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Abstract. Hexoses play a key role in many cellular pathways and in
the regulation of development and disease mechanisms. As such, hexose
binding proteins and their binding properties are of great interest to
biomedical researchers. Current protein-sugar computational models are
based, at least partially, on prior biochemical knowledge. We investigate
the empirical support for biochemical findings by comparing ILP-induced
rules to actual biochemical results. Our method matches lab findings, is
able to identify hexose binding sites, and in addition reveals a TRP-GLU
dependency. Our classifier achieves a similar accuracy as other black-box
classifiers while providing insight into the discriminating process.
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1 Introduction

Inductive Logic Programming (ILP) has been shown to perform well in predict-
ing various substrate-protein bindings (e.g., [2,13]). In this paper we apply ILP
to a different and well studied binding task.

Hexoses are 6-carbon sugar molecules that play a key role in different bio-
chemical pathways, including cellular energy release, signaling, carbohydrate
synthesis, and the regulation of gene expression [11]. Hexose binding proteins
belong to diverse functional families that lack significant sequence or, often,
structural similarity [4]. Despite this fact, these proteins show high specificity
to their hexose ligands. The few amino acids present at the binding site play a
large role in determining the binding site’s topology and biochemical properties
and hence the ligand type and the protein’s functionality.

Many researchers have investigated protein-sugar binding sites. From the bio-
chemical perspective, Rao et al. [9] fully characterized the architecture of sugar
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binding in lectins and identified conserved loop structures within the protein as
essential for sugar recognition. Later, Quiocho and Vyas [8] presented a review of
the biochemical characteristics of carbohydrate binding sites and identified the
planar polar residues (AsN, Asp, GLN, GLU, ARG) as the most frequently involved
residues in hydrogen bonding. They found that the aromatic residues Trr, TYR,
and PHE, as well as His, stack against the apolar surface of the sugar pyranose
ring. Quiocho and Vyas also pinpointed the role of ordered water molecules and
metal ions in determining substrate specificity and affinity. Taroni et al. [16]
analyzed the characteristic properties of sugar binding sites and described a
residue propensity parameter that best discriminates sugar binding sites from
other protein-surface patches. Simple sugars typically have a hydrophilic side
group which establishes hydrogen bonds and a hydrophobic core that is able to
stack against aromatic residues. Sugar binding sites are thus neither strictly hy-
drophobic nor strictly hydrophilic, due to the dual nature of sugar docking [16].

Some of this biochemical information has been used in computational work
with the objective of accurately predicting sugar binding sites in proteins. Ex-
amples include Taroni et al. [16], who devised a probability formula by com-
bining individual attribute scores, and Shionyu-Mitsuyama et al. [10] who used
atom type densities within binding sites to develop an algorithm for predicting
carbohydrate binding. Other groups formulated a signature for characterizing
galactose binding sites based on geometric constraints, pyranose ring proximity
and hydrogen bonding atoms [14], and implemented a 3D structure searching
algorithm, COTRAN, to identify galactose binding sites. Other researchers used
a neural network to predict general carbohydrate and specific galactose binding
sites [5]. More recently, Nassif et al. [7] used support vector machines [17] to
model and predict glucose binding sites in a wide range of proteins.

Biochemical findings are arrived at through wet lab experiments; computa-
tional hexose classifiers incorporate different parts of these findings in black-box
models and use these models as the bases of predictions. No work to date has
taken the opposite approach: given hexose binding sites data, what biochemi-
cal rules can we extract with no prior biochemical knowledge and what is the
performance of the resulting classifier based solely on the extracted rules?

This work presents an ILP classifier that extracts rules from the data without
prior knowledge. It classifies binding sites based on the extracted biochemical
rules, clearly specifying the rules used to discriminate each instance. This induc-
tive data-driven approach validates the biochemical findings and allows a better
understanding of the black-box classifiers’ output.

2 Materials and Methods

The Protein Data Bank (PDB) [1] is the largest repository of experimentally
determined three-dimensional structures of biological macromolecules. We mine
it for the three most common hexoses, Galactose, Glucose and Mannose. Using
PISCES [18], we impose a 30% overall sequence identity as a cut-off. We examine
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the remaining structures at close range using the Swiss-PDBViewer program [3]
and discard several proteins due to the proximity of other ligands in the binding
pocket or the fact that the same binding pocket can bind to multiple ligands. The
final outcome is a non-redundant positive data set of 80 protein-hexose binding
sites. We also extract an equal number of negative examples. The negative set
is composed of non-hexose binding sites and of non-binding surface grooves.

We use the ILP engine Aleph [12] to learn first-order rules. Rule learning
is especially appealing because of its easy-to-understand format. A set of if-
then rules describing a certain concept is highly expressive and readable [6]. We
estimate the classifier’s performance using 10-fold cross-validation.

Given the molecule and the binding site, we extract the coordinates of ev-
ery atom within a distance of 10 A from the binding site center. We define a
Euclidean distance measure between any two atoms. We only extract atoms us-
ing their PDB atomic names; we do not consider residues. For every atom we
compute its charge, hydrogen bonding, and hydrophobicity properties as done
by Nassif et al. [7].

We restrict the clause length to a maximum number of 8 literals, with only
one in the head. The consequent of any rule is bind(A), where A is predicted to
be a hexose binding site. Literals describing individual atoms are of the form:

point(A,B,C,D,E,F,G,H,1,J) (1)

where A is the binding site and B is the atom number. C', D, & FE specify the

Cartesian coordinates. F' is the charge, G the hydrogen-bonding, and the H

hydrophobicity. Lastly, I and J refer to the atomic element and its name.
Clause bodies can also use distance literals:

dist(A, B1, B2, M, N) (2)

where A is the binding site and Bl and B2 two atom numbers. M is their
distance apart and N the error, resulting in M + N. The error N is set to 0.5 A.
No literal can contain terms pertaining to different binding sites. As a result,
A is the same in all literals in a clause. For each clause, coverage of up to 5
training-set negative examples is tolerated. The cost function to minimize is:

cost = (# covered negatives) — (# covered positives) (3)

To speed the search, we use Aleph’s heuristic search.

3 Results

ILP’s accuracy over the 10 folds is 67.5%. Even though Aleph was only looking at
the atoms according to their PDB atomic name, valuable information regarding
amino acids can be inferred. For example ND1 atoms are only present within
His residues and a rule requiring the presence of ND1 is actually requiring His.

We present the rules’ English translation, with residue substitution. We sort
the rules by their coverage. The queried site is considered hexose binding if any
of these rules apply:
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1. It contains a TRrp residue and a GLU with an OE1 atom that is 8.53 A away
from a negatively charged Oxygen atom.
[Pos cover = 22, Neg cover = 4]

2. It contains a PHE or TYR residue and an Asp with an OD1 atom that is
5.24 A away from an Asp or AsN’s ODI.

[Pos cover = 21, Neg cover = 3]

3. Tt contains a branching aliphatic residue (LEU, VAL, ILE), an Asp and an AsN.
Asp and AsN’s OD1 atoms are 3.41 A away.

[Pos cover = 15, Neg cover = 0]

4. Tt contains a hydrophilic non-hydrogen bonding Nitrogen atom (Pro, ARrg,
His) with a distance of 7.95 A away from a His ND1 nitrogen, and 9.60 A
away from a branching aliphatic residue’s CG1.

[Pos cover = 10, Neg cover = 0]

5. It has a hydrophobic CD2 atom, a hydrophilic Pro backbone or His ND1
nitrogen and two GLU (or two GLN) distant by 11.89 A.

[Pos cover = 11, Neg cover = 2]

6. It contains an Asp B, two identical atoms ) and X, and a hydrophilic
hydrogen-bonding atom K. Atoms K, ) and X have the same charge.
B’s ODE1 oxygen share the same Y-coordinate with K and the same Z-
coordinate with Q. Atom X is 8.29 A away from atom K.

[Pos cover = 8, Neg cover = 0]

7. It contains a SER, and two GLN and/or His, with NE2 atoms that are 3.88 A
apart.

[Pos cover = 8, Neg cover = 2]

8. It contains an AsN and a PHE, TYR or His residue, with a CE1 atom that is
7.07 A away from a Calcium.

[Pos cover = 5, Neg cover = (]

9. It contains a Lys or ARG, a PHE or TYR, a PrRO or His, and a Sulfate or a
Phosphate.

[Pos cover = 3, Neg cover = 0]

4 Discussion

Aleph’s error of 32.5% has a p-value < 0.0002, according to a two-sided binomial
test. This error rate is comparable to other general sugar binding site classifiers,
although each was run on a different dataset (Table 1). Contrary to black-box
classifiers, ILP provides a number of interesting insights. It infers most of the
established biochemical information about residues and relations just from the
PDB atom names and properties.

The first two rules, covering the highest number of positives, rely on the
aromatic residues (TrP, TYR, PHE). This highlights the docking interaction be-
tween the hexose and the aromatic residues [15]. The aromatic residues stack
against the apolar sugar pyranose ring which stabilizes the bound hexose. His is
mentioned in many of the rules, this is also an aromatic amino acid that would
provide a similar docking mechanism to Trp, TYr and PHE [8].
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Table 1. Comparison of general sugar binding site classifiers. Not meant as a direct
comparison since the datasets are different.

Program Error (%) Method and Dataset
ILP hexose predictor 32.50 10-fold cross-validation, 80 hexose
and 80 non-hexose binding sites.
Shionyu-Mitsuyama et al. [10] 31.00 Test set of 61 polysaccharide binding sites.
Taroni et al. [16] 35.00 Test set of 40 carbohydrate binding sites.
Malik and Ahmad [5] 39.00 Leave-one-out method, 40 carbohydrate
and 116 non-carbohydrate binding sites.

All rules require the presence of a planar polar residue (Asn, Asp, GLN, GLU,
ARG). These residues have been identified as the most frequently involved in the
hydrogen-bonding of the hexose [8]. The hydrogen bond is probably the most
relevant interaction in protein binding in general.

A high residue-sugar propensity value reflects a high tendency of that residue
to be involved in sugar binding. The residues having high propensity values are
the aromatic residues, including histidine, and the planar polar residues [16].
This fact is reflected by several of the rules above.

Some rules require hydrophobic atoms/residues, while others require hy-
drophilic ones. Rule 5 requires both and reflects the dual nature of sugar docking,
composed of a polar-hydrophilic aspect establishing hydrogen bonds and a hy-
drophobic aspect responsible for the pyranose ring stacking [16].

Rules number 8 and 9 require the presence of different ions (Calcium, Sulfate,
Phosphate), confirming the relevance of ions in hexose binding [8].

Finally, rule 2 suggests a dependency between PHE/TYR and Asn/Asp. Such
a relation has been proven in lectins [9]. Similarly, rule 1 suggests a dependency
between TrP and GLU, a link not previously identified in the literature.

Whereas these rules provide a deep insight into the requirements for a hexose
binding site, they would ideally need to be validated by running a set of mutated
samples, substituting the atoms referred to in the rules above with other atom
types and running the analysis again. The Protein Data Bank is continually
growing with more proteins added on a daily basis and these rules could be fur-
ther refined by testing the algorithm again once more hexose binding structures
have been deposited into the database.

5 Conclusion

ILP achieves a similar accuracy as other general sugar black-box classifiers, while
offering insight into the discriminating process. With no prior biochemical knowl-
edge, Aleph was able to induce most of the known hexose-protein interaction
biochemical rules. The results of our data-driven computational methods there-
fore correspond to wet lab findings and could form the basis for a predictive
software tool. ILP finds a previously unreported dependency between TrP and
GLy, a relationship that merits further investigation.
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