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Abstract. In this paper we carry on the work on Onto-Relational Learn-
ing by investigating the impact of having disjunctive Datalog with de-
fault negation either in the language of hypotheses or in the language for
the background theory. The inclusion of nonmonotonic features strength-
ens the ability of our ILP framework to deal with incomplete knowledge
by performing some form of commonsense reasoning. One such ability
can turn out to be useful in application domains, such as the Semantic
Web, which require that kind of reasoning.

1 Motivation

An increasing amount of conceptual knowledge is being made available in the
form of ontologies [8] mostly specified with languages based on Description Log-
ics (DLs) [1]. The problem of adding rules to DLs is currently a hot research
topic in Knowledge Representation (KR), due to the interest of Semantic Web
applications towards the integration of rule systems with ontologies testified by
the activity of the W3C Rule Interchange Format (RIF) working group1 and of
the ’Web Reasoning and Rule Systems’ conference series2. Practically all the ap-
proaches in this field concern the study of DL knowledge bases (KBs) augmented
with rules expressed in Datalog [4] and its nonmonotonic (NM) extensions such
as disjunctive Datalog with default negation (Datalog¬∨) [6]. Many techni-
cal problems arise in this kind of KR systems. In particular, the full interaction
between a DL KB and a Datalog program easily leads to semantic and compu-
tational problems related to the simultaneous presence of knowledge interpreted
under the Open World Assumption (OWA) and knowledge interpreted under the
Closed World Assumption (CWA) [13]. The KR framework DL+log allows for
the tight integration of DLs and Datalog¬∨, through a weak safeness condition
for variables in rules [14].

In [11] we have laid the foundations of an extension of Relational Learning,
called Onto-Relational Learning, to account for ontologies. In that work we have
proposed to adapt generalized subsumption [3] to a decidable instatiation of
DL+log obtained by integrating the DL SHIQ [10] and positive Datalog [4].
The resulting hypothesis space can be searched by means of refinement operators

1 http://www.w3.org/2005/rules/wiki/RIF Working Group
2 http://www.rr-conference.org/
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either top-down or bottom-up. In order to define a coverage relation we have
assumed the ILP setting of learning from interpretations. Both the coverage
relation and the generality relation boil down to query answering in DL+log.
These ingredients for Onto-Relational Learning do not depend on the scope of
induction and are still valid for any other decidable instantiation of DL+log,
provided that positive Datalog is still considered. In this paper we carry on the
work initiated in [11] by investigating the impact of having Datalog¬∨ either
in the language of hypotheses or in the language for the background theory. The
inclusion of the NM features of DL+log full will strengthen the ability of our
ILP framework to deal with incomplete knowledge by performing some form of
commonsense reasoning. One such ability can turn out to be useful in application
domains, such as the Semantic Web, which require that kind of reasoning.

The paper is organized as follows. Section 2 introduces the KR framework
of DL+log. Section 3 sketches an ILP algorithm for learning DL+log rules.
Section 4 concludes the paper with final remarks.

2 DL+log: Integrating DLs and Disjunctive Datalog

Description Logics (DLs) are a family of decidable First Order Logic (FOL) frag-
ments that allow for the specification of knowledge in terms of classes (concepts),
binary relations between classes (roles), and instances (individuals) [2]. Complex
concepts can be defined from atomic concepts and roles by means of construc-
tors such as atomic negation (¬), concept conjunction (u), value restriction (∀),
and limited existential restriction (∃) - just to mention the basic ones. The DL
SHIQ was the starting point for the design of the ontology language OWL for
the Semantic Web [9]. A DL KB can state both is-a relations between concepts
(axioms) and instance-of relations between individuals (resp. couples of indi-
viduals) and concepts (resp. roles) (assertions). Concepts and axioms form the
so-called TBox whereas individuals and assertions form the so-called ABox3. A
SHIQ KB encompasses also a RBox, i.e. axioms defining hierarchies over roles.
The semantics of DLs can be defined through a mapping to FOL. Thus, coher-
ently with the OWA that holds in FOL semantics, a DL KB represents all its
models. The main reasoning task for a DL KB is the consistency check that is
performed by applying decision procedures based on tableau calculus.

Disjunctive Datalog (Datalog¬∨) is a variant of Datalog that admits
disjunction in the rules’ heads and default negation [6]. The presence of disjunc-
tion in the rules’ heads because it makes Datalog¬∨ inherently nonmonotonic,
i.e. new information can invalidate previous conclusions. Among the many al-
ternatives, one widely accepted semantics for Datalog¬∨ is the extension to
the disjunctive case of the stable model semantics originally conceived for nor-
mal logic programs (i.e. logic programs with default negation) [7]. According to

3 When a DL-based ontology language is adopted, an ontology is nothing else than a
TBox eventually coupled with a RBox. If the ontology is populated, it corresponds
to a whole DL KB, i.e. encompassing also an ABox.



this semantics, a Datalog¬∨ program may have several alternative models (but
possibly none), each corresponding to a possible view of the reality.

The hybrid KR framework of DL+log allows for the tight integration of
DLs and Datalog¬∨ [14]. More precisely, it allows a DL KB to be extended
with Datalog¬∨ rules of the form:

p1(X1) ∨ . . . ∨ pn(Xn)←
r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk), not u1(W1), . . . , not uh(Wh) (1)

where n,m, k, h ≥ 0, each pi(Xi), rj(Yj), sl(Zl), uk(Wk) is an atom and each
pi is either a DL-predicate or a Datalog predicate, each rj , uk is a Datalog
predicate, each sl is a DL-predicate. Peculiar to DL+log is the condition of weak
safeness: Every head variable of a rule must appear in at least one of the atoms
r1(Y1), . . . , rm(Ym). It allows to overcome the main representational limits of the
approaches based on the DL-safeness condition, e.g. the possibility of expressing
conjunctive queries (CQ) and unions of conjunctive queries (UCQ)4, by keeping
the integration scheme still decidable. For DL+log a FOL semantics and a NM
semantics have been defined. The FOL semantics does not distinguish between
head atoms and negated body atoms. Thus, the form (1) is equivalent to:

p1(X1) ∨ . . . ∨ pn(Xn) ∨ u1(W1), . . . , uh(Wh)←
r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk) (2)

The NM semantics is based on the stable model semantics of Datalog¬∨. Ac-
cording to it, DL-predicates are still interpreted under OWA, while Datalog
predicates are interpreted under CWA. Notice that, under both semantics, en-
tailment can be reduced to satisfiability and, analogously, that CQ answering
can be reduced to satisfiability. The NMSAT-DL+log algorithm has been pro-
vided for checking only the NM-satisfiability of finite DL+log KBs because
FOL-satisfiability can always be reduced (in linear time) to NM-satisfiability by
rewriting rules from the form (1) to the form (2). It is shown that the decidabil-
ity of reasoning in DL+log, thus of ground query answering, depends on the
decidability of the Boolean CQ/UCQ containment problem in DL. Currently,
SHIQ+log is one of the most expressive decidable instantiations of DL+log.

3 Learning DL + log Rules

We face the problem of inducing an integrity theory H for an extensional Dat-
alog database ΠF by exploiting a background theory K which consists of a DL
KB Σ and the intensional Datalog database ΠR. Since the scope of induction
is description and a DL+log KB may be incomplete, this learning task can be
considered as a case of characteristic induction from entailment. We assume that
4 A Boolean UCQ over a predicate alphabet P is a FOL sentence of the form
∃X.conj1(X) ∨ . . . ∨ conjn(X), where X is a tuple of variable or constant sym-
bols and each conji(X) is a set of atoms whose predicates and arguments are in P
and X respectively. A Boolean CQ corresponds to a Boolean UCQ for n = 1.



NMDISC-DL+log(L, K, ΠF )
1. H ← ∅
2. Q ← { �}
3. while Q 6= ∅ do
4. Q ← Q \ {R};
5. if NMSAT-DL+log(K ∪ΠF ∪H ∪ {R})
6. then H ← H∪ {R}
7. else Q ← Q∪ {R′ ∈ L|R′ ∈ ρ¬∨(R)}
8. endif
9. endwhile
return H

Fig. 1. Main procedure of NMDISC-DL+log

ΠF and Σ shares a common set of constants. The integrity theory H is therefore
a set of DL+log rules. It must be induced so that B = (Σ,ΠF ∪ ΠR ∪ H) is
a NM-satisfiable DL+log KB. In the following we sketch the ingredients for
an ILP system, named NMDISC-DL+log, able to discover DL+log integrity
theories on the basis of NMSAT-DL+log.

The algorithm in Figure 1 defines the main procedure of NMDISC-DL+log:
it starts from an empty theory H (1), and a queue Q containing only the empty
clause (2). It then applies a search process (3) where each element R is deleted
from the queue Q (4), and tested for satisfaction w.r.t. the data ΠF by taking
into account the background theory K and the current integrity theory H (5)5.
If the rule R satisfies the database (6), it is added to the theory (7). If the rule
violates the database, its refinements according to L are considered (8). The
search process terminates when Q becomes empty (9). Note that the algorithm
does not specify the search strategy. In order to get a minimal theory (i.e.,
without redundant clauses), a pruning step and a post-processing phase can be
added to NMDISC-DL+log by further calling NMSAT-DL+log6.

The language L of hypotheses allows for generating DL+log rules. Since we
assume the database ΠF to be correct, a rule R must be modified to make it
satisfiable by ΠF by either (i) strenghtening body(R) or (ii) weakening head(R).
The refinement operator ρ¬∨ combines the two refinement operators presented
in [11] by applying the rules:

– 〈AddDataLit〉, 〈AddOntoLit〉, and 〈SpecOntoLit〉 on body(R);
– 〈AddDataLit〉, 〈AddOntoLit〉, and 〈GenOntoLit〉 on head(R)

Note that, since we are working under NM-semantics, the use of 〈AddDataLit〉
for adding negated Datalog atoms to the body of rules is not the same as for
adding Datalog atoms to the head.
5 The NM-satisfiability test includes also the current induced theory in order to deal

with the nonmonotonicity of induction in the normal ILP setting.
6 Based on the following consequence of the Deduction Theorem in FOL: Given a KB
B and a rule R in DL+log, we have that B |= R iff B ∧ ¬R is unsatisfiable.



Example 1. Let us consider a DL+log KB B (adapted from [14]) which inte-
grates the following DL KB Σ (ontology about persons)

PERSON v ∃ FATHER−.MALE
MALE v PERSON
FEMALE v PERSON
FEMALE v ¬MALE
MALE(Bob)
PERSON(Mary)
PERSON(Paul)

and the following Datalog¬∨ program Π (database about students):

FEMALE(X) ← girl(X)
MALE(X) ← boy(X)
boy(Paul)
girl(Mary)
enrolled(Paul,c1)
enrolled(Mary,c1)
enrolled(Mary,c2)
enrolled(Bob,c3)

containing also rules linking the database to the ontology. The following rules be-
longing to the language L built upon the alphabet {boy( ), girl( ), not boy( ),
not girl( ), enrolled( ,c1), enrolled( ,c2), enrolled( ,c3), PERSON( )}:

← enrolled(X,c1), PERSON(X)
boy(X)∨ girl(X) ← enrolled(X,c1)
← enrolled(X,c2), not boy(X)
← enrolled(X,c3), MALE(X)

are an excerpt of the discovered integrity theory.

As for the hypothesis ordering, note that generalized subsumption - chosen
in [11] for adaptation - applies only to definite clauses (yet, with some trick to
normal clauses). Conversely, relative subsumption [12] can cope with arbitrary
clauses and admit an arbitrary finite set of clauses as the background theory. So
it is suitable for extension to DL+log rules.

4 Conclusions and Future Work

In this paper we have carried on the work on Onto-Relational Learning by con-
sidering the problem of learning DL+log rules to be used as integrity theory
for a database whose schema is represented also by means of an ontology. The
main procedure of NMDISC-DL+log is inspired by [5] as for the scope of in-
duction and the algorithm scheme but differs from it in several points, notably
the adoption of (i) relative subsumption instead of θ-subsumption, (ii) stable
model semantics instead of completion semantics, and (iii) learning from entail-
ment instead of learning from interpretations, to deal properly with the chosen



representation formalism for both the background theory and the language of
hypotheses. The NM feautures as well as the DL component of DL+log allow
NMDISC-DL+log to induce very expressive integrity theories. In this paper we
have therefore addressed an issue that has been brought to the attention of the
database community with the advent of the Semantic Web, i.e. the issue of how
ontologies (and semantics conveyed by them) can help solving typical database
problems, through a better understanding of KR aspects related to databases.
In the future we plan to further investigate this issue from the ILP perspective.
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and N. Lavrač, editors, Inductive Logic Programming, volume 5194 of Lecture Notes
in Artificial Intelligence, pages 158–175. Springer, 2008.

12. G.D. Plotkin. A further note on inductive generalization. Machine Intelligence,
6:101–121, 1971.

13. R. Rosati. Semantic and computational advantages of the safe integration of on-
tologies and rules. In F. Fages and S. Soliman, editors, Principles and Practice
of Semantic Web Reasoning, volume 3703 of Lecture Notes in Computer Science,
pages 50–64. Springer, 2005.

14. R. Rosati. DL+log: Tight Integration of Description Logics and Disjunctive Dat-
alog. In P. Doherty, J. Mylopoulos, and C.A. Welty, editors, Proc. of Tenth In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
pages 68–78. AAAI Press, 2006.


