
Constraint-based Probabilistic Modeling for

Statistical Abduction

Taisuke Sato1,2, Masakazu Ishihata1, and Katsumi Inoue2,1

1 Graduate School of Information Science and Engineering,
Tokyo institute of Technology

{sato,ishihata}@mi.cs.titech.ac.jp
2 Principles of Informatics Research Division

National Institute of Informatics
kii@nii.ac.jp

1 Introduction

Suppose we have i.i.d. data as a bag of ground atoms and wish to build their
logic-based probabilistic model [1, 2]. Theoretically there are many ways to do it
but current approaches seem classified into two types, feature-based discrimina-
tive approaches and rule-based generative approaches . The former type typically
defines a log-linear model p(x) = Z−1 exp(

∑
i wifi(x)) where the fi’s are boolean

features taking 1 (true) or 0 (false), the wi’s weights and Z a normalizing con-
stant. For example MLNs (Markov logic networks) [3] use first-order clauses as
templates whose ground instantiations work as boolean features.

The latter type, rule-based approaches such as SLPs [4], ICL [5], PRISM [6, 7]
and more recently ProbLog [8], employs definite or general clauses to describe a
generative process of output. They proof-theoretically define a distribution over
ground atoms [4, 5], or model-theoretically define a probability measure over
possible worlds, i.e. the set of Herbrand interpretations [6, 8]. Joint distributions
thus defined are a subclass of log-linear models where the normalizing constant
is unity but able to cover a variety of probabilistic models from BNs (Bayesian
networks) to PCFGs (probabilistic context free grammars).

In this paper3we introduce constraint-based probabilistic modeling, a new
modeling framework that uniformly covers the above two types. It defines CBPMs
(constraint-based probabilistic models), i.e. conditional distributions Pc(· | KB)
such that Pc(·) is a product of Bernoulli distributions and KB is a set of clauses.
It is motivated by an observation that abductive reasoning for metabolic net-
works [9] requires a flexible framework capable of describing cyclic dependencies
caused by positive/negative feedback among metabolites.

The basic idea of CBPMs is simple; independent atoms are constrained by a
knowledge base KB. Pc(· | KB) is a conditional distribution over the Herbrand
interpretations that satisfy KB. Yet they are expressive enough statistically and
logically. Statistically they can define both generative models such as PCFGs
and discriminative models such as CRFs (conditional random fields). Logically
3 Distributions are discrete throughout the paper.

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).

we can directly reflect our knowledge in the first-order KB and perform logi-
cal deduction freely. Despite broad coverage of probabilistic models by CBPMs,
probabilities are uniformly learned from data by the BDD-EMC algorithm de-
veloped for CBPMs efficiently using dynamic programming.

2 Constraint-based probabilistic models

In this section we define CBPMs and state theorems about them. Let L be a
countable first order language, HB the Herbrand base, i.e. the set of ground
atoms in L. We fix an enumeration A1, A2, . . . of ground atoms in HB and
identify a 0-1 vector (1, 0, . . .) with a Herbrand interpretation making A1 true
(1), A2 false (0) Let Pc be a (-n infinite) product distribution Pc(A1 =
x1, A2 = x2, . . .) =

∏∞
i=1 Pc(Ai = xi) (xi ∈ {0, 1}) for the Ai’s and identify

it with a probability measure over the Herbrand interpretations for L. So all
ground atoms are independent and every closed formula ϕ in L is a random
variable taking a value ∈ {1, 0} w.r.t. Pc. We write Pc(ϕ) (resp. Pc(¬ϕ)) instead
of Pc(ϕ = 1) (resp. Pc(ϕ = 0)) and also P (x) instead of P (X = x) when the
context is clear.

A CBPM (constraint-based probabilistic model) is a conditional probability
measure Pc(· | KB) on the set of Herbrand interpretations conditioned on a set
KB of countably many clauses. Although it always exists measure-theoretically
for any KB, when Pc(KB) = 0, we are unable to define it as Pc(ϕ∧KB)

Pc(KB) . So
hereafter, to make probability computation feasible and discussion simple, we
assume that L has no function symbol, HB is finite and Pc(KB) > 0 (KB is
consistent)4.

Let X be a random variable and V (X) the set of values X takes. We denote
by �X = x� a propositional random variable which takes on 1 when the event
X = x (x ∈ V (X)) happens and 0 otherwise. For a given joint distribution
P (X1 = x1, . . . , XN = xN), consider a CBPM Pc(�X ′

1 = x1�, . . . , �X ′
N = xN� |

KB) where the X
′
i ’s may or may not be identical to the Xi’s. If Pc(�X ′

1 =
x1�, . . . , �X ′

N = xN � | KB) = P (X1 = x1, . . . , XN = xN) holds for every possible
xi (1 ≤ i ≤ N), we say that P (X1 = x1, . . . , XN = xN) is equivalent to Pc(�X ′

1 =
x1�, . . . , �X ′

N = xN � | KB). These notations are extended to vectors X, x.
We state two theorems without proofs. The first one deals with log-linear

(discriminative) models where a joint distribution P (x) is given as a product of
potential functions P (X = x) = Z−1

∏M
i=1 Fi(xi). Here X, x and xi(⊆ x) are

vectors and Z is a normalizing constant.

Theorem 1. Suppose P (X = x) = Z−1
∏M

i=1 Fi(xi). Then P (X = x) has an
equivalent CBPM Pc(�X

′
1 = x1�, . . . , �X

′
M = xM� |C ∧∧

i KBi) with the same
factorization as follows.

P (X = x) = Pc(�X
′
1 = x1�, . . . , �X

′
M = xM� |C ∧∧

i KBi)

=
Q

i P (i)
c (�X

′
i=xi� |KBi)P

x
Q

i P
(i)
c (�X ′

i=xi� |KBi)
4 The infinite case will be treated in a longer version of this paper.

where C and the KBi’s are some boolean formulas and P
(i)
c (�X ′

i = xi� |KBi)
(1 ≤ i ≤ M) is a CBPM defined by KBi equivalent to a factor joint distribution
Q(i)(X i = xi) such that P

(i)
c (�X ′

i = xi� |KBi) = Q(i)(X i = xi) = Fi(xi)P
xi

Fi(xi)
.

We next consider rule-based generative models such as PCFGs. We use
PRISM which is a symbolic-statistical modeling language based on Prolog ex-
tended with a built-in predicate msw/3 representing probabilistic choices [6, 7].
PRISM programs cover generative models in general and PCFGs in particular.

To state the theorem below which says CBPMs can simulate PRISM, we
introduce a binary relation “�” over HB by A � B if-and-only-if B appears in
the body W of some ground clause A ⇐ W from DB. DB is said to be cycle-free
if there is no looping chain A1 � A2 � · · · � A1.

Theorem 2. Suppose a PRISM program DB is cycle-free. DB has an equivalent
CBPM such that for a non-msw ground atom G, we have PDB(G) = Pc(G | KB)
where PDB(G) is the probability of G defined by DB and KB is a set of certain
clauses related to DB.

3 Constraint-based statistical abduction

In this section we apply CBPMs to statistical abduction.
Abduction is one of logical inferences (deduction, induction, abduction) which

infers the best explanation E for our observation O such that KB ∧ E
 O and
KB ∧ E is consistent. Statistical abduction in addition attempts to quantify ex-
planations with probabilities and select the best explanation as the one having
the highest probability, realizing robust abduction applicable to noisy data. The
framework of statistical abduction is general. Many known probabilistic models
from BNs to PCFGs are understood as performing statistical abduction [6].

Suppose we have i.i.d. observations O1, . . . , OT , ground literals, and a knowl-
edge base KB that may contain non-Horn clauses as well as cyclic rules such as
friend(X, Y) ⇐ friend(Y, X). For each Ot (1 ≤ t ≤ T), we search for an expla-
nation Et in the search space E of possible explanations such that KB ∧Et
 Ot

and KB ∧ Et is consistent. We assume E is specified beforehand as a set of
conjunctions of abducibles or a set of clauses having at most three literals etc.
Each Ot can have multiple explanations E

(t)
1 , . . . , E

(t)
kt

and we call the disjunc-

tion E(t) = E
(t)
1 ∨ · · · ∨ E

(t)
kt

disjunctive explanation for Ot. We then construct
a CBPM Pc(· | KB, θ) that specifies a distribution on Herbrand interpretations
for HB. Here θ collectively stands for parameters, i.e. the probabilities of atoms
in HB being true. We estimate θ by MLE (maximum likelihood estimation) as
the maximizer of the likelihood function L(θ) =

∏T
t=1 Pc(E(t) | KB, θ).

The reason for our choice of this likelihood function is as follows. First note
that Ot and KB are logically independent (o.w. KB would explain Ot) and they
are connected solely through the E

(t)
i ’s. So simply maximizing Pc(Ot | KB, θ)

will not work. Also note we wish our explanation is true but we do not know
which one is true. So we instead wish their disjunction, E(t), is true. Hence we

maximize Pc(Ot∧E(t) | KB, θ). Since KB |= E(t) ⇒ Ot, we replace Pc(Ot∧E(t) |
KB, θ) with Pc(E(t) | KB, θ), reaching our L(θ).

After learning θ, we determine the most likely explanation for Ot as the one
having the highest probability in {Pc(E

(t)
kj
|KB, θ) | 1 ≤ j ≤ kt}. We learn θ by

an EM algorithm, the BDD-EMC algorithm which is derived for CBPMs. Re-
grettably we have to entirety omit details of the BDD-EMC algorithm for space
limitations. We just remark that it is a generalization of the FAM algorithm [10]
and the BDD-EM algorithm [11] which is implemented on BDDs and applicable
to log-linear models with hidden variables.

4 Learning example

We present here a small learning example. It is often observed that smart people
are rich and rich people know each other. The following KBrich formalizes this
observation.

KBrich =

⎧⎪⎪⎨⎪⎪⎩
friend(a, b) friend(b, c)
friend(X, Y) ⇐ friend(Y, X)
rich(X) ⇔ smart(X) ∨

∃Y (friend(X, Y) ∧ rich(Y) ⇐ ¬noise(Y, X))

KBrich is non-Horn. It says that there live three people a, b and c in the
world where a and b are friends and so are b and c (but it is unknown whether
or not a and c are friends). We are sure that if Y is a friend of X , symmetrically,
X is a friend of Y . Also it holds that X is rich if X is smart or has a rich friend,
the latter being valid only if ¬noise(X, Y), i.e. no noise occurs and vice versa.
Friendship is cyclic and being rich is also (probabilistically) cyclic here.

Suppose we have observed the state of a and c several times. If we observe
rich(a) n times while ¬rich(a) m times, we denote the observations by a(n/m).
Similarly for c(n/m). Also suppose we wish to estimate the probability of rich(b)
from observations a(n/m) and c(n′/m′). As the explanation for rich(a), we
choose the right hand side of rich(a), i.e. smart(a)∨∃Y (friend(a, Y)∧rich(Y) ⇐
¬noise(Y, a)) with Y instantiated to b and c, and dually, its negation as the one
for ¬rich(a). Similarly for rich(c) and ¬rich(c).

Under this abductive setting we conducted a learning experiment varying
a(n/m) and c(n′/m′) with the probability of noise(X, Y) fixed to 0.1. Fig-
ure 1 plots the log-likelihood of the disjunctive explanations for the observations
(a(2/1)c(1/2)). One can see a sharp rise of the log-likelihood at early iterations
of the BDD-EMC algorithm.

Table 1 summarizes learned probabilities Pc(A |KBrich, θ) for various atoms
A. It shows that Pc(rich(b) |KBrich) is the highest (0.9998) when a and c, b’s
friends, are observed to be rich three times (a(3/0)c(3/0)) while it decreases to
one third (0.343) when they are sometimes observed to be not rich (a(2/1)c(1/2)).
When a and c are never observed to be rich (a(0/3)c(0/3)), the probability drops
to 0.001.

-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

 0 1000 2000 3000 4000 5000

lo
g

lik
el

ih
oo

d

EM iteration

Fig. 1. Learning curve

Table 1. Learned probabilities

Observations
Atoms a(3/0)c(3/0) a(2/1)c(1/2) a(0/3)c(0/3)

friend (a, b) 1.0000 1.0000 1.0000
friend (a, c) 0.3551 0.0524 0.6113
friend (b, a) 1.0000 1.0000 1.0000
friend (b, c) 1.0000 1.0000 1.0000
friend (c, a) 0.3551 0.0524 0.6110
friend (c, b) 1.0000 1.0000 1.0000

smart (a) 0.7799 0.5635 0.0018
smart (b) 0.9967 0.0953 0.0003
smart (c) 0.8444 0.0546 0.0047

rich (a) 0.9998 0.6440 0.0023
rich (b) 0.9998 0.3430 0.0010
rich (c) 0.9994 0.3207 0.0059

5 Concluding remarks

To our knowledge, constraint-based probabilistic modeling is the first logic-based
framework applicable to both logically defined log-linear models [12, 3] and rule-
based generative models [4–6, 8]. CFDs (case factor diagrams) define log-linear
models at propositional level [12] whereas CBPMs use first-order clauses and we
can make logical inference at first-order level like Pc(ϕ | KB) = 1 if KB
 ϕ.
MLNs [3] use first-order clauses to define log-linear models like CBPMs. What
CBPMs differ most from MLNs is the role of clauses. In CBPMs, unlike MLNs,
clauses logically exclude some Herbrand interpretations, giving them probability
0, and define (not necessarily uniform) distributions on the remaining interpre-
tations. Also they allow us to simulate generative models (see Theorem 2) such
as PCFGs and to compute probabilities of sentences in the given PCFG.

The BDD-EMC algorithm for CBPMs offers, though not always, an alter-
native parameter learning algorithm to the IM (iterative maximization) algo-

rithm [13]. The IM algorithm is applicable to log-linear models with incomplete
data but since it solves numerical equations at every iteration say by Newton’s
method, it is a double loop algorithm. By comparison the BDD-EMC algorithm
is a single-loop algorithm and simple to implement.

We are planning to apply constraint-based statistical abduction to the anal-
ysis of bio-sequences as shown in [9].

References

1. Getoor, L., Taskar, B., eds.: Introduction to Statistical Relational Learning. MIT
Press, Cambridge, MA (2007)

2. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In De
Raedt, L., Frasconi, P., Kersting, K., Muggleton, S., eds.: Probabilistic Inductive
Logic Programming - Theory and Applications. Lecture Notes in Computer Sci-
ence. Springer (2008) 1–27

3. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62 (2006)
107–136

4. Muggleton, S.: Stochastic logic programs. In De Raedt, L., ed.: Advances in
Inductive Logic Programming. IOS Press (1996) 254–264

5. Poole, D.: The independent choice logic for modeling multiple agents under un-
certainty. Artificial Intelligence 94(1-2) (1997) 7–56

6. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15 (2001) 391–454

7. Sato, T., Kameya, Y.: New Advances in Logid-Based Probabilistic Modeling by
PRISM. In De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S., eds.: Proba-
bilistic Inductive Logic Programming. LNAI 4911, Springer (2008) 118–155

8. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and
its application in link discoverry. In: Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI’07). (2007) 2468–2473

9. Chen, J., Muggleton, S., Santos, J.: Learning probabilistic logic models from prob-
abilistic examples. Machine Learning 73 (2008) 55–85

10. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning
44(3) (Sept. 2001) 245–271

11. Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating ab-
ductive hypotheses using an em algorithm on bdds. In: Proceedings of the 21st
International Joint Conference on Artificial Intelligence (IJCAI’09). (2009) to ap-
pear.

12. McAllester, D., Collins, M., Pereira, F.: Case-factor diagrams for structured prob-
abilistic modeling. In: Proceedings of the 20th Annual Conference on Uncertainty
in Artificial Intelligence (UAI’04), Arlington, Virginia, AUAI Press (2004) 382–391

13. Riezler, S.: Probabilistic Constraint Logic Programming. PhD thesis, Universität
Tübingen (1998)

