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Abstract. In this paper we propose a logical model of Glycolysis and
Pentose phosphate pathways of E.Coli that allows the analysis of the dy-
namical response of a biological system perturbed by a pulse of glucose.
Our goal is to give a better comprehension of the physiological state of
the cell from a better interpretation of the interactions between metabolic
and signaling networks. Starting with the discretization of concentrations
of some metabolites considered in steady state, we fully explain our ap-
proach to build a symbolic model applied to kinetics. Finally, hypothesis
finding produces logical formulas on the metabolites through abduction
which cannot be measured during dynamical state.

1 Introduction

Nowadays, bioinformatics represents the key field to explain the functionality
of life science. To analyze a biological system it is necessary to find out new
mathematical models allowing to explain the evolution of the system in a dy-
namic context or to deal in a simple manner with the complex situations where
the human experience overtakes mathematical reasoning [1]. The majority of
kinetic models in biology is described by coupled differential equations and sim-
ulators are implemented with the appropriate methods to solve these systems.
However, for most nonlinear dynamical systems it is difficult to find an analyti-
cal solution, even its existence had still to be proved [2]. The understanding of
the phenomenon described by a complex system is carried out by a qualitative
study of its behaviour such as stability or forking. Our goal is to elaborate sym-
bolic models of these systems in order to discover the mechanisms that govern
them. For that, we clusterize continuous concentrations of metabolites over time
into discrete levels and discrete timesteps. Then, we worked on an inverse prob-
lem: given the measured concentrations of some metabolites in steady state, we
compute the concentrations of metabolites before the dynamic transitionto this
steady state thanks to our kinetic model.
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2 Modeling of E-coli Central Metabolism

To obtain an understanding of the central metabolism, a logical model has been
developed according with the kinetic model including the glycolysis and the pen-
tose phosphate pathway for Escherichia coli [4]. The structure of such networks
is commonly displayed on metabolic maps, where each reaction is described
in terms of the participating enzyme, metabolites, cofactors and the reaction
stoichiometry. These chemical reactions and transport steps can be thought of
as the primary connections between metabolite pools that affect each other by
mass action. For the purpose of analysing the dynamic behaviour of metabolic
systems, we consider the same chemical compound in different pools as separate
metabolites. The metabolic networks dynamics are in their enzymatic part ruled
by the combination of classical kinetics: essentially Michaelis-Menten, Hill and
allosteric ones. The choice of Michaelis-Menten kinetic model have been made,
because it is the most general representation for a non-linear allosteric regulation
system. It assumes that the two binding equilibria are rapid when compared to
the interconversion of ES and EP.

E + S 
k1
k−1

ES →k2 E + P

Michaelis−Menten equation :
d[P ]
dt

= Vm
[S]

[S] +Km
(1)

If both S and P are present, neither can saturate the enzyme. For any given
concentration of S the fraction of S bound to the enzyme is reduced by increasing
the concentration of P and vice versa. We consider a time discretization of the
chemical rate equation for a reation between a Substrate and a Product with
respective stoechiometric coefficient s and p:

s.S → p.P : rate =
1
p
× d[P ]

dt
−→disc.time

1
p
× ∆[P ]

∆T
(2)

(1) and (2) =⇒ p× rate = Vm
[S]T

[S]T +Km
≈ [P ]T+timestep − [P ]T

(T + timestep)− T

We choiced to work with a constant timestep :

=⇒ [P ]T+1 = Vm
[S]T

[S]T +Km
+ [P ]T (3)

The experimental response observations of intracellular metabolites to a pulse of
glucose were measured in continuous culture employing automatic stopped flow
and manual fast sampling techniques in the time-span of seconds and millisec-
onds after the stimulus with glucose. The extracellular glucose, the intracellular
metabolites: glucose6phosphate, fructose6phosphate, fructose1-6bisphosphate, glyc-
eraldehyde3phosphate, phospho-enolpyruvate, pyruvate, 6phosphate-gluconate,
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glucose1phosphate as well as the cometabolites: atp, adp, amp, nad, nadh, nadp,
nadph were measured using enzymatic methods or High Performance Liquid
Chromatography. All the measured steady-state concentrations and their corre-
sponding discrete levels are summarized in Table 1.

Metabolite Concentration Level Metabolite Concentration Level

glucose 0.0556 0 g6p 3.480 2
f6p 0.600 0 fdp 0.272 0
gap 0.218 0 pep 2.670 2
pyr 2.670 2 6pg 0.808 1
g1p 0.653 0 amp 0.955 1
adp 0.595 0 atp 4.270 2

nadp 0.195 0 nadph 0.062 0
nad 1.470 1 nadh 0.100 0

Table 1.Concentrations (mM) and their discretized levels for steady states

3 Discretization of Continous Values

Discretizing time series is a research domain on its own and many works [8, 9]
have been conducted recently. Our practical problem is that we want to have a
statistically relevant (unsuppervised) discretization for N chemical compounds
concentrations over time. For that purpose, we compute an appropriate number
of levels (that was 3 for E.Coli) in regard to a Bayesian score such as Bayesian
Information Criterion [10]. We use continuous (Gaussian) hidden Markov models
with parameter tying, which means that each chemical compound has a corre-
sponding HMM but all the N Gaussian HMM share the same parameters (means
and covariances), to share the same discrete outputed levels between the different
compounds of one experiment. This relevant discretized levels of concentration
are computed through expectation maximisation with maximum a posteriori [11,
12] or through variational Bayes EM [13]. Then, we use a very simple round-
mean aggregation of them for time-sampling. We intend to do future different
works in the direction of discretization of our time-series from molecular biology
experiments but current results are already useable (see Table 1. and Fig.2).

4 Model Analysis by ILP

Inductive Logic Programming, used for induction or abduction [7], is able to
deal with discrete levels and qualitative rules [6]. Its goal is to find Hypothesis
such as Background ∧ Hypothesis |= Examples. In [5], Inoue proposed a simple,
yet powerful method to handle inverse entailment for computing inductive hy-
potheses. The resulting method called CF-induction does not restrict the bridge
formula U as the set of literals entailed by B ∧ ¬E, but consider the character-
istic clauses of B ∧ ¬E, which obviously generalizes the method of the bottom
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clause. CF-induction then realizes sound and complete hypothesis finding from
full clausal theories, and not only definite clauses but also non-Horn clauses and
integrity constraints can be constructed as H.

The logical model used by CF-induction is based on the simplified Michaelis-
Menten equation (3) which has been here represented by 3 background clauses
using the Conc(Compound, Level, Time) predicate (for concentration):

[S]� Km ⇒ ∆[P ]
∆T

=
Vm

KM
⇒ [P ]T+1 = [P ]T

Conc(s, 0, 0) ∧ Conc (Km, 2, 0) ∧ Conc(p, L, 0) → Conc(p, L, 1)

[S] ' Km ⇒ ∆[P ]
∆T

=
Vm

2
⇒ [P ]T+1 = Vm/2 + [P ]T

Conc(S, 1, 0) ∧ Conc (Km, 1, 0) ∧ Conc(p, L, 0) → Conc(P, L, 1)

[S]� Km ⇒ ∆[P ]
∆T

= Vm ⇒ [P ]T+1 = Vm + [P ]T

Conc(S, 2, 0) ∧ Conc (Km, 0, 0) → Conc(P, 2, 1)

5 Experiments and Results

We developed the beginning of an automated framework to deal with different
real world pathways and experiments. It is currently composed of two tools:

– kegg2symb, written in Python and using KEGG API, that transform path-
ways from KEGG [14, 15] into symbolic models.

– The combination of HMM Utility Program (that computes continuous HMM
[12, 13]) with py-tsdisc, a Python automating wrapper.

Here, using CF-induction with 3 levels and simplified Glycolysis and Pentose
Phosphate pathway, we obtain many hypothesis including this one:

concentration(glucose, 0, 1)∧concentration(glucose, 2, 0)∧concentration(pyr, 2, 0)

This hypothesis is corresponding to our biological knowledge that pyruvate is a
bottleneck [16] and that the glucose that is totally consummed (see Fig.1 from
simulation) was in high concentration at the beginning of the experiment (pulse).

6 Perspectives and Conclusion

Experiments dealing with more than 3 levels through a compute predicate imple-
mented in SOLAR [17] are being lead on the Glycolysis and Pentose Phosphate
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Fig. 1. Pulse of glucose in the Glycolysis Pathway of E.Coli with 3 levels

pathways of Saccharomyces Cerevisiae (yeast) with both real world data from
experiments and simulated data.
This paper showed one mean to discretize biology experiments into relevant lev-
els to be used with ILP and logic programs in the large, the authors are not
aware of any previous work in this direction. Also, we explained our processus
to transform Michaelis-Menten analytical kinetics equation into logic rules. This
processus can be generically applied to turn quantative results into qualitative
(symbolic) ones.
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Fig. 2. Pulse of glucose in the Glycolysis Pathway of S.Ce with 7 levels


