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Abstract. The game of chess has been a major testbed for research
in artificial intelligence since it requires focus on intelligent reasoning.
Particularly, several challenges arise to machine learning systems when
inducing a model describing the rules of chess, including the creation
and definition of the examples, the learning of a model which correctly
represents the official rules of the game, covering all the branches and
restrictions of the correct moves, and the comprehensibility of such a
model. Besides, the game of chess has inspired the creation of numerous
variants, ranging from faster to more challenging or to regional versions
of the game. The question arises if it is possible to take advantage of an
initial classifier of chess as a starting point to obtain classifiers for the
different variants. We approach this problem as an instance of theory
revision from examples. The initial classifier of chess is inspired by a
FOL theory approved by a chess expert and the examples are defined
as sequences of moves within a game. Starting from a standard revision
system, we argue that abduction and negation are also required to best
address this problem. Experimental results show the effectiveness of our
approach.

1 Introduction

Game playing is a fundamental human activity, and has been a major topic of
interest in AI communities since the very beginning of the area. Good perfor-
mance in games often requires a significant amount of reasoning, making this
area one of the best ways of testing computational schemes of intelligent systems.
Particularly, the game of chess has been sometimes referred as the Drosophila
of AI, since it has offered several challenges to the area, mainly because any
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application involving chess must focus on intelligent reasoning. Datasets based
on chess have been created and used as testbeds for machine learning systems
throughout several decades, to learn a classifier of the game or playing strate-
gies [3]. In order to acquire a meaningful representation of the classifier of the
game, one could take advantage of the expressiveness of first-order logic and
use Inductive Logic Programming (ILP) [7] methods to induce the game’s rules
written as a logic program, from a set of positive and negative examples and
background knowledge (BK). Previous work has demonstrated the feasibility
of using ILP to acquire a rule-based description of the rules of chess [4] using
structured induction.

On the other hand, chess has inspired the creation of several chess based
games, to be more challenging to the player, to produce an easier and faster
variant of the original game, or still to be a regional version of the game, origi-
nating a variant or a new version of the game. There are numerous chess variants,
which can be defined as any game that is derived from, related to or inspired by
chess, where the capture of the enemy king is the primary objective [9]. For in-
stance, the Shogi game, is the most popular Japanese version of Chess. Although
both games have similar rules and goal, they also have essential differences. For
example, in Shogi a captured piece may change sides and return to the board 4.

As the acquisition of knowledge is a difficult task, time consuming and error
prone, one could take advantage of a classifier of chess as a starting point to
obtain the rules of a variant of the game. Such rules contain useful information
to the variant in respect to the similarities between both games. However, they
need to be modified to represent the particular aspects of the variant. Modifying
a set of rules so that they could explain a new set of examples is the task of
Theory Revision from Examples [12]. Thus, in this work we handle the problem
of obtaining the rules of variants of chess from the rules of chess as an instance
of Theory Revision from Examples. This task is also closely related to shallow
Transfer Learning [11], whose task is generalizing to different variations of the
same domain. To perform such a task we started from the current version of
FORTE revision system [10, 1] and show that abduction and negation should
be introduced in the revision process to best address the problem. We start by
discussing the revision system, emphasizing the modifications performed on it
in section 2. Next, we briefly describe the format we define for the examples and
the initial knowledge in section 3. We present experimental results in section 4
and finally we conclude the paper and discuss future work in section 5.

2 Chess Revision

ILP systems learn using a set of examples and background knowledge (BK) as-
sumed as correct. On the other hand, theory revision (TR) from examples con-
sider that the BK could also contain incorrect rules, which, after being modified,
would better reflect the dataset. Thus, in TR the BK is divided into two sets: one
containing the rules subject to modification, named here as initial theory and

4 It is suggested that this innovative drop rule was inspired by the practice of 16th
century mercenaries who switched loyalties when captured [9].



the other composed of rules known to be correct and therefore not modifiable,
containing intensional definitions of the fundamental relations used to define a
domain, named as fundamental domain theory (FDT) [10]. The goal of theory
revision is to identify points in the initial theory preventing it from correctly
classifying some example, and propose modifications to such points, so that the
revised theory together with the FDT is correct. The first step in a revision
process is to find the clauses and/or antecedents responsible for the misclassi-
fication of some example, the revision points. After finding the revision points,
any revision system must propose modifications to them, through generalization
and specialization revision operators [12].

In this work we follow the new version of FORTE revision system [10] as
modified in [1] to allow the use of bottom clause and modes declarations [5]. In
order to best address the revision of the rules of Chess, we performed three main
modifications on the current version of the system, described as follows.

Starting the revision process by deletion of rules. In an attempt to decrease the
complexity of the theory and consequently of the whole revision process, we
introduced a first step of deletion of rules. This process is performed as a hill-
climbing iterative procedure, where at each iteration the clauses used in proofs
of negative examples are selected, the deletion of each one is scored and the
one improving the score at most is chosen. This step restarts from the modified
theory and finishes when no deletion is able to improve the score. This procedure
both reduces theory size and noise.

Using abduction during the revision process. Abduction is concerned about find-
ing explanations for observed facts, viewed as missing premises in an argument,
from available knowledge deriving those facts [2]. Usually, theory revision sys-
tems, including FORTE, use abduction when searching for generalization revi-
sion points, to locate faults in a theory and suggest repairs to it, determining
a set of assumptions that would allow the positive example be proved [10]. We
further benefit from abduction in two distinguished moments of the revision
process. First, when searching for the revision points, we assume that faulting
abducible predicates are true and continue to search for further revision points
possibly depending on them. Then, such abducible predicates are included in the
theory under revision, up to a maximum limit. The second further moment is
when constructing a bottom clause for intermediate predicates. Those are predi-
cates in the head of clauses but the dataset does not contain examples for them,
since the examples are of the top-level predicate(s) only. However, to construct
the bottom clause it is necessary to start from a positive example with the same
predicate as the head of the clause being specialized. Thus, from a positive ex-
ample proved by the current clause we obtain the required literal using the initial
theory and FDT, similar to [6]. Next, we construct the bottom clause from such
a literal and use it as search space for adding literals to the clause.

Using negated literals in the theory. FORTE was neither able to introduce
negated literals in the body of the clause nor revise negated antecedents. Nega-
tion is essential to elegantly model the chess problem, since we need to represent



concepts such as the king is not in check, among others. In order to add negated
literals in the body of the clause, we allow the bottom clause procedure con-
struction to generate negated literals, requiring either such a literal has only
input variables or its output variables have not used again. We also introduced
a procedure for handling a faulty negated literal during the revision process.
Roughly speaking, if the negated literal is responsible for a failed proof of posi-
tive examples, it is treated as a specialization revision point. On the other hand,
if the negated literal takes part in a proof of a negative example, it is treated as
a generalization revision point.

3 The Examples and the Background Knowledge
Examples. In our framework, the legal moves in the chess variant are the positive
examples and the illegal moves the negative examples. The dataset is composed
of a set of simulated games, where each game is limited to a specified maxi-
mum number of legal moves, considering both players. The moves are within
a game, aiming to represent castling and en-passant, which require the history
of the game (p.ex., the rook and the king involved in a castling must have not
moved yet in the whole game), and promotion, which requires updating the
board to represent the promoted piece. Each move is a ground fact, whose terms
are the number of the move, the current and next status of the piece. For ex-
ample, move(9, pawn,white, c, 7, rook, white, c, 8) states that in the 9th move
executed in the game a white pawn moves from c, 7 to c, 8 and is promoted to
a rook. Each simulated game, besides the examples, has a set of ground facts,
representing the position of the pieces on the board and the pieces removed
from the games. Considering the example above, the set of facts would contain
board(10, rook, white, c, 8), stating that after the 9th move, there is a white rook
in the position c, 8 on the board and out board(10, pawn,white, 0, 0), giving the
information that a white pawn was promoted in the 9th move of the game. The
board setting is updated according to the last legal move performed. A move
generator procedure is responsible for creating the dataset of simulated games.

Background Knowledge. In the chess revision problem, the initial theory de-
scribes the rules of the standard game of chess, which will be revised using the
set of examples for its variant. The theory encompass all the possible branches
of a move, considering the official rules of chess. For example, in case the king is
under attack, a piece must only move to stop the attack, by either capturing the
attacking piece or moving to the way between the king and the attacking piece.
This theory is inspired by the one learned in [4] using structured ILP and Pro-
gol [5].5 The major differences between the theory used in the present work and
the previous one are the clauses describing castling, en-passant and promotion,
since the authors of that work opted to not represent any such special move.
The FDT contains fundamental rules to the problem of chess in general, such as
to calculate the difference between two positions on a board. The initial theory
has 109 clauses and the FDT 42 clauses. The work in [4] had 61 clauses in the
BK and it learned 61 clauses.
5 The resulting theory was approved by Professor Donald Michie, who could be con-

sidered a chess expert.



4 Experimental Results
Experimental methodology To experiment the proposal of the paper, we gener-
ated datasets with 5 simulated games where each stage of the game has 1 positive
and 5 negative examples and the maximum number of legal moves is 20, for 3
different chess variants. We performed 5-fold cross validation and scored the re-
visions using f-measure. We proceed with this section by describing the chess
variant followed by the revisions performed to obtain its theory. The variants
include a smaller version of chess, a version with an unusual rule and a variant
with larger board and unusual pieces.

Using smaller boards: Gardner’s Minichess. This is the smallest chess game
(5X5) in which all original chess pieces and legal moves are still used, including
pawn double move, castling and en-passant [9]. The revisions are as follows.
1. The delete rule step was able to remove the following clauses from the theory:

file(f). file(g). file(h). rank(6). rank(7). rank(8). promotion zone(pawn,white,File,7).
2. The add rule generalization operator created the following clause: promo-

tion zone(pawn,white,File,5) (white pawn promoting in rank 5).
The final accuracy was 100% and the returned theory matches the rules of Gard-
ner Minichess.

Unusual rule: Free-capture chess. This variant of chess allows a piece to cap-
ture friendly pieces, except for the friendly king, besides the opponent pieces [9].

1. The chess theory makes sure that a piece when attacking does not land on
a friendly piece, requiring that the colours of them both are different. The
revision created a new clause by first deleting the predicate requiring the
colours are different and then adding a literal restricting the attacked pieces
to be different from the king. Note that the original rule is kept on the theory.

2. There is a specific rule in the case of a king attacking, since the restrictions
on the king’s move must be observed. The revision system deleted the literal
requiring the colour of a piece attacked by the king be different from the
colour of the king.

The final accuracy was 100% and we can say that the returned theory perfectly
corresponds to the target theory.

Unusual pieces and larger board: Neunerschach. This is a chess variant played
on a 9x9 board. There is a piece called as Marschall replacing the Queen and
moving like it. The extra piece is the Hausfrau, which moves as a Queen but
only two squares [9]. The theory was revised as follows.

1. The delete rule step removed the clause defining the queen as a piece;
2. The abduction procedure included facts defining themarschall and hausfrau

as pieces on the theory;
3. From the rule defining the basic move of the queen, the add rule operator

created a rule for the Marschall.
4. New rules were added to the theory, defining the basic move of Hausfrau

and introducing the facts file(i) and rank(9).
Since in this dataset no promotion moves were generated, due to the size of the
board, the revision process failed on correcting the promotion on the last rank.
We expect that using games with a larger number of total moves will allow us
to represent such a promotion. Nevertheless, the final accuracy was 100%.



5 Conclusions
We presented a framework for applying the knowledge learned to the rules of
chess to learn variants of chess through theory revision and a set of generated
examples. We described the modifications performed on the revision system, in-
cluding the introduction of an initial step for deleting rules, the use of abduction
and negation. Three variants of chess were experimented and the revision was
able to return final theories correctly describing most of the rules of the variants.
The missing case was related to the promotion in the last rank of a large board.

In order to decrease the runtime of the revision process we intend to use
the stochastic local search algorithms developed in [8]. We would like to try
induce the variants of Chess using standard ILP system, such as Progol [5],
with the chess theory as BK. Beforehand, it is expected that these systems are
not successfull in the cases requiring specialization, since usually they do not
perform such operation. If the chess theory is not used as BK, we would not
take advantage of the initial knowledge about the domain.

Additionally, we want to take a further step towards the acquirement of more
complex chess variants, such as the regional chess games Shogi and Xiangqi. We
invite the ILP community to experiment the datasets developed in this work
in order to induce the rules of chess and variants of chess. They will become
publicly available after the ILP conference.
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