
Exploiting Global Structures in Bayesian
Network Compilation by Zero-suppressed BDDs

Daisuke Tokoro, Ai Fukunaga, Kiyoharu Hamaguchi, Toshinobu Kashiwabara,
and Shin-ichi Minato

Graduate School of Information Science & Technology, Osaka University,
1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
{d-tokoro,a-fukung}@ics.es.osaka-u.ac.jp

{hama,kashi}@ist.osaka-u.ac.jp
minato@ist.hokudai.ac.jp

Abstract. This paper addresses an algorithm for probabilistic inference
for Bayesian Networks (BNs). Our algorithm uses Zero-suppressed BDDs
for compiling BNs. We introduce “separation variable” to reflect global
structures of BNs, which provides more compact ZBDDs. We show some
experimental results to compare our method with the state-of-the-art
tool.

Key words: Bayesian Networks, probabilistic inference, Bayesian Net-
works compilation, zero-Suppressed BDDs, recursive conditioning

1 Introduction

In [4, 5], Darwiche et al. proposed a logical approach for Bayesian Network (BN)
inference, and showed dramatic improvement for some networks which have large
local structures, such as determinism and context specific independence (CSI)
[7], which are features based on specific values in conditional probability tables
(CPTs) such as 0.0 in their columns. In their method, a BN is regarded as
a Multi-Linear Function (MLF), and the MLF is factored into an Arithmetic
Circuit (AC). One can answer multiple queries by evaluating and differentiating
the AC in linear time to the AC size. In the factoring process, each BN is encoded
to a Conjunctive Normal Form (CNF) of which model corresponds to MLF terms,
and then the CNF is factored into an AC utilizing Recursive conditioning (RC)
[3] with full caching 1 for exploiting global structures. RC is a method for exact
inference for BNs based on network decomposition in form of decomposition
trees, or dtrees.

On the other hand, in the method of [1], first, a BN is encoded to Zero-
Suppressed BDDs (ZBDDs) [2] and then the ZBDDs are converted to an AC.
A ZBDD is a graph-based structure for representing a combinatorial item set
(e.g. {ab, ac, c}). Together with routines for calculating union, intersection etc.,
ZBDDs can handle sets of extremely large size, which are useful in solving various
1 For simplification, we refer to RC with full caching simply as RC.

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).

2 D.Tokoro, A.Fukunaga, K.Hamaguchi, T.Kashiwabara, S.Minato

λa1λb1λc1λd1θa1θb1|a1θc1|a1θd1|b1c1

+ λa1λb1λc1λd2θa1θb1|a1θc1|a1θd2|b1c1

+ λa1λb1λc1λd3θa1θb1|a1θc1|a1θd3|b1c1

+ λa1λb1λc2λd1θa1θb1|a1θc2|a1θd1|b1c2

+ · · ·
+ λa2λb2λc2λd3θa2θb2|a2θc2|a2θd3|b2c2

Fig. 1. An example of a BN and its MLF.

combinatorial problems as shown in [8]. In this ZBDD-based approach, an MLF
is regarded as a combinatorial item set, and is converted to a ZBDD using
standard ZBDD library routines with some modification. ZBDDs have features
providing compact representations, which naturally utilize local structures in
BNs.

In this paper, we propose a BN compilation method utilizing both of local
and global structures with ZBDDs. We first encode a given BN to a ZBDD using
“separation variables”, and then convert the resulting ZBDD to an AC. Separa-
tion variables are introduced so that we can utilize a decomposition structure for
a BN, and prevent ZBDDs from blowing up. Our method can be implemented in
quite a straightforward manner using standard ZBDD library routines enhanced
with a few procedures, after constructing a decomposition tree for a BN.

We test our method with some benchmark networks, and compare the com-
pilation and inference time with the state-of-the-art compiler.

Related to the work in this paper, a ZBDD-based EM algorithm has been
proposed[9], and used in programming language in symbolic statistical modeling
PRISM[10]. We expect that enhancing the EM algorithm for our ZBDD-based
BN representation would provide more expressive and powerful models for such
logic programming languages with statistical models incorporated.

2 Background

2.1 Bayesian networks and Multi-Linear functions

BN is a directed acyclic graph (DAG), where each node of a BN corresponds to
discrete random variable X and is related to CPT which represents the condi-
tional probabilities of the value of X with given parent variables.

In [4, 5], BN is represented as MLF which consists of two types of variables,
an indicator variables λx for each value X = x, and a parameter variable θx|u
for each CPT parameter Pr(x|u). For example, a BN and its MLF are shown in
Fig.1. The terms in the MLF are in one-to-one correspondence with the rows of
the joint distribution for the network. With some evidence e, we can calculate
Pr(e) by adding all the joints containing e, that is, by setting indicators that
contradict e to 0 and the other indicators to 1.

Bayesian Network Compilation by Zero-suppressed BDDs 3

Fig. 2. The ZBDD
reduction rule.

Fig. 3. A ZBDD rep-
resenting the combi-
nation item set S =
{ab, ac, c}.

Fig. 4. A decomposi-
tion of ⟨N⟩ to ⟨NL⟩
and ⟨NR⟩ by a cutset
X.

Fig. 5. ZBDD de-
composition using
separation variable s
for Fig.4.

Obviously, the size of an MLF can be exponential in size, but we can factor
the MLF to a structure of smaller size. One of such structures is an AC, which
is a rooted DAG, where an internal node represents the sum or product of its
children, and a leaf represents a constant or variable. Once we construct an AC,
we cannot only calculate Pr(e) but also answer various queries in linear time to
the AC size. We say this process compiling BNs based on MLFs.

2.2 MLF factorization using Zero-suppressed BDD

Zero-suppressed BDD (ZBDD) [2] is a variant of binary decision diagram (BDD)
for efficient manipulation of combinatorial item sets, which has the following
reduction rules, and gives canonical forms under a fixed variable ordering.

– Delete all nodes whose 1-edge directly points to a 0-sink node, and jump
through to the destination of 0-edge, as shown in Fig.2

– Share equivalent nodes as in ordinary BDDs.

An example of a ZBDD representing combinatorial item set S = {ab, ac, c} is
shown in Fig.3. Each of the paths from root to 1-sink corresponds to the item
which contains the variables appeared as source nodes node of 1-edges in the
path.

An MLF is a polynomial formula of indicator and parameter variables. Each
MLF can be regarded as a combinatorial item set, since each term is simply
a combination of variables. By regarding parameter and indicator variables as
ZBDD variables, we can factor MLF to ZBDD. An example of a MLF and a
ZBDD representing it is shown in Fig.6. ZBDDs can exploit local structures of
determinism which corresponds that a parameter variable equal to 0 by simply
deleting the item containing the variable.

3 BN compilation using ZBDD and Recursive
Conditioning

3.1 Recursive Conditioning and ZBDD factorization

RC [3] uses conditioning and case analysis to decompose a network into smaller
subnetworks, each of which can be handled independently and recursively. That

4 D.Tokoro, A.Fukunaga, K.Hamaguchi, T.Kashiwabara, S.Minato

Fig. 6. An example of a BN and its ZBDD.
Fig. 7. A dtree representing a decomposi-
tion process for BN Fig.1.

is, BN is decomposed to two subnetworks by a set of BN nodes called cutset.
Fig.4 shows that a network ⟨N⟩ is decomposed into two subnetworks of ⟨NR⟩ and
⟨NL⟩ by a cutset X containing B and C. We can handle each of the decomposed
subnetworks independently, and also recursively until they are decomposed to
a single node. This decomposition results in a decomposition tree (dtree). Fig.7
is the dtree for BN in Fig.1. The leaf nodes of the dtree are decomposed single
nodes, which correspond to CPTs.

In our method, we utilize this decomposition feature in the MLF factoriza-
tion with ZBDDs by introducing new ZBDD variables called separation variables.
Fig.5 shows the ZBDD for decomposition of Fig.4 using separation variable s.
The paths T to L correspond to the MLF terms of the decomposed subnetwork
⟨NL⟩, and the paths T to R correspond to the MLF terms of the decomposed
subnetwork ⟨NR⟩ containing separation variable s. The indicator variables re-
lated to random variables X are contained in T which represents a set of all
possible instantiations for X. L and R contain, respectively, the ZBDD variables
related to the corresponding subnetworks except for those in X. These ZBDDs
representing decomposed subnetworks are recursively separated by separation
variables, and this recursive separation follows the structure of the dtree.

3.2 Compilation method

Firstly, we decide a variable order of ZBDD. In the order, there appear first
indicator and separation variables which are ordered by traversing the dtree in
preorder, and last appear parameter variables ordered at will.

Next we construct ZBDDs for leaf nodes of the dtree, each of which cor-
responds to a CPT by considering each row of the CPT as an element in a
combinatorial item set. This can be done using standard ZBDD subroutines
”add” and ”multiply” corresponding to ’+’ and ’·’ in MLFs respectively. Then
we “merge” these ZBDDs at each internal node of the dtree traversing the dtree
from leaf to root, where two decomposed subnetworks are merged to one net-
work. For example in Fig.4, subnetworks ⟨NL⟩ and ⟨NR⟩ are merged into ⟨N⟩.

Bayesian Network Compilation by Zero-suppressed BDDs 5

Fig. 8. The merging algorithm.
Fig. 9. The replacing rule for the ZBDD to
the AC.

That is, using the dtree of Fig.7, we first merge two leaf ZBDDs B and C, re-
sulting in ZBDD BC, and then, A and BC, resulting in ZBDD ABC. Similarly
we obtain ZBDD ABCD from ABC and D. Merging of ZBDD NL and NR to
ZBDD NLR at each internal node of the dtree we use is shown in Fig.8, where
TL and TR contain higher level variables than separation variable s which is
related to the internal node of the dtree. First, we insert the separation variable
s to NR, this can be achieved using the ZBDD operation “change”. Then, we
calculate the Cartesian product of two ZBDDs TL and TR resulting in T using
the multiplication algorithm proposed in [1] and each 0-edge of s is connected
to corresponding path of L and each 1-edge of s is connected to corresponding
path of R.

Finally, the resulting ZBDD is converted to an AC. This is done by conversion
rules shown in Fig.9.

4 Experimental results

We applied our method and the state-of-the-art compiler provided at http:
//reasoning.cs.ucla.edu/ace/ to some benchmark BNs available at http:
//www.cs.huji.ac.il/labs/compbio/Repository. We used a computer with
Intel Pentium4, 2.40GHz, 2GB of memory. Experimental results are shown in
Table1. In the table, AceT shows the results for ACE using the tabular variable
elimination, AceC shows those using CNF based algorithm, Ace shows the com-
mon results for AceT and AceC, ZBDD shows our method, the parameter Max
Clust. is ln of the maximum cluster size, and ’-’ means out of memory. Tabular
variable elimination is the variant of [6] which is similar to our method but uses
ADDs instead of ZBDDs. The detail of the implementation of this method is
not available. In this result, the dtree is constructed by the method written in
[3]. Our method uses elimination orders provided the benchmark site, but Ace
computes the orders based on “minfill heuristic”.

We cannot compare our method and Ace directly because each uses the
different order. From the column Max Clust., we can see that we use better
elimination orders than Ace but our method generally inferior to AceT, where
the performance of the elimination order greatly depends on Max Clust. We
think the reason of this result is that the MLF factorization with ZBDD cannot
exploit sufficiently local structures of CSI, which is the suppression of don’t cares

6 D.Tokoro, A.Fukunaga, K.Hamaguchi, T.Kashiwabara, S.Minato

Table 1. experimental result

BN Max Clust. Compile Time(s) AC Edge Count Inference time(s)
name Ace Zbdd AceT AceC Zbdd AceT AceC Zbdd AceT AceC Zbdd

Pigs 17.4 12.1 0.602 41 3.43 1,267,412 1,579,748 2,033,650 0.072 0.1 0.66

Water 20.8 15.5 1.208 0.864 3.25 124,578 62,308 254,898 0.13 0.064 0.07

Mildew 21.4 14.4 1.351 2470 6.97 2,416,452 2,671,212 2,373,890 0.118 0.258 0.84

Diabetes 17.2 12.1 3.911 8603 42 15,476,258 15,648,826 25,024,900 0.631 2.241 17.65

Munin1 26.2 18.2 - 1768 - - 23,295,630 - - 2.632 -

Munin2 18.9 12.0 1.876 513 7 4,222,134 4,323,695 4,465,550 0.2 0.287 1.67

Munin3 17.3 12.0 1.184 240 10 2,652,334 2,469,818 4,547,260 0.134 0.189 2.01

Munin4 19.6 13.9 3.853 6.906 35 4,643,186 5,080,126 8,219,610 0.21 0.369 5.77

of the logic form rather than 0 suppression. We are now working on utilizing this
feature in our method.

Compared with AceC, our method is superior to AceC in some networks, and
these networks tend to have a large number of values for some random variables.
This is because ZBDD can compress the multiple values of CPT better than
CNF based method because of 0 suppression property.

References

1. S. Minato, K. Sato and T. Sato, “Compiling Bayesian Networks by Symbolic Prob-
ability Calculation Based on Zero-suppressed Bdds,” In Proc. of 20th International
Joint Conference of Artificial Intelligence(IJCAI-2007), pp.2550-2555, 2007.

2. S. Minato, “Zero-suppressed BDDs for set manipulation in combinatorial prob-
lems,” In Proc. of 30th Design Automation Conf.(DAC-93), pp.272-277, 1993.

3. A. Darwiche, “Recursive conditioning,” Artificial Intelligence, vol.126, No.1-2,
pp.5-41, 2001.

4. A.Darwiche, “A Differential Approach to Inference in Bayesian Networks,” Journal
of the ACM, Vol.50, No.3, pp.280-305, May. 2003.

5. M. Chavira and A. Darwiche, “Compiling Bayesian Networks with Lo-
cal Structure,” In Proc. 19th International Joint Conference on Artificial
Intelligence(IJCAI-2005), pp.1306-1312, Aug. 2005.

6. M. Chavira and A. Darwiche, “Compiling Bayesian Networks Using Variable Elim-
ination,” In Proc. of the 20th International Joint Conference on Artificial Intelli-
gence (IJCAI), 2007, pp. 2443-2449.

7. Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller, “Con-
text.specific independence in bayesian networks,” In Proc. Twelfth Conf. on Un-
certainty in Artificial Intelligence (UAI-96), pp.115-123, Aug. 1996.

8. D. E. Knuth, “The art of computer programming Vol.4,” Fascicle 1b, 2009.
9. M. Ishihata, T. Sato and S. Minato, “Propositionalizing the EM algorithm by

BDDs,” Late breaking paper at the 18th International Conference on ILP-2008,
2008.

10. T. Sato and Y. Kameya, “Parameter learning of logic programs for symbolic-
statistical modeling,” J. of Artificial Intelligence Research 15 , pp.391-454, 2001.

