
Decision-Theoretic Logic Programs

Jianzhong Chen and Stephen Muggleton

Department of Computing, Imperial College London, London SW7 2AZ, UK
{cjz, shm}@doc.ic.ac.uk

Abstract. We propose a new Probabilistic ILP (PILP) framework, Decision-
theoretic Logic Programs (DTLPs), in the paper. DTLPs extend PILP
models by integrating decision-making features developed in Statistical
Decision Theory area. Both decision-theoretic knowledge (e.g. utilities)
and probabilistic knowledge (e.g. probabilities) can be represented and
dealt with in DTLPs. An implementation of DTLPs using Stochastic
Logic Programs (SLPs) is introduced and a DTLP parameter learning
algorithm is discussed accordingly. The representation and methods are
tested by performing regression on the traditional mutagenesis dataset.

1 Introduction

There is currently considerable interest within Inductive Logic Programming
(ILP) community in Probabilistic Inductive Logic Programming (PILP) [6] and
closely allied areas of Statistical Relational Learning [8] and Structured Machine
Learning [7]. PILP naturally extends traditional ILP [13] by introducing prob-
abilities that can explicitly deal with uncertainty such as missing and noisy in-
formation [4]. A new framework, Decision-Theoretic Logic Programs (DTLPs),
is proposed in this paper which extends PILP to Statistical Decision Theory
[1, 9] area by introducing some decision-theoretic features that can explicitly
represent and deal with expected utilities/rewards/losses happened in people’s
decision making behaviours.

Statistical decision theory is concerned with the making of decisions in the
presence of statistical/probabilistic knowledge which sheds light on some of the
uncertainties involved in the decision problem [1]. It simulates the process where
a decision-maker chooses outcomes of an act given the background information
(about the states of the world) that the decision-maker has. It is common to di-
vide decisions into categories based on the scale of the knowledge, i.e. decisions
under certainty if the information are deterministic, decisions under risk when
the decision-maker has complete probabilistic knowledge and decisions under
uncertainty when the probabilistic knowledge are partially known. The domi-
nating approach to decision-making with probabilities is expected utility theory,
in which utilities are the numerical values the decision-maker has set for the
outcomes of an act. The basic decision-rule in the theory is as simple as: choose
the outcome with the highest expected utility.

The motivation of DTLPs is shown by an example in Table 1(a), which is
adapted from [17] that demonstrates making a decision of whether to bring the

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).



(a) rain no rain

umbrella 10(dry,heavy) 10(dry,heavy)

no umbrella 0(wet,light) 15(dry,light)

(b) 0.4::coin(head). 0.6::coin(tail).
sequence([]).
sequence([H|T]):-coin(H),sequence(T).

Table 1. (a) Decision matrix of ‘umbrella & rain‘ example; (b) An SLP example.

umbrella or not at a certain day based on the statistical information of whether
it rains or not on the day. DTLPs are a framework that can encode such kind of
decision-making problems where both utilities and probabilities are involved and
handled. An implementation of DTLPs using Stochastic Logic Programs (SLPs)
has been developed in the paper, based on which a method of learning probabil-
ities and utilities for a given decision-theoretic logic program is introduced. The
method has been tested and evaluated by revisiting the traditional mutagenesis
regression problem. The experiment results show that the settings and learning
method of DTLPs not only successfully integrate decision-theoretic features into
PILP, but also provide a way of performing regression using PILP.

2 Decision-Theoretic Logic Programs

2.1 Background

Expected utility theory plays a central role in statistical decision theory.

Definition 1 (Expected utility theory). Let f be an act and x1, x2, · · · , xN

the states of the world (n ≥ 1) that might influence the outcome of f . Let oi

(1 ≤ i ≤ N) be an outcome f will have if xi is the true state. Let Pr be a
probability function defined on {xi} and U a utility function defined on {oi}.
The expected utility of f , relative to Pr and U , is EU(f) =

∑N
i=1 Pr(xi)U(oi).

Theorem 1 (Decision-rule theorem). If a decision-maker’s preferences sat-
isfy certain qualitative conditions then there exists a Pr and a U such that, for
all acts f and g, the decision-maker prefers f to g iff EU(f) > EU(g).

Expected utility theory could, more precisely, be called “probability-weighted
utility theory”. When applying the above theory and theorem to the example
in Table 1(a), the decisions are made based on Pr(rain), the probabilities of
rain. For example, if Pr(rain)=0.2 (e.g. on 1st June), then a rational person will
prefer not bringing the umbrella, as EU(no umbrella)=12 > EU(umbrella)=10;
if Pr(rain)=0.4 (e.g. on 1st May), then a rational person might have to bring the
umbrella (although it may result in carrying a heavy bag), as EU(umbrella)=10
> EU(no umbrella)=9.

Stochastic Logic Programs (SLPs) [10] are one of the developed PILP frame-
works that provide a natural way of associating probabilities with logical rules
and have been applied in some real applications [3, 4]. An SLP S is a definite
logic program, where each clause C is a first-order range-restricted definite clause
and some of the definite clauses are labelled/parameterised with non-negative
numbers, l :: C. In a pure normalised SLP, each choice for a clause C has a



10 : umbrella(A):−rain(A,y).
10 : umbrella(A):−rain(A,n).
0 : no umbrella(A):−rain(A,y).

15 : no umbrella(A):−rain(A,n).
0.4 :: rain(’01/05’,y).
0.6 :: rain(’01/05’,n).
0.2 :: rain(’01/06’,y).
0.8 :: rain(’01/06’,n). (a)

-1.91 : mut(A):−active(A,1).
-2.32 : mut(A):−active(A,2).
-1.99 : mut(A):−active(A,3).
-1.32 : mut(A):−inactive(A).
0.47:: active(A,1):−logp(A,B),gteq(B,4.18).
0.32:: active(A,2):−lumo(A,B),lteq(B,-1.937).
0.21:: active(A,3):−logp(A,B),gteq(B,2.74),

ring size 5(A,C).
inactive(A):−not(active(A,1)),

not(active(A,2)),not(active(A,3)).
(b) logp(’d63’,2.79).lumo(’d63’,-3.768).. . .

Table 2. (a) a SLP-based DTLP for the ‘umbrella & rain‘ example (Table 1(a)), where
the variable A stands for a certain date; (b) a SLP-based DTLP for the mutagenesis
data set learned in section 4, where A is a compound, B is a real number and C is a
structure.

parameter attached and the parameters sum to one, so they can therefore be
interpreted as probabilities. Normalised SLPs are defined such that each param-
eter l denotes the probability that C is the next clause used in a derivation given
that its head C+ has the correct predicate symbol. Table 1(b) shows an impure
normalised SLP that represents a sequence of tossed coin each of which comes
up either head (with probability 0.4) or tail (with probability 0.6).

Generally speaking, an SLP S has a distribution semantics [11] Learning
SLPs has been studied in [5], which solves the parameter estimation problem by
developing failure-adjusted maximisation (FAM) algorithm, and in [11], which
presents a preliminary approach to structure learning. FAM is designed to deal
with SLP parameter learning from incomplete or ambiguous data in which the
atoms in the data have more than one refutation that can yield them.

2.2 DTLPs

Definition 2 (Decision-theoretic logic programs). A DTLP D is a def-
inite logic program that consists of three types of first-order range-restricted
definite clauses {C}: a set of deterministic clauses {C+ :− C−}, where C+

and C− are the head and the body of C respectively; a set of probabilistic
clauses, {p :: C+ :− C−}, where p stands for conditional probability Pr(C+|C−)
(based on some probability function); and a set of decision-theoretic clauses,
{u : C+ :− C−}, where u is a utility value (defined by some utility function) of
making a decision C+. Accordingly, three types of predicates are defined in D:
deterministic predicates that specify non-probabilistic facts; decision-theoretic
predicates that represent decisions (outcomes of acts); and probabilistic pred-
icates that represent the states of world affecting decisions. The subset Dq of
clauses in D whose heads share the same predicate symbol q is called the defini-
tion of q. For each q, if q is a probabilistic predicate, we assume the sum of the
probabilities of the clauses in Dq is normalised to 1.

We restrict that no decision-theoretic predicates will occur in the body of
probabilistic and deterministic clauses, and only probabilistic and deterministic



predicates could occur in the body of decision-theoretic clauses. Definition 2
implies a hierarchical framework of building a DTLP, where decision-theoretic
predicates are on top of and made up of probabilistic and deterministic predicates
that are made up of other probabilistic and deterministic predicates. The setting
is such that DTLPs could be built upon any PILP model that can define and
manipulate probabilistic and deterministic knowledge. A DTLP built upon SLPs
representing the “umbrella & rain” example is listed in Table 2(a). Therefore,
the semantics of a PILP-built DTLP closely depend on the semantics of PILP
model that express and interpret probabilities.

As in PILP, two types of probability semantics could be encoded in DTLPs,
i.e. possible worlds probabilistic structure and domain-frequency probabilistic
structure [4, 12]. With possible worlds semantics (encoded in most PILP models
except SLPs), for a decision-theoretic predicate, a set of utilities are assigned
on its definition, which is made up of a set of exclusive possible worlds. In this
case, the expected utility of a decision should be computed by considering all
the possible worlds. For example, in the DTLP shown in Table 2(a), utilities are
assigned on the definitions of the two decision-theoretic predicates, umbrella(A)
and no umbrella(A), in which two possible worlds (it rains or it does not rain)
are specified respectively. With domain-frequency semantics (e.g. in SLPs), for
a decision-theoretic predicate, a set of utilities are assigned on its definition
that is made up of a set of domain features. As in SLPs, the domain features
could be partially overlapped between each other such that an object/example
is ambiguous in the sense that it could have more than one yields in its proof [5].
In this case, the expected utility of a decision could be computed by considering
one or more domain features. For instance, in the SLP-based DTLP example
shown in Table 2(b), the mutagenic status of a compound A could be either
active or inactive. If A is active, then A could be probabilistically categorised
into one or more active types, e.g. active(A,1), active(A,2) and active(A,3).

In addition to the proof settings and probability computation of PILP models
used to build DTLPs, the calculation of expected utilities for a decision is a
distinct step in DTLPs. If possible worlds semantics are encoded, the expected
utility rule defined in Definition 1 should be followed. On the other hand, if
domain-frequency semantics are the case, the expected utility of a decision should
be the weighted mean of utilities of clauses involved in decision-making (see in
Table 3 step 4).

3 Learning DTLPs

SLPs are used as the base PILP model to build DTLPs in this paper. SLPs
are also used to simulate DTLPs with possible worlds probabilistic structure as
shown in the example of Table 2(a). With the help of SLP learning, we develop
a DTLP parameter learning method in which both probabilities and utilities
could be estimated for a given definite logic program. This implies a three-stage
DTLP learning strategy: (1)learning a logic program LP by an ILP system (e.g.
Progol [14]); (2)building an SLP S with LP and learning parameters for S by
performing FAM algorithm [5]; (3)building a DTLP D on top of S, estimating



for each fold in an n-fold cross-validation
1.Estimate parameters for S using FAM from train set;
2.Compute posterior probability Pr(e|S) given S for each example e in train set;
3.for each decision-theoretic clause C in D

Compute EU(C) =
P

i Pr(ei|S)U(ei)P
i Pr(ei|S)

, where ei is predicted by C−;

4.Compute EU(f) for each example f in test set using

EU(f) =
PM

i=1 Pr(Ci)EU(Ci)PM
i=1 Pr(Ci)

, where f is predicted by {Ci}Mi=1;

5.Compute mean squared error (MSE) by comparing EU(f) and U(f) for all f .

Table 3. DTLP parameter learning algorithm

Background Knowledge B1 B2 B3 B4

Mean Squared Error (MSE) 0.265 0.192 0.174 0.170
Standard Error (SE) 0.098 0.099 0.086 0.084

Progol Predictive Accuracy [18] 0.76 0.81 0.83 0.88

Linear Regression Predictive Accuracy [18] 0.89 ± 0.02

Table 4. Experiment results. The standard error in the estimate isp
(1−MSE)MSE/N , where N is the number of test examples.

utilities for the decision-theoretic clauses in D from train datasets, and evaluating
D by predicting expected utilities for test datasets. The last stage also suggests
the possibility of performing regression which could not be done by proper ILP
and PILP systems. A detailed algorithm of stage 3 is listed in Table 3.

4 Experiments

The DTLP learning algorithms developed in the paper have been tested by per-
forming regression for the mutagenesis dataset (188 ‘regression friendly’ com-
pounds) and the four sets of logic theories obtained by early Prolog implemen-
tation of Progol [18], which were learned based on four incremented sets of
background knowledge with different predictive accuracies. Non-structural fea-
ture LUMO (Lowest Unoccupied Molecular Orbital) is amenable as the target
feature for regression. The experiment results are listed in Table 4 in terms of
mean squared error and standard error of regression, which show the methods
work for the regression with target feature LUMO and the power of different sets
of background knowledge [18]. A learned DTLP with background knowledge base
B4 is listed in Table 2(b). A predictive accuracy of 0.89±0.02 has been reported
using linear regression for the same data set with related attributes in [18].

5 Conclusions and Future work

A preliminary DTLP framework is developed in the paper as well as its learning
scheme that has been tested by experiments. The DTLP parameter learning
method also makes it possible to perform regression rather than classification
using PILP models. The future work include further discussion of the semantics
of DTLPs, further development of DTLP learning methods and regression using



DTLP. The work could also benefit from the related work of combining decision
theory and various AI methods, such as the Independent Choice Logic (ICL) [15],
work done by Scott Sanner and Craig Boutilier et al [16, 2], etc.

References

1. James O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-
Verlag, New York, 2 edition, 1993.

2. C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-
level agent programming in the situation calculus. In Proceedings of the Seven-
teenth National Conference on Artificial Intelligence (AAAI-2000), pages 355–362.
Austin, TX, 2000.

3. J. Chen, L. Kelley, S.H. Muggleton, and M. Sternberg. Protein fold discovery using
Stochastic Logic Programs. In L. De Raedt, P. Frasconi, K. Kersting, and S.H.
Muggleton, editors, Probabilistic Inductive Logic Programming, Lecture Notes in
Computer Science, Vol. 4911, pages 244–262. Springer-Verlag, 2007.

4. J. Chen, S.H. Muggleton, and J. Santos. Learning probabilistic logic models from
probabilistic examples. Machine Learning, 73(1):55–85, 2008.

5. J. Cussens. Parameter estimation in stochastic logic programs. Machine Learning,
44(3):245–271, 2001.

6. L. De Raedt, P. Frasconi, K. Kersting, and S.H. Muggleton. Probabilistic Inductive
Logic Programming - Theory and Applications. Lecture Notes in Computer Science,
Vol. 4911. Springer, Berlin / Heidelberg, 2008.

7. T. Dietterich, P. Domingos, L. Getoor, S.H. Muggleton, and P. Tadepalli. Struc-
tured machine learning: the next ten years. Machine Learning, 73(1):3–23, 2008.

8. Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning. Adap-
tive Computation and Machine Learning. The MIT Press, Cambridge, Mass., 2007.

9. Patrick Maher. Betting on theories. Cambridge University Press, 1993.
10. S.H. Muggleton. Stochastic logic programs. In L. De Raedt, editor, Advances in

Inductive Logic Programming, pages 254–264. IOS Press, 1996.
11. S.H. Muggleton. Learning structure and parameters of stochastic logic programs.

Electronic Transactions in Artificial Intelligence, 6, 2002.
12. S.H. Muggleton and J. Chen. Comparison of some probabilistic logic models. In

L. De Raedt, P. Frasconi, K. Kersting, and S.H. Muggleton, editors, Probabilistic
Inductive Logic Programming, Lecture Notes in Computer Science, Vol. 4911, pages
305–324. Springer-Verlag, 2007.

13. S.H. Muggleton and L. De Raedt. Inductive logic programming: Theory and meth-
ods. Journal of Logic Programming, 19,20:629–679, 1994.

14. Stephen Muggleton. Progol version 5.0, 2002.
http://www.doc.ic.ac.uk/ shm/Software/progol5.0/.

15. D. Poole. The independent choice logic for modelling multiple agents under un-
certainty. Artificial Intelligence, 94(1-2):5–56, 1997.

16. S. Sanner and C. Boutilier. Practical solution techniques for first-order mdps.
Artificial Intelligence, 173(5-6):748–788, 2009.

17. R. D. Shachter and M. A. Peot. Decision making using probabilistic inference
methods. In Uncertainty in Artificial Intelligence: Proceedings of the Eighth Con-
ference, pages 276–283. San Mateo, CA: Morgan Kaufmann, 1992.

18. A. Srinivasan, S.H. Muggleton, , and R.D. King. Comparing the use of back-
ground knowledge by inductive logic programming systems. In L. De Raedt, edi-
tor, Proceedings of the Fifth International Inductive Logic Programming Workshop.
Katholieke Universteit Leuven, 1995.


