution for this base atorhich is
the same as the distribution in the considered leaf. Whdarthin lines of this mapping
are the same as for mappingepositionalprobability tree, some complications arise
because we are dealing wiist-order logicaltrees here. We now illustrate this with an
example (space restrictions prevent us from completemétizing our mapping here).

1. Let us start with the leftmost leaf of the tree fpuduates(S) shown in Figure 1.

Note that we end up in this leaf if the tests in both internalemsucceed. This leaf

is mapped to the following clause and alternative in the IiGkory®

graduates(S, Val) «— grade(S, C, bad), mode(G, grade(S, C2,G), good),
student(S), b1(S, Val).
{ Py(b1(S,yes)) = 0.6, Py(b1(S,n0)) =0.4}

The atomb; (S, Val) is a base atom. It is important ot include C' as an ar-

gument in this atom: if we would include it (by writingy (S, C, Val)), then the

effect would be that for som& both graduates(S, yes) and graduates(S, no)

% This is a slight abuse of terminology since the actual IClothes involve notR but R U I.
4 Sometimes additional clauses are needed (to define ayxiiadicates, see below).
® For aggregates, suchasde, we use syntax similar to that of tfiedall/3 predicate in Prolog.

could become true at the same time (in the same possible Jarld this is un-
wanted because it is not possible in the original LBN. As haptssue, note that
the body of the clause contains the atetadent(S). This comes from the declara-
tion random(graduates(S)) <« student(S) in the LBN. While in this particular
case the conditiostudent(S) is redundant, in general such conditions need to be
included to ensure that atoms in the ICL theory only becooeewhen appropriate.

2. The middle leaf in the tree can be mapped in a similar wate(tihe negated atom).

graduates(S, Val) — grade(S, C,bad), ~mode(G, grade(S, C2,G), good),
student(S),ba(S, Val).
{ Py(b2(S,yes)) = 0.2, Py(b2(S,n0)) = 0.8 }

3. The rightmost leaf in the tree brings up another issue. ¥édrto express that
grade(S, C,bad) has failed, but we cannot simply writegrade(S, C, bad) since
this would cause ‘floundering negation’ (sin€eis a free variable). The standard
solution is to introduce an auxiliary predicate that ‘hidésand to negate this.

hasBadGrade(S) — grade(S, C, bad).
graduates(S, Val) — —hasBadGrade(S), student(S), bs(S, Val).
{ Py(b3(S,yes)) = 0.9, Py(bs(S,n0)) =0.1}
Note that the addition of the conditieniudent(S) to the body is really necessary
here: if we do not include it, theqrraduates(S, Val) might become true for some
S that is not a student (but for instance a course).
We would like to stress that the above mapping does not simply an LBN to what-
ever ICL theory that assigns to each possible world the sawitgapility as the LBN.
The mapped ICL theory in addition also expresses the santbtmoral independencies,
and even the sanmmntext-specific independencié§3, p.230], as the LBN.

6 Learning ICL Theoriesfrom Data

We now turn to the problem of learning ICL theories from dat@. consider the prob-
abilistic learning from interpretations setting [3, Ch.With learning an ICL theory
we mean learning not only its ‘parameters’ (the distribati¢y) but also its ‘structure’
(the set of alternativegl and the clauses in the logic prograR). To the best of our
knowledge, we are the first to consider the problem of stredearning for ICL®

Poole [3, p.239] recently argued that ICL is a good languagédefarning because
“being based on logic programming , it can build on the susessof ILP”, and“one
of the most successful methods for learning Bayesian nksasrto learn a decision
tree for each variable [...] these decision trees corregptma particular form of ICL
rules”. In previous work [6] we independently developed learnilggethms for LBNs
that follow exactly this approach, except that we effedsiviategrated the two sug-
gestions of Poole (ILP + trees) since we deal with first-otdgical trees in LBNs.
Concretely, each of the learning algorithms for LBNs esadintconsists of a search
algorithm akin to Bayesian networks (such as orderingetear structure-search) that
is wrapped around the ILP systemLDE that learns first-order logical decision trees.

The mapping that we described in the previous section djrieetds to a simple way
of learning ICL theories: we first learn an LBN using one of the existing algorithms,

5 parameter learning for ICL has been tackled recently by @etho et al. [1].

and then map the LBN to its equivalent ICL theory. As a proataficept, and to show
what kind of ICL theories can be learned, we applied this aagh to the UW-CSE
dataset, a well-known SRL benchmark [7, Ch.12]. A desaiptf the learning setting,
the learned LBN, and the resulting ICL theory can be foundrinoaline appendix
(htt p: // www. cs. kul euven. be/ ~dtai /|l bn/il p09).

An interesting direction for future research is to impleearning algorithms for
ICL directly (rather than by mapping learned LBNSs). This lellenging because ICL
is more flexible as a language than LBNs. Nevertheless, thierdlearning algorithms
for LBNs provide a good starting point for such research.

7 Conclusion

We showed that there is a strong connection between the dagegof LBNs and ICL:

each LBN can be mapped to an equivalent ICL theory (afteusich of aggregates
in ICL). Based on this connection we argued that the exidéagning algorithms for
LBNSs can serve as a basis for learning ICL theories. While esei$sed on ICL, our
discussion applies to a large extent also to other languatssd to the distribution se-
mantics like ProbLog, PRISM, and even Logic Programs witinétated Disjunctions.

Acknowledgements. Daan Fierens is supported by the Research Fund K.U.Leuven.
This research is also supported by GOA/08/008 ‘Probaigilisigic Learning’.

References

1. P. Carbonetto et al. Learning a contingently acyclicbphilistic relational model of a so-
cial network. Technical Report TR-2009-08, University aftBh Columbia, Department of
Computer Science. 2009.

2. L. De Raedt et al. Towards digesting the alphabet-soutati§gcal relational learning. NIPS
Workshop on Probabilistic Programming, 2008.

3. L. De Raedt et alProbabilistic Inductive Logic Programmindg-NCS vol. 4911. Springer,
2008.

4. L. De Raedt et al. ProbLog: A probabilistic Prolog and pglecation in link discovery. In
Proc. of 20th Int. Joint Conf. on Artificial Intelligencpages 2462-2467, 2007.

5. D. Fierens. Logical Bayesian networks. Chapter Bedirning Directed Probabilistic Log-
ical Models from Relational DataPhD Thesis, Katholieke Universiteit Leuven, 2008. See
http://hdl . handl e. net/ 1979/ 1833.

6. D. Fierens et al. Learning directed probabilistic logineodels: Ordering-search versus
structure-search Annals of Mathematics and Atrtificial Intelligenc2009. In press (avail-
able onlineht t p: // dx. doi . or g/ 10. 1007/ s10472- 009- 9134- 9).

7. L. Getoor and B. TaskaAn Introduction to Statistical Relational LearninilIT Press, 2007.

8. N. Pelov et al. Well-founded and stable semantics of Ipgigrams with aggregate¥heory
and Practice of Logic Programming@(3):301-353, 2007.

9. D. Poole. Abducing through negation as failure: Stabldef®within the independent choice
logic. Journal of Logic Programmingd4(1-3):5-35, 2000.

10. T. Sato. A statistical learning method for logic progsawith distribution semantics. In
Proc. of 12th Int. Conf. on Logic Programmingages 715-729. MIT Press, 1995.

11. J. Vennekens et al. Logic programs with annotated disipms. InProc. of 20th Int. Conf.
on Logic ProgrammingLNCS vol. 3132, pages 431-445. Springer, 2004.

