Speeding up Inferencein Statistical Relational Learning
by Clustering Similar Query Literals

Lilyana Mihalkova ! and Matthew Richardsdn

! The University of Texas at Austitilyanam@cs.utexas.edu
2 Microsoft Researchmattri@microsoft.com

Abstract. Markov logic networks (MLNs) have been successfully applied to
several challenging problems by taking a “programming languagefoaph
where a set of formulas is hand-coded and weights are learned fatam Be-
cause inference plays an important role in this process, “programimitiy an
MLN would be significantly facilitated by speeding up inference. We presen
a new meta-inference algorithm that exploits the repeated structureefriygu
present in relational domains to speed up existing inference techniQuesyp-
proach first clusters the query literals and then performs full inferéaconly
one representative from each cluster. The clustering step incurs amg-ime
up-front cost when weights are learned over a fixed structure.

1 Introduction

Markov logic networks (MLNSs) [13] represent knowledge aseaaf weighted first-
order clauses and have been successfully applied to aywafiehallenging tasks, such
as information extraction [12], and ontology refinement][Emong others. In these
applications, MLNs are treated as a “programming languadere a human manually
codes a set of formulas, for which weights are learned fran#ta. This strategy takes
advantage of the relative strengths of humans and comphtersan experts understand
the structure of a domain but are known to be poor at estigatiobabilities. By having
the human experts define the domain, and the computer teximaklel empirically from
data, MLNs can take advantage of both sets of skills.

Nevertheless, producing an effective set of MLN clausesoisfoolproof and in-
volves several trial-and-error steps, such as determiamgppropriate data represen-
tation and tuning the parameters of the weight learnerrémiee features prominently
throughout this process. It is used not only to test and wesérial model, but also mul-
tiple rounds of inference are performed by many popular ttd@arners [6]. Therefore,
just as the availability of fast compilers significantly gilifies software development,
“programming” with an MLN would be facilitated by speeding inference.

This paper presents a novel meta-inference approach thatpesed up any avail-
able inference algorithn® by first clustering the query literals based on the evidence
that affects their probability of being true. Inference &fprmed usingB for a single
representative of each cluster, and the inferred prolalifithis representative is as-
signed to all other cluster members. In the restricted oaken clauses in the MLN
each contain at most one unknown literal, our approachnettive same probability
estimates as performing complete inference ugtgnodulo random variation oB.
We call our approacBam for Break And Match inference.

* A significant portion of this work was completed at Microsoft Research.

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).

2 Background on MLNs

An MLN [13] consists of a set of weighted first-order claudest X be the set of all
propositions describing a worl€Q be a set of query atoms, alilbe a set of evidence
atoms. Without loss of generality, we assume fhat Q = X. Further, let¥ be the set
of all clauses in the MLNw; be the weight of clausé;, andn;(q, e) be the number
of true groundings off; on truth assignmen(q,). The probability that the atoms in
Q have a patrticular truth assignment, given as evidence thesaf atoms irE is
P(Q =qE =e) = Lexp (Zfiegwmi(q, e)). Ground clauses satisfied by the
evidenceE do not affect the probability. Thus, a ground cladseontaining atoms
from E falls in one of two categoriegA) G is satisfied by the evidence and can be
ignored, on(B) all literals fromE that appear iz are false ands can be simplified by
removing these literals.

In its most basic form, inference over an MLN is performed bgtfgrounding it
out into a Markov network (MN) [9], as described by Richamismd Domingos [13].
Although several approaches to making this process moosegitfihave been developed
(e.g. [17], which reduces the memory requirement, and jd6ich speeds up the pro-
cess of grounding the MLN), this basic approach is most Usefunderstanding@am.
Given a set of constants, the ground MN of an MLN is formed lgiuding a node
for each ground atom and forming a clique over any set of nttsappear together
in a ground clause. Inference over the ground MN is intrdetatbgeneral, so MCMC
approaches have been introduced. We use MC-SAT as the lieisnite procedure be-
cause it has been demonstrated to be faster and more adtamatther methods [11].
However,BaM is independent of the base inference algorithm.

3 Speeding Up Inference using BAM
We first describesaM in the case where each of the clauses in the MLN contains at
most one unknown literal. This case, which we aalitricted, arises in several ap-
plications, such as when modelling the function of indegerte¢hemical compounds
whose molecules have relational structure [2]. In the iestt case, the ground MN
constructed from the given MLN consists of a set of discotegequery nodes. Thus
the probability of each query literé&) € Q being true can be computed independently
of the rest and depends only on the number of groundings d&f BRAN clause that
contain@ and fall in categoryB) described in Sect. 2. This probability is given by:
P(Q=qlE =)= oxp(Zc0 wimi.o0)
exp(zfierf 11113~7L,i,Q(0))+exp<zf16,f wi-ng q(1)
the number of groundings of clauséhat containQ and are true when setting = ¢.
In the restricted case, these counts constitutegtieey signature of a literal, i.e., the
signature for a literad) consists of a set ofC;, n;) pairs where, for each clausg, n;
is the number of groundings @f; containing@ that are not satisfied by the evidence.
Literals with the same query signature have the same priityadfibeing true. We can
therefore partition all literals fron@ into clusters of literals with identical signatures.
The probability of only one representative from each clustealculated and can be
assigned to all other members of the cluster. This is fomadlin Alg. 1.

The algorithm in the general case differs only in the way gségnatures are com-
puted. The intuition behind our approach is that the infleem@iode has on the query
node diminishes as we go further away from it. So, by goingighsteps away, we can

, Wheren; o(q) is

Algorithm 1 Break and Match Inferencefm)

1: Q: set of ground query literald3: Base inference algorithm
2: foreach Q@ € Qdo
3: SIGq = calculateQuerySignatur@(0) (Alg. 2 in general case)
: PartitionQ into clusters of queries with identical signatures.
: for each ClusterK found abovedo
Pick an arbitrary query literal frork as the representative
CalculateP (R = true) using B on the portion of the MN used to calcula#d G r.
for each Q € K do
SetP(Q = true) = P(R = true)

©ooNAaR

Algorithm 2 calculateQuerySignature(Q,d) (General case)

: Input: Q, query literal whose signature is being computed
Input: d, depth of literal
if d == maxzDepth then
Return value (0 or 1) assignedd@by MaxWalkSat
: for each GroundingG of a clause in the MLN that contair@ do
for each Unknown literalU in G whose signature is not yet computéd# @ do
SIGy =calculateQuerySignature(U,d + 1)
: for each Unground claus€’ in the MLN do
for each Distinct waya of assigning signature identifiers to th#her unknown literals in
groundings ofC that contain do
10: Include a tripleC, a, n in the signature where is the number of times the particular
assignment was observed
11: Return the unique identifier for the signature

CoNoar®wNRE

perform a simple approximation to the value of the distartasy while only slightly
affecting the accuracy of inference. The signature of eamteris computed using a
recursive procedure based on the signatures of the nodeseadlfo it. The probability
that a nodey is true depends on the probabilities that its adjacent nadesrue. The
adjacent nodes are those with whigtparticipates in common clauses. The probability
that each adjacent node is true, on the other hand, deperttie pnobabilities thaits
adjacent nodes are true and so on. In this way expands into the ground MN until it
reaches a pre-defined deptlux Depth. We usednaxzDepth = 2 in the experiments.
At this point, it cuts off the expansion by assigning to théeoonost nodes their most
likely values found using the MaxWalkSat algorithm [4].df is selected as a cluster
representative in Alg. 1, inference to determine its prdtglof being true will be car-
ried out only over this portion of the MN (line 7 of Alg. 1). Al@ formalizes the query
signature calculation process. Rather than returningithesure itself, Alg. 2 returns
a unique identifier associated with each unique signatorthi$ way, the clustering of
nodes occurs alongside the calculation of their signataned signatures can be effi-
ciently compared once their identifiers are determined.idéetifiers of the outermost
nodes whose values are set using MaxWalkSat are 1 (0) fo(false) assignments.
WhenBAM is used for weight-learning, all signatures can be compufedront
because the signature does not depend on clause weightss lcase, MaxWalkSat
cannot be employed because it needs the clause weights.pessmiution is to assign
arbitrary values to the outer-most nodes. We experimenttdsstting the values of all

outer-most nodes tfalse and observed that the accuracy of inference degrades only
slightly. These experiments, omitted for space, will appeshe long version.

The running time oBAM may suffer because inference may be performed several
times for the same query literal. This happens because ttiepof the MN over which
we perform inference in order to compute the probabilityhef tluster representative
R contains additional literals that may themselves be chaseepresentatives or may
appear in the MNs of multiple representatives. To addrésptbblem, we modified the
algorithm to perform inference for more than one repredietat a time: suppose we
would like to perform inference for literal1 from clusterC'1, but this would involve
inference over literal2 from clusterC2. If C2 is not yet represented, we include in
the MN all the literals up to the desired depth necessarynfi@rénce over.2 as well.
If a cluster is already represented, further represemmtive not considered.

4 Experimental Set-Up and Results

We implementedAm within Alchemy [5] and used the implementation of MC-SAT
provided with it. MC-SAT was run as a stand-alone infererigerithm and as the base
inference algorithm oBAM. In both cases, the same parameter settings were used: all
of Alchemy’s defaults were kept, except that the number ofiging steps was set
to 10,000 in order to decrease the amount of variation due to samplitgta better
simulate a scenario in whiasam is used in the loop of weight-learning. We compared
the systems in terms of inference time and average condltiog-likelihood (CLL).

To control the size and complexity of the models, we used ai$t@procedurd
to generate synthetic MLNs and corresponding datasetsithwie varied the number
objects and clauses and the complexity of the clauses. Wadmed 2 levels of clause
complexity. In type 1, all clauses mention the unknown @argredicate just once. In
type 2, half of the clauses mention the unknown predicate cared the rest mention it
twice. We considered models that contained 5 or 10 claugkd@mains that contained
100, 150, or 200 constants. For each dataset/MLN pair gegtkadove, we performed
5 random runs with each of the two systems, using the samemarded and the same
dedicated machine for each system within a run. When perfayimference for cluster
representative®AM executed the same code as that executed by MC-SAT.

We additionally testeAm on the UW-CSE domain [13]Jusing model% learned
with BUSL, which gave good predictive accuracy on this data set [7]u¥ég the MLNs
from the last point on the learning curve, which were trailmedall but one of the
available examples. Thus, there are five possible modeésfarreach of the examples
left out for testing. The goal of inference was to predictaldeisedBy relation.

Fig. 1 summarizes the results on synthetic data. As can befsa® the table in
this figure, the difference in the CLL values of MC-SAT amwM is very small; thus,
BAM is able to mirror the quality of probability estimates ottpy MC-SAT. Moreover,
BAM runs consistently faster than MC-SAT, and the improvemespeed increases as
the number of constants in the domain grows. On aveeage performed inference
over37% of the query atoms in domains with 100 constad®¥; in domains with 150
constants; and1% in domains with 200 constants.

% The procedure, which models sparsity in relational data, will be destiitige long version.
4 Available fromhttp://alchemy.cs.washington.edu/ under “Datasets.”
5 Available fromhttp://www.cs.utexas.edu/ ml/mins/ under “BUSL.”

Inference Running Time for 5 Clauses of Type 1 Inference Running Time for 5 Clauses of Type 2

Exp. mcsat [bam |Diff. =3 '
100,5,1]-0.067-0.067-0.00Q — K
150,5,1[-0.064-0.0640.000] £ - — :

200,5,1|-0.061-0.061-0.000

100,5,2 |-0.338-0.3160.021 TL

150,5,2[-0.344-0.3400.004 E e —
200 ’ 5 ’ 2 _0. 220 _0. 207 0] 0 14 ; Inference Running Time for 10 Clauses of Type 1 Inference Running Time for 10 Clauses of Type 2
100,10,1-0.08G-0.08(-0.000 * [: e
150,10,1-0.069-0.069-0.000 , e \
200,10,1-0.064-0.064-0.00(—
100,10,2-0.491-0.4890.001 .
150,10,2-0.594-0.614-0.015 || | —mm

200,10,2-0.668-0.668-0.000 - Number of Constants * Number of Constants

Fig. 1. The table above shows the average CLL of MC-SAT aadl. The “Exp.” column de-
scribes the experiment as a (number of objects), (humber of clagskesise complexity type)
tuple. The difference is shown in the last column. A positive (negatiaé)evshows a slight

ooooo

Example |MC-SAT|BAM |Diff o

1 (Al) -0.045 |(-0.0450.000 mes M

2 (Graphics)|-0.044 |-0.052-0.008 3 —

3 (Language}0.060 |(-0.0600.000

4 (Systems)|-0.040 |-0.055-0.015

5 (Theory) |-0.031 |-0.031-0.000 =l l I =

Fig. 2. The table above shows the average CLL of MC-SAT aasl on each of the test examples,
with the difference in CLL shown in the last column. A positive (negatiadyg shows a slight

advantage ofgaAM) MC-SAT. The bar graphs show the average inference time in secéilds

times are plotted, although some are extremely small.

Fig. 2 shows the comparison in the UW-CSE domain. The tablereft of this
figure shows that MC-SAT andaM produce probability estimates of similar quality,
and the bar plot demonstrates tBaw is consistently faster than MC-SAT. On average,
BAM was12.07 times faster than MC-SAT and performed actual inferencg ful6%
of the unknown query atoms on average over the five test examnpl

In all experiments, the results of inference exhibited J#tle variance across the
random runs. Variance is therefore not reported to redudéec!

5 Related And Future Work

BAM is related to work on lifted inference in which variable dliation (VE), aided by
clever counting and ordering heuristics, is used to elitairralarge number of instan-
tiations of variables at once [10, 1, 8]. Setrel. [14] introduce an algorithm, based on
VE, that constructs a graph whose nodes represent the alrigl intermediate fac-
tors used by VE. By inspecting this graph and carefully cotimgunode labels, factors
that carry out identical computations are identified. In @erg extension, [15], to al-
low for approximate inference, the authors exploit the ithed the influence between
two nodes diminishes as the distance between them incremsa#egous to the idea
exploited in the present work. Jaimoviehal. [3] introduce an algorithm based on be-
lief propagation in which inference is performed on the tlat® i.e. variablized, level.

Their approach targets the case when no evidence is prashiaa been extended to
the case when evidence is present [18]. The approaches badeglief propagation
calculate exact probabilities when belief propagation Mypbut suffer from the same
limitations as ordinary belief propagation in the presesfdeops. All above techniques
are tied to a particular inference approach and are theréfetter viewed as stand-alone
inference algorithms, in contrast k&M, which is a meta-inference technique in that it
can be applied to any existing inference algorithm.

In the future, we plan to exterglam to allow “soft” query signature matching, so
that signatures need only be very similar to each other tddmeg in the same cluster.
We would also like to provide a method for quickly recompgtijuery signatures as
the clauses of the MLN are refined, allowiagm to be used for structure learning.
Acknowledgment: We would like to thank Tuyen Huynh for helpful discussionsl an
the anonymous reviewers for their comments. Some of theriempets were run on the
Mastodon Cluster, provided by NSF Grant EIA-0303609, at UiEt.

References

1. R. de Salvo Braz, E. Amir, and D. Roth. MPE and partial inversion indifieobabilistic
variable elimination. AAAI-06.

2. P. Frasconi and A. Passeririrobabilistic Inductive Logic Programming: Theory and Ap-
plications, chapter Learning with Kernels and Logical Representations. Spri2g@s.

3. A.Jaimovich, O. Meshi, and N. Friedman. Template based infeiarsggnmetric relational
Markov random fields. UAI-07.

4. H. Kautz, B. Selman, and Y. JiangA General Sochastic Approach to Solving Problems
with Hard and Soft Constraints, volume 35 ofDIMACS Seriesin Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1997.

5. S. Kok, P. Singla, M. Richardson, and P. Domingos. The Alcheraiegy for statistical re-
lational Al. Technical report, Department of Computer Science armirteering, University
of Washington, 2005http://www.cs.washington.edu/ai/alchemy

6. D. Lowd and P. Domingos. Efficient weight learning for Markov |OgGIWOI'|(S PKDD-07.

7. L. Mihalkova and R. J. Mooney. Bottom-up learning of Markov logitwaek structure.
ICML-07.

8. B, Milch, L. S. Zettlemoyer, K. Kersting, M. Haimes, and L. P. Kaelblibifted probabilistic
inference with counting formulas. AAAI-08.

9. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo,CA, 1988.

10. D. Poole. First-order probabilistic inference. IJCAI-03.

11. H. Poon and P. Domingos. Sound and efficient inference withapitidtic and deterministic
dependencies. AAAI-06.

12. H. Poon and P. Domingos. Joint inference in information extracA&m#l-07.

13. M. Richardson and P. Domingos. Markov logic networdsachine Learning, 62:107—-136,
2006.

14. P. Sen, A. Deshpande, and L. Getoor. Exploiting shared cormdatio probabilistic
databases. VLDB-08.

15. P. Sen, A. Deshpande, and L. Getoor. Bisimulation-based apmatalifted inference. UAI-
09. To appear.

16. J. Shavlik and S. Natarajan. Speeding up inference in Markov legienks by preprocess-
ing to reduce the size of the resulting grounded network. 1JCAI-09.ppear.

17. P. Singla and P. Domingos. Memory-efficient inference in relatomains. AAAI-06.

18. P. Singla and P. Domingos. Lifted first-order belief propagationAA@8.

19. F. Wu and D. Weld. Automatically refining the Wikipedia infobox ontologiWwW-08.

