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Abstract. Random Forests have been shown to perform very well in
propositional learning. FORF is an upgrade of Random Forests for re-
lational data. In this paper we investigate shortcomings of FORF and
propose an alternative algorithm, R*F, for generating Random Forests
over relational data. R*F employs randomly generated relational rules
as fully self-contained Boolean tests inside each node in a tree and thus
can be viewed as an instance of dynamic propositionalization. The im-
plementation of R*F allows for the simultaneous or parallel growth of all
the branches of all the trees in the ensemble in an efficient shared, but
still single-threaded way. Experiments favorably compare R*F to both
FoORF and the combination of static propositionalization together with
standard Random Forests. Various strategies for tree initialization and
splitting of nodes, as well as resulting ensemble size, diversity, and com-
putational complexity of R*F are also investigated.

1 Introduction

In propositional learning Random Forests [4] are one of the best performing off-
the-shelf methods, competitive with both support vector machines and boosted
decision trees. In relational learning ensemble methods in general and Random
Forests specifically have not been investigated widely. Both [9] and [3] specifically
report issues with excessive runtimes, and comparatively small increases over
non-ensemble approaches. In this paper we try to address these issues by using a
form of dynamic propositionalization in the spirit of [8] using random relational
rules [1] as self-contained boolean tests inside decision tree nodes. We introduce
a new algorithm that grows forests in a parallel fashion which minimizes costly
coverage computation at the potential expense of diversity. Several variants of
the plain algorithm can achieve satisfactory diversity without compromising the
parallel generation process.

The next section describes the new algorithm® and discusses its complexity.
Experimental results are reported and discussed in Section 3. Finally, Section 4
summarises and points out directions for future research.
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2 Random Forests using Random Relational Rules

Propositional Random Forests [4] are a combination of Bagging with randomized
decision tree induction: at each bagging iteration one randomized decision tree is
generated for the respective bootstrap sample of the training data. Tree induction
can be randomized in various different ways; in Random Forests it is done in
the following way: instead of choosing the best test to split data at internal tree
nodes, first a subset of all possible attributes is drawn at random, and then
the best possible test out of that subset is selected. The size of this subset is a
parameter specified by the user, but generally a default of vnum_attributes has
been found to work well.

In [3], Random Forests were upgraded to relational problem domains by re-
placing the propositional decision tree learner with a randomized version of a
relational decision tree learner (TILDE). This approach exhibits two problems.
Firstly, interpretation of relational trees is not straightforward: every node in a
tree is either a test or a predicate, which might introducing new variables. The
scope of these variables is limited to the successful (or “yes”) branches of the
tree. Each path from the root to a leaf in the tree can then be interpreted as
a logical rule, but care must be taken with negated (or “no”) branches, which
must be represented by complex negations to ensure proper variable treatment.
Secondly, in propositional Random Forest generation the total number of at-
tributes available is a constant known upfront and it is therefore straightforward
to specify the size for and compute random subsets thereof. When growing a re-
lational decision tree, the number of possible tests or predicates at a given node
is variable and a function of the current path from the root to the respective
node. Also, in general this number tends to be both large and to grow quickly
with the depth of the tree. In [3], a sampling approach was taken to estimate
the number of possible tests and predicates applicable at a node, and then a
user-specified percentage of these literals was actually evaluated to determine
the single “best” literal out of this subset.

To combat these issues, R*F takes a very different approach to relational
Random Forest construction inspired by propositionalization. Each node in the
tree uses one fully self-contained logical rule as a boolean test. If an example
is covered by the rule, the test succeeds, and the example is passed down the
“yes” branch; otherwise the test fails, and the example is passed down the “no”
branch. This immediately alleviates the interpretation problem mentioned above
and also simplifies and speeds up the randomized tree construction: every node
simply needs to choose the best of a number of random relational rules, which
from the tree construction point of view is simply choosing one boolean attribute
from a random set of boolean attributes. Thus R*F can be viewed as a Random
Forest, where split attribute selection has been replaced with selecting one out
of a small set of boolean features which are generated by some form of oracle on
the fly as needed. Every one of these random features or rules is only evaluated
for coverage once on the full dataset, and can then be used by any split node in
any of all the trees of the ensemble, thus cutting down drastically on coverage



Algorithm 1 Pseudocode for the R*F algorithm
Initialize the forest
while #(open leaves) > 0 do
Generate a Rule and compute total cover
if #(root nodes) < Maximum #(trees) then
Initialize the next root node and add to open leaves
end if
for all Open Leaves do
for all possible prefixes do
Calculate infomation gain for the prefix
end for
if prefix with best infogain splits the leaf then
if said prefix is better than current best then
update current best prefix

end if
end if
increment Rule Count
if Rule Count == Maximum Rule Count then

if bestPrefix == NULL then
Close the leaf
else
Split the leaf using bestPrefix
add children to open leaves
end if
end if
end for
end while

computation compared to FORF. Such coverage computation is the single most
expensive step in most relational learning systems.

We apply Random Relational Rules to random forests by using randomly gen-
erated rules as the splitting condition or boolean test in internal tree nodes. As
the rule generation process is independent of the current tree state it is straight-
forward to parallelize tree and indeed forest generation. The pseudocode for
the simplified Random Relational Forest algorithm (Random Relational Rules -
Random Forests, or R*F) is given in Algorithm 1.

Usually cover computation is the most time-consuming operation a relational
learner needs to perform. This costly operation is executed exactly once for each
random rule on the full dataset, and then every node on the waiting list can
efficiently check whether the current rule actually properly splits its subset of
the full data. This way all nodes of all trees of the ensemble can be grown in
parallel. Clearly this operation would lead to identical trees, if all trees would be
started simultaneously on the full dataset. To introduce the diversity necessary
for good ensemble performance the algorithm staggers the start of individual
trees, therefore different tree nodes see different subsets of random rules before
making a split decision. Additional diversity is ensured by the use of bagging, i.e.



each root node is initialized with a randomly drawn bootstrap sample instead of
the full training set. Other options for inducing more diversity were evaluated,
but usually performed worse. Once nodes are initialized, and are not class-pure,
they are put onto a list and will wait for rules that will split their data into two
non-empty sets. After a user-defined maximum number of rules have been seen
(MRC, or maximum rule count), a node will either be split on the best rule
seen, or will be turned into a leaf predicting an appropriate class distribution,
if no rule was found to split this node. Root nodes are an exception as they
ignore the MRC setting and split on the first non-trivial rule seen. Together
with bagging this ensures sufficient diversity of the trees, even though they are
grown in parallel from the same stream of boolean features.

R*F can also be seen as an example of dynamic propositionalization [8], in
that the features are generated dynamically on-demand, and do not have to be
precomputed in advance as would be common in static propositionalization [7].
Its runtime complexity is basically determined by the number of rules that must
be generated before the last tree is started plus the number of rules needed to
finish the last tree:

Rules required for forest generation = (n + s) (1)

where n is the number of trees in the forest and s is the average number of rules
required to construct a single tree. Empirical evidence confirming Equation 1
can be found in [1]. The number of rules required to construct a single tree can
vary substantially. It is a function of the particular dataset, the Maximum Rule
Count and the particular random rules generated. A worst case upper bound is
given by:

Max #rules needed per tree = (t — 1) x MRC (2)

where ¢ is the size of the training set and M RC' is the Maximum Rule Count. It
is unlikely that this upper bound would be reached under normal circumstances,
as it describes the pathological case where each node in the tree is split only
after the maximum possible number of rules have been generated, and at every
node the split has resulted in one single-instance leaf and one leaf containing all
the remaining instances.

3 Empirical Evaluation

R*F was tested using the following standard ILP datasets: Mutagenesis (with
and without regression-unfriendly instances) [11], Muskl [5], Cancer [10], and
Diterpenes [6]. Mutagenesis and Cancer were limited to low-level structural in-
formation as represented by atoms and bonds; additional propositional infor-
mation such as global properties lumo or logP, or predefined functional groups
was deliberately excluded: they are known to improve classification accuracy
significantly, thereby potentially masking the relational performance of the in-
vestigated algorithms. The current implementation of R*F is limited to two
classes, so the Diterpenes dataset was transformed into three two-class versions



by using all pairwise combinations of the three largest classes called 3, 52 and
54 — Diterpenessy 3, Diterpenessg 3 and Diterpenessa s4.

All results were obtained as averages over ten times ten-fold cross-validation.
Table 1 compares the accuracy obtained for each dataset, using both R*F using
500 trees, bagged roots, and MRC equal to 50, and a static propositionaliza-
tion based on 1000 non-trivial random rules turned into boolean features and
processed by an equivalent standard Random Forest.

Table 1. Accuracy for R*F using 500 trees, bagged roots, and MRC equal to 50
compared to static propositionalization.

Dataset R*r [Static[Significant
Carcinogenesis [61.24|60.91 no
Diterpeness2,3 |97.31]96.97 yes
Diterpeness2, 54 |96.24|94.22 yes
Diterpenesss s [98.43|97.69 yes
Musk1 85.32 |89.13 no
Mutagenesisa;; |79.27| 76.66 no
Mutagenesisrr|85.99(84.95 no

For comparison with published results for FORF[3], we also tested RF on
Mutagenesis 4;; and the Financial dataset (Table 2)using out-of-bag evaluation
rather than cross-validation. We compare to the highest FORF results listed in
their paper, and see that R*F significantly beats the standard aggregate-less
FORF both times. Remember that R*F currently does not include aggregates,
still it is as good as the all FORF-plus-aggregates variants (FORF-LA: lookahead
aggregates, FORF-SA: simple aggregates, and FORF-RA: refined aggregates) on
one of the two datasets. Clearly, for the second dataset aggregates are essential
for near-perfect prediction. Adding aggregates to R*F will be one major direction
for future research.

Table 2. Comparison of R*F and FORF (out-of-bag evaluation) on Mutagenesisgrr
and Financial

Algorithm| Accuracy Muta Accuracy Financial

RF 79.1 + 1.1|R?F is[Significance| [87.8 + 0.7|R*F is[Significance
FORF 74.7 + 1.4|better 95%| |85.7 & 0.6|better 95%
FORF-SA |78.9 & 1.8| equal < 90%| 199.8 4 0.2| worse 99%
FORF-RA |78.1 4+ 1.2| equal < 90%| [99.7 £ 0.4| worse 99%
FORF-LA |79.0 & 1.4| equal < 90%| [99.8 £ 0.4| worse 99%




In addition to measuring accuracy we have also conducted studies to judge
the sensitivity of the algorithm to parameter settings and to alternative split
rule selection methods. For lack of space we can only summarize here, claiming
that, as expected, larger number of trees consistently produce higher accuracies,
but that after a couple of hundred trees accuracy usually levels out on a plateau.
The MRC or maximum rule count is more of an optimization parameter, usually
with optimal values between 50 and 100, where lower values tend to underfit,
and higher values cause overfitting. Measuring tree sizes and tree diversity, fully
random trees are usually larger and more diverse, and higher MRC values reduce
both the size and diversity of trees. For a lot more detail please consult [1].

4 Summary and Future Work

The efficiency and effectiveness of the R*F algorithm is the result of the appli-
cation of randomly generated relational rules to the random forests framework.
Staggered root initialization allows R*F to produce diverse trees in parallel, and
the experimental results obtained are very competitive with those achieved by
another Relational Random Forest algorithm. The main direction for future work
will be the inclusion of aggregates into R*F. Alternative and more targeted ran-
dom rule generation methods, which work on explicit seed examples that must
be covered by a rule, will also be investigated.
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