
CP-Logic Theory Inference with Contextual
Variable Elimination and Comparison to BDD

Based Inference Methods

Wannes Meert, Jan Struyf and Hendrik Blockeel

Dept. of Computer Science, Katholieke Universiteit Leuven, Belgium
{Wannes.Meert, Jan.Struyf, Hendrik.Blockeel}@cs.kuleuven.be

Abstract. There is a growing interest in languages that combine proba-
bilistic models with logic to represent complex domains involving uncer-
tainty. Causal probabilistic logic (CP-logic), which has been designed to
model causal processes, is such a probabilistic logic language. This paper
investigates inference algorithms for CP-logic; these are crucial for devel-
oping learning algorithms. It proposes a new CP-logic inference method
based on contextual variable elimination and compares this method to
variable elimination and to methods based on binary decision diagrams.

1 Introduction

In many applications, the goal is to model the probability distribution of
a set of random variables that are related by a causal process, that is, the
variables interact through a sequence of non-deterministic or probabilistic
events. Causal probabilistic logic (CP-logic) [1] is a probabilistic logic
modeling language that can model such processes. The model takes the
form of a CP-logic theory (CP-theory), which is a set of events in which
each event is represented as a rule of the following form:

(h1 : α1) ∨ . . . ∨ (hn : αn)← b1, . . . , bm.

with hi atoms and bi literals, and αi causal probabilities; 0 < αi ≤ 1,∑
αi ≤ 1. We call the set of all (hi : αi) the head of the event, and the

conjunction of literals bi the body. If the body of a CP-event evaluates to
true, then the event will happen and cause at most one of the head atoms
to become true; the probability that the event causes hi is given by αi (if∑
αi < 1, it is also possible that nothing is caused).

Example. The CP-theory

shops(john) : 0.2. (C1)
shops(mary) : 0.9. (C2)

(spaghetti : 0.5) ∨ (steak : 0.5)← shops(john). (C3)
(spaghetti : 0.3) ∨ (fish : 0.7)← shops(mary). (C4)

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).



models the situation that John and his partner Mary may independently
decide to go out to buy food for dinner. The causal probability associated
with each meal indicates the probability that the fact that John (respec-
tively Mary) goes shopping causes that particular meal to be bought.

CP-logic is closely related to other probabilistic logics such as ProbLog,
Independent Choice Logic (ICL), Programming in Statistical Modelling
(PRISM), and Bayesian Logic Programs (BLPs). Meert et al. [2] compares
CP-logic to these other formalisms.

Since CP-logic was introduced, several inference methods have been
proposed for (a subset of) CP-logic. The efficiency of these methods is
crucial for developing fast parameter and structure learning algorithms
[2]. In this paper, we propose a new CP-theory inference method and
present an experimental comparison with known methods.

2 Known CP-Theory Inference Methods

Variable Elimination. Meert et al [2] describe a transformation that can
transform any acyclic CP-theory with a finite Herbrand universe to an
equivalent Bayesian network (EBN). Based on this transformation, CP-
theory inference can be performed by applying the transformation on
the given theory and then running a Bayesian network (BN) inference
algorithm, such as variable elimination (VE), on the resulting EBN.

ProbLog. ProbLog [3] is a probabilistic logic programming language that
can serve as a target language to which other probabilistic logic modeling
languages can be compiled. In particular, acyclic CP-theories without
negation can be translated into ProbLog.

ProbLog’s inference engine works as follows. Given a query, it first
computes all proofs of the query and collects these in a DNF formula.
Next, it converts this formula to a binary decision diagram (BDD). Re-
lying on this BDD representation, ProbLog then computes the query’s
probability in one bottom-up pass through the BDD (using dynamic pro-
gramming).

cplint. Inspired by ProbLog, Riguzzi [4] proposes cplint, which is a CP-
theory inference system that makes use of BDDs in a similar way as
ProbLog. There are two differences with the transformation to ProbLog.
First, cplint uses a different encoding to represent which head atom is
caused by a CP-event. Second, cplint supports negation. When it en-
counters a negative body literal ¬a in a proof, it computes all proofs of a



and includes the negation of the DNF resulting from all these proofs into
the original DNF (note that this process is recursive).

3 Inference with Contextual Variable Elimination

As said before, a CP-theory can be transformed to an EBN [2], which can
be represented by a set of factors (Fig. 1.a). A CP-theory may contain
more structural information than a BN, and this structural information
has to be encoded numerically in the factors of the EBN. This can result
in factors with redundant information (a factor may have many identical
columns) and cause suboptimal inference. This effect can be seen in the
top-left factor of Fig. 1.a, which represents that spaghetti is true if John
or Mary buys spaghetti. This factor has many identical columns.

To address this problem, we propose to use contextual variable elim-
ination (CVE) [5], which is an extension to VE that exploits contextual
independence to speed up inference by representing the joint probabil-
ity distribution as a set of confactors instead of factors. Confactors can
be more compact than factors because they explicitly encode structural
information by means of so-called contexts.

A confactor i consists of two parts, a context and a table:

< v1 ∈ V1i ∧ . . . ∧ vk ∈ Vki ∧ . . . ∧ vn ∈ Vni︸ ︷︷ ︸
context

, factor i(vk, . . . , vm)︸ ︷︷ ︸
table

>

The context is a conjunction of set membership tests (vj ∈ Vji, Vji ⊆
domain(vj)), which indicates the condition under which the table is ap-
plicable. The table stores probabilities for given value assignments for a
set of variables (vk . . . vm). In the original CVE algorithm, the context
was limited to equality tests. Our implementation also allows set mem-
bership tests, which are required to concisely represent CP-theories (e.g.,
to represent the inequality tests in the contexts in Fig 1.b, left).

Converting a CP-theory to a set of confactors. We explain the transfor-
mation for the example given before (see Fig. 1.b):

1. For every CP-event, create a variable (called a choice) whose value
indicates which head atom is chosen (e.g., C4 indicates the fourth
CP-event’s choice). The probability distribution for this variable is
represented by multiple confactors. The context of one confactor rep-
resents the case that the body is true. The other confactors constitute



< C3 != 1 ∧ C4 = 1 ,
sp
F 0
T 1

>

< C3 != 1 ∧ C4 != 1 ,
sp
F 1
T 0

>

shops(john)

C4C3

spaghettisteak fish

shops(mary)

C1 C2

< s(m) = T ,

C4

0 0.0
1 0.3
2 0.7

>

< s(m) = F ,

C4

0 1.0
1 0.0
2 0.0

>

< C3 = 1 ,
sp
F 0
T 1

>

C3, C4

sp 0, 0 0, 1 0, 2 1, 0 1, 1 1, 2 2, 0 2, 1 2, 2
F 1 0 1 0 0 0 1 0 1
T 0 1 0 1 1 1 0 1 0

b.
 C

on
fa

ct
or

s
a.

 F
ac

to
rs s(m)

C4 F T
0 1.0 0.0
1 0.0 0.3
2 0.0 0.7

Fig. 1. Factor and confactor representation for node spaghetti (left) and C4 (right)

the case that the body is false, and make the set of confactors complete
and mutually exclusive.
For example, the first confactor for C4 (Fig. 1, right) represents the
case that the body shops(mary) is true and the event chooses to make
one of the head atoms true (C4 = 1 for spaghetti, C4 = 2 for fish).
The other C4 confactor corresponds to the case that shops(mary) is
false; in that case no head atom is caused (C4 = 0).

2. For every atom in the theory, create a Boolean variable. The proba-
bility distribution of this variable is factorized in multiple confactors
that together encode an OR-function (by means of the contexts). If
at least one of the events where the atom is in the head has selected
the atom, it becomes true; otherwise, it will be false.

The transformation above can be extended to improve inference effi-
ciency. For example, we represent CP-events that have the same atoms in
the head and mutually exclusive bodies by a single choice variable. Also,
a factor is not split up if the resulting confactors are not more compact
(in terms of the number of parameters) than the original factor (e.g., C4

is not split into two confactors like in Fig. 1, but kept as a single factor).
Once the set of confactors representing the CP-theory is constructed, we
use the CVE algorithm [5] to perform CP-theory inference.

4 Results

We evaluate the inference methods on the task of inferring the marginal
distribution of one designated variable in four CP-theories of varying



10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

2 4 6 8 10 12 14 16 18 20 22

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

1 3 5 7 9 11 13 15 17 19 21 23 25
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

0 1 2 3 4 5 6 7

C
P
U

ti
m

e
[s

]

Number of atoms

(a) Growing Head

VE
CVE
cplint
ProbLog

S
iz

e
4 C
P
U

ti
m

e
[s

]

Number of atoms

(b) Growing Body with Negation

S
iz

e
4

C
P
U

ti
m

e
[s

]

Number of persons in family

(c) Blood Group - bloodtype(p,a)

S
iz

e
3

C
P
U

ti
m

e
[s

]

Number of PhD students

(d) UWCSE - taught by(c,p)

S
iz

e
1

Fig. 2. Experimental results (including example EBNs for small theories).

complexity. We always select the variable with the highest inference
cost and do not include any evidence (i.e., we consider the most diffi-
cult case). The theories are available at http://www.cs.kuleuven.be/

~dtai/cplve/ilp09. Fig. 2 presents the results. Graphs (b) and (d) do
not include results for ProbLog because they include negation.

For theory (a), the BDD based inference methods (cplint and ProbLog)
are faster than CVE and VE for large problem instances. They are slower
partly because they perform computations to calculate the probability
that a variable is true, but also for the probability that it is false (sepa-
rately). It is well known that for Noisy-AND, which occurs in the ProbLog
program that theory (a) is transformed into, it is more efficient to only
compute the probability PT that its outcome is true and to calculate the
probability that it is false as 1 − PT . An advantage of the BDD based
methods is that they only compute the probability that an atom is true.

For theories (b)-(d), CVE and VE outperform the BDD based meth-
ods. For theory (b) and (d), this is partly due to the complexity of cplint’s
method for handling negation. A second reason for the lower performance
of the BDD methods is the following. If the same atom is encountered
multiple times in the proofs, then the DNF formula will contain an iden-
tical subexpression for each occurrence, and computing all these subex-



pressions will require repeatedly proving the same goal. Some of these
redundant computations can be avoided by ‘tabling’ proofs [6, 7].

CVE outperforms VE for large problem instances on theories (a), (b),
and (d). This is due to the compact representation with confactors instead
of factors. VE runs out of memory after size 10 in (a) and size 2 in (d).

5 Conclusion and Future Work

We have proposed a new CP-theory inference method that transforms
the given CP-theory to a set of confactors and then performs inference
by running contextual variable elimination (CVE) on this representation.
CVE outperforms VE with regard to both time and memory consumption
for most large problem instances. Depending on the theory, CVE may also
be faster than current BDD based methods.

In future work, we plan to incorporate (some of) the above inference
methods into CP-theory learning algorithms. Second, we would like to in-
vestigate lifted inference for CP-theories. Known lifted-inference methods
employ VE; we will try to extend this to CVE. A third item of interest
is to investigate inference and learning methods for cyclic CP-theories.

Acknowledgments: Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen) to WM.
Research Fund K.U.Leuven to JS. GOA/08/008 ‘Probabilistic Logic
Learning’. The authors are grateful to A. Kimmig and D. Fierens for
the fruitful discussions and to F. Riguzzi for his suggestions about cplint.

References

1. Vennekens, J., Denecker, M., Bruynooghe, M.: Representing causal information
about a probabilistic process. Lecture Notes in Comp Sci 4160 (2006) 452–464

2. Meert, W., Struyf, J., Blockeel, H.: Learning ground CP-logic theories by leveraging
Bayesian network learning techniques. Fundamenta Informaticae 89(1) (2008) 131–
160

3. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the efficient
execution of ProbLog programs. Lecture Notes in Comp Sci 5366 (2008) 175–189

4. Riguzzi, F.: A top down interpreter for LPAD and CP-logic. Lecture Notes in Comp
Sci 4733 (2007) 109–120

5. Poole, D., Zhang, N.: Exploiting contextual independence in probabilistic inference.
J Artificial Intelligence Res 18 (2003) 263–313

6. Riguzzi, F.: SLGAD reolution for inference on logic programs with annotated dis-
junctions. J Algorithms in Logic, Informatics and Cognition (2009) (To appear).

7. Mantadelis, T., Janssens, G.: Tabling relevant parts of SLD proofs for ground goals
in a probabilistic setting. In: 9th Int’l Coll. on Implementation of Constraint and
Logic Programming Systems. (2009) (To appear).


