
On the Relationship between Logical Bayesian Networks
and Probabilistic Logic Programming based on the

Distribution Semantics

Daan Fierens

K.U.Leuven, Dept. of Computer Science, Celestijnenlaan 200A, 3001 Heverlee, Belgium,
Daan.Fierens@cs.kuleuven.be

Abstract. A significant part of current research on ILP deals with probabilistic
logical models. Over the last decade many logics or languages for representing
such models have been introduced. There is currently a greatneed for insight into
the relationships between all these languages. One class oflanguages are those
that extend probabilistic models with elements of logic, such as in the language of
Logical Bayesian Networks (LBNs). Some other languages follow the converse
strategy of extending logic programs with a probabilistic semantics, often in a
way similar to that of Sato’s distribution semantics.
In this paper we study the relationship between the languageof LBNs and lan-
guages based on the distribution semantics. Concretely, wedefine a mapping from
LBNs to theories in the Independent Choice Logic (ICL). We also show that this
mapping provides us with a learning algorithm for ICL.

1 Context: Probabilistic ILP and Statistical Relational Learning

The fields of probabilistic inductive logic programming (probabilistic ILP) and statis-
tical relational learning (SRL) have recently witnessed a large interest in probabilistic
logical models and languages for representing such models [3]. Several popular lan-
guages deal with probabilistic extensions of logic programs. Syntactically one typically
uses logic programs in which facts, clauses, or heads of clauses are annotated with prob-
abilities. Semantically one often relies (explicitly or implicitly) on Sato’sdistribution
semantics (DS)[10]. We refer to languages that fit this description asDS languages.
Examples are PRISM [3, Ch.4], the Independent Choice Logic [9], ProbLog [4] and
even Logic Programs with Annotated Disjunctions [11]. Other popular languages deal
with extensions of probabilistic graphical models to the relational case. For instance,
Markov Logic [7, Ch.12] and Relational Markov Networks [7, Ch.6] are based on undi-
rected models, while many other languages are based on directed models: Relational
Bayesian Networks [3, Ch.13], Probabilistic Relational Models [7, Ch.5], Bayesian
Logic Programs [7, Ch.10], BLOG [7, Ch.13],Logical Bayesian Networks (LBNs)[5, 6]
and others. In this paper we focus on the language of LBNs, which is strongly related
to other languages based on Bayesian networks, especially BLPs and PRMs [5].

2 Problem Statement, Goal and Contributions

The plethora of languages in SRL and probabilistic ILP is sometimes referred to as ‘al-
phabet soup’ (consisting of the acronyms of the many languages). There is currently a

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).



2

great need for insight into the relationships between all these languages [2]. The goal of
this paper is to study the relationship between LBNs and DS languages. For concrete-
ness, we focus on one particular DS language, namely theIndependent Choice Logic
(ICL) [9], but our discussion largely applies also to each of the other DS languages.

One tool for obtaining insight into the relationships between the various languages
is to define translations or mappings between them [3, Ch.12+13][2]. In this paper we
show that each LBN can be mapped to an equivalent ICL theory (this is our first con-
tribution). Based on this mapping, we show how the existing learning algorithms for
LBNs can serve as a basis for learning ICL theories (second contribution).

We proceed as follows. First we briefly review ICL and LBNs. Then we explain
how to map an LBN to an equivalent ICL theory. Finally, we consider the problem of
learning ICL theories from data (by means of the algorithms developed for LBNs).

3 Independent Choice Logic (ICL)

In the definitions below we assume the existence of two disjoint sets of atoms: the set of
base atomsand the set ofderived atoms. An alternativeis a (finite) set of base atoms.

An ICL theoryis a triple(R,A, P0), with R an acyclic logic program,A a set of
alternatives1, andP0 a probability distribution over each alternative. More formally P0

is defined as a function that assigns to each atomα in each alternative a numberP0(α)
∈ [0, 1] such that for each alternativeA ∈ A:

∑
α∈A P0(α) = 1. The logic programR

is constrained in the sense that the heads of the rules cannotunify with base atoms (only
with derived atoms). The set of alternativesA is constrained in the sense that no atom
in any alternative can unify with any other atom in the same ora different alternative.
These constraints onR andA are needed to allow for an ‘independent choice’ of a base
atom from each (grounded) alternative.

The semantics of an ICL theory is that it defines aprobability distribution over
possible worlds. A possible worldis an interpretation of all (base and derived) atoms.
The distribution over possible worlds is derived from the distributionP0 and the logic
programR as follows. Atotal choiceis a set of ground base atoms that can be obtained
by selecting from each grounding of each alternative inA exactly one atom. To each
total choiceC corresponds one possible world. In this world an atom is trueif and only
if the atom is entailed byC andR, or formally, if it is in the stable model2 of C ∪ R.
The probability of this world is the same as that of its total choiceC:

∏
c∈C P0(c).

The above definitions are essentially those of Poole [9][3, Ch.8]. For the purpose
of this paper, we need one extension to these definitions: theextension of ICL with
aggregates. Concretely, we allow aggregate literals in thebodies of the clauses of the
logic programR (see the example in Section 5). For this we need an extension of the
stable model semantics towards logic programs with aggregates. We use the extension
of Pelov et al. [8]. One potential complication with using this in ICL is that all stable
models in ICL are required to be unique and two-valued [9, p.29]. The stable models of
Pelov et al. satisfy these requirements for logic programs that are ‘aggregate stratified’
[8]. Fortunately, all programs that we consider in this paper are indeed stratified.

1 In this paper we assume that there is a finite number of alternatives and thatR is functor free.
2 For negation free programs, the stable model is equal to the least Herbrand model.



3

4 Logical Bayesian Networks (LBNs)

In LBNs [5, 6] we assume that there are some predicates that determine the domain
of discourse and that there is no uncertainty about these predicates. For example, in a
university domain we could have predicatesstudent/1, course/1 andtakes/2. The
semantics of an LBN is only defined with respect to a given interpretation of these
predicates. We refer to such an interpretation as aninput interpretationfor that LBN.

In LBNs, special predicates are used to represent random variables (RVs). We re-
fer to such predicates and the corresponding atoms asprobabilistic predicates/atoms.
A ground probabilistic atom represents a specific RV, while anon-ground probabilistic
atom represents a ‘parameterized’ RV. Each probabilistic predicatep/n has an associ-
ated ‘random variable declaration’, or brieflydeclaration, which specifies which RVs
built from p/n exist for a certain input interpretation. Each probabilistic predicate also
has an associatedrange, which specifies the (finite) set of values that these RVs can take.
In our university example, probabilistic predicates couldbegrade/2 with declaration
random(grade(S, C))← student(S), course(C), takes(S, C) and range{good, ok,
bad}, andgraduates/1 with declarationrandom(graduates(S))← student(S) and
range{yes, no}. When given an input interpretationI (that specifies for instance the
predicatesstudent/1, course/1, andtakes/2), we can use the declarations to obtain
the set of all RVs that are defined forI. We denote this set byRV(I).

Another concept in LBNs is that of afirst-order logical probability treefor a prob-
abilistic predicatep/n. This is a decision tree in which each internal node containsa
boolean test, and each leaf node contains a probability distribution on the range ofp/n.
The purpose of such a tree is to specify how RVs built from the predicatep/n depend
on the other RVs. An example of a tree forgraduates(S) is given in Figure 1. As this
tree shows, two types of tests can be used in internal nodes. The first type is a test on the
value of a parameterized RV such asgrade(S, C)=bad. Free logical variables in such
tests are (implicitly) existentially quantified, hence this test checks whether there is a
courseC for which the given studentS has grade ‘bad’. The second type is a test on an
aggregate function such asmode(grade(S, C))=good, which checks whether the most
frequent grade ofS is ‘good’.

grade(S,C) = bad

mode(grade(S,C2)) = good

yes: 0.6 no: 0.4 yes: 0.2 no: 0.8

yes: 0.9 no: 0.1

Fig. 1. A probability tree forgraduates(S). The logical variablesC andC2 in the tests in internal
nodes are calledfree. If a test in a node succeeds, the left branch is taken, otherwise the right.

An LBN consists of one declaration and logical probability tree for each proba-
bilistic predicate. Given an input interpretationI, the trees in an LBN determine a de-
pendency relation between the RVs inRV(I), called theparent relation. If this parent
relation is acyclic, then we callI a legal input interpretationfor that LBN.



4

The semantics of an LBN is that itmaps each legal input interpretationI to a prob-
ability distribution over the possible worlds forI. Each possible world is a joint state
of the RVs inRV(I). The probability of a world is defined as a product of conditional
probabilities, like in a Bayesian network. The conditionalprobability distribution for a
particular RV given its parents is defined by the corresponding probability tree.

5 Mapping an LBN to an ICL Theory

Poole already showed that any discrete Bayesian network canbe mapped to an ICL the-
ory that specifies the same probability distribution [3, Ch.8]. In this work we essentially
extend this propositional result to the first-order case.

Given an LBN, we want to find an ‘equivalent’ ICL theory. A technical complication
is that an ICL theory directly determines a probability distribution, while an LBN maps
input interpretations to probability distributions. Hence we define the mapping problem
as follows: givenan LBN L, find a logic programR, a set of alternativesA, and a
probability distributionP0 over each alternative, such thatfor any input interpretationI
that is legal forL, the probability distributionPLBN ofL for I is equal to the probability
distributionPICL of the ICL theory(R∪ I,A, P0). We refer to the triple(R,A, P0) as
theequivalent ICL theoryof the LBN.3 It turns out that finding this is always possible.
In other words,any LBN can be mapped to an equivalent ICL theory.

To map an LBN to an equivalent ICL theory, we need to map the probability tree
(and declaration) of each probabilistic predicate in the LBN. This mapping can be done
for each probabilistic predicate separately. In other words, the mapping is local.

To map the probability tree of a probabilistic predicatep/n, we map each path (from
the root to a leaf) in the tree to an ICL clause4 h← b and a corresponding alternativeA.
The headh is a non-ground atom built from the predicatep/m, with m=n+1 (the last
argument indicates the value of the corresponding parameterized RV [3, Ch.8]). The
bodyb contains literals describing the path to the leaf and also contains a unique base
atom. The alternativeA specifies the probability distribution for this base atom, which is
the same as the distribution in the considered leaf. While the main lines of this mapping
are the same as for mapping apropositionalprobability tree, some complications arise
because we are dealing withfirst-order logicaltrees here. We now illustrate this with an
example (space restrictions prevent us from completely formalizing our mapping here).
1. Let us start with the leftmost leaf of the tree forgraduates(S) shown in Figure 1.

Note that we end up in this leaf if the tests in both internal nodes succeed. This leaf
is mapped to the following clause and alternative in the ICL theory.5

graduates(S, V al)← grade(S, C, bad), mode(G, grade(S, C2, G), good),
student(S), b1(S, V al).

{ P0(b1(S, yes)) = 0.6 , P0(b1(S, no)) = 0.4 }
The atomb1(S, V al) is a base atom. It is important tonot includeC as an ar-
gument in this atom: if we would include it (by writingb1(S, C, V al)), then the
effect would be that for someS both graduates(S, yes) andgraduates(S, no)

3 This is a slight abuse of terminology since the actual ICL theories involve notR butR ∪ I .
4 Sometimes additional clauses are needed (to define auxiliary predicates, see below).
5 For aggregates, such asmode, we use syntax similar to that of thefindall/3 predicate in Prolog.



5

could become true at the same time (in the same possible world), and this is un-
wanted because it is not possible in the original LBN. As another issue, note that
the body of the clause contains the atomstudent(S). This comes from the declara-
tion random(graduates(S)) ← student(S) in the LBN. While in this particular
case the conditionstudent(S) is redundant, in general such conditions need to be
included to ensure that atoms in the ICL theory only become true when appropriate.

2. The middle leaf in the tree can be mapped in a similar way (note the negated atom).
graduates(S, V al)← grade(S, C, bad),¬mode(G, grade(S, C2, G), good),

student(S), b2(S, V al).
{ P0(b2(S, yes)) = 0.2 , P0(b2(S, no)) = 0.8 }

3. The rightmost leaf in the tree brings up another issue. We need to express that
grade(S, C, bad) has failed, but we cannot simply write¬grade(S, C, bad) since
this would cause ‘floundering negation’ (sinceC is a free variable). The standard
solution is to introduce an auxiliary predicate that ‘hides’ C and to negate this.

hasBadGrade(S)← grade(S, C, bad).
graduates(S, V al)← ¬hasBadGrade(S), student(S), b3(S, V al).
{ P0(b3(S, yes)) = 0.9 , P0(b3(S, no)) = 0.1 }

Note that the addition of the conditionstudent(S) to the body is really necessary
here: if we do not include it, thengraduates(S, V al) might become true for some
S that is not a student (but for instance a course).

We would like to stress that the above mapping does not simplymap an LBN to what-
ever ICL theory that assigns to each possible world the same probability as the LBN.
The mapped ICL theory in addition also expresses the same conditional independencies,
and even the samecontext-specific independencies[6][3, p.230], as the LBN.

6 Learning ICL Theories from Data

We now turn to the problem of learning ICL theories from data.We consider the prob-
abilistic learning from interpretations setting [3, Ch.1]. With learning an ICL theory
we mean learning not only its ‘parameters’ (the distribution P0) but also its ‘structure’
(the set of alternativesA and the clauses in the logic programR). To the best of our
knowledge, we are the first to consider the problem of structure learning for ICL.6

Poole [3, p.239] recently argued that ICL is a good language for learning because
“being based on logic programming , it can build on the successes of ILP”, and“one
of the most successful methods for learning Bayesian networks is to learn a decision
tree for each variable [...] these decision trees correspond to a particular form of ICL
rules”. In previous work [6] we independently developed learning algorithms for LBNs
that follow exactly this approach, except that we effectively integrated the two sug-
gestions of Poole (ILP + trees) since we deal with first-orderlogical trees in LBNs.
Concretely, each of the learning algorithms for LBNs essentially consists of a search
algorithm akin to Bayesian networks (such as ordering-search or structure-search) that
is wrapped around the ILP system TILDE that learns first-order logical decision trees.

The mapping that we described in the previous section directly leads to a simple way
of learning ICL theories: we first learn an LBN using one of the existing algorithms,

6 Parameter learning for ICL has been tackled recently by Carbonetto et al. [1].



6

and then map the LBN to its equivalent ICL theory. As a proof ofconcept, and to show
what kind of ICL theories can be learned, we applied this approach to the UW-CSE
dataset, a well-known SRL benchmark [7, Ch.12]. A description of the learning setting,
the learned LBN, and the resulting ICL theory can be found in an online appendix
(http://www.cs.kuleuven.be/∼dtai/lbn/ilp09).

An interesting direction for future research is to implement learning algorithms for
ICL directly (rather than by mapping learned LBNs). This is challenging because ICL
is more flexible as a language than LBNs. Nevertheless, the current learning algorithms
for LBNs provide a good starting point for such research.

7 Conclusion

We showed that there is a strong connection between the language of LBNs and ICL:
each LBN can be mapped to an equivalent ICL theory (after inclusion of aggregates
in ICL). Based on this connection we argued that the existinglearning algorithms for
LBNs can serve as a basis for learning ICL theories. While we focussed on ICL, our
discussion applies to a large extent also to other languagesrelated to the distribution se-
mantics like ProbLog, PRISM, and even Logic Programs with Annotated Disjunctions.

Acknowledgements. Daan Fierens is supported by the Research Fund K.U.Leuven.
This research is also supported by GOA/08/008 ‘Probabilistic Logic Learning’.

References

1. P. Carbonetto et al. Learning a contingently acyclic, probabilistic relational model of a so-
cial network. Technical Report TR-2009-08, University of British Columbia, Department of
Computer Science. 2009.

2. L. De Raedt et al. Towards digesting the alphabet-soup of statistical relational learning. NIPS
Workshop on Probabilistic Programming, 2008.

3. L. De Raedt et al.Probabilistic Inductive Logic Programming, LNCS vol. 4911. Springer,
2008.

4. L. De Raedt et al. ProbLog: A probabilistic Prolog and its application in link discovery. In
Proc. of 20th Int. Joint Conf. on Artificial Intelligence, pages 2462–2467, 2007.

5. D. Fierens. Logical Bayesian networks. Chapter 3 ofLearning Directed Probabilistic Log-
ical Models from Relational Data.PhD Thesis, Katholieke Universiteit Leuven, 2008. See
http://hdl.handle.net/1979/1833.

6. D. Fierens et al. Learning directed probabilistic logical models: Ordering-search versus
structure-search.Annals of Mathematics and Artificial Intelligence, 2009. In press (avail-
able online:http://dx.doi.org/10.1007/s10472-009-9134-9).

7. L. Getoor and B. Taskar.An Introduction to Statistical Relational Learning. MIT Press, 2007.
8. N. Pelov et al. Well-founded and stable semantics of logicprograms with aggregates.Theory

and Practice of Logic Programming, 7(3):301–353, 2007.
9. D. Poole. Abducing through negation as failure: Stable models within the independent choice

logic. Journal of Logic Programming, 44(1–3):5–35, 2000.
10. T. Sato. A statistical learning method for logic programs with distribution semantics. In

Proc. of 12th Int. Conf. on Logic Programming, pages 715–729. MIT Press, 1995.
11. J. Vennekens et al. Logic programs with annotated disjunctions. InProc. of 20th Int. Conf.

on Logic Programming, LNCS vol. 3132, pages 431–445. Springer, 2004.


