Policy Transfer via Markov Logic Networks

Lisa Torrey and Jude Shavlik

University of Wisconsin, Madison WI, USA

ltorrey@cs.wisc.edu, shavlik@cs.wisc.edu

Abstract. We propose an improved method for transfer in reinforce-
ment learning via Markov Logic Networks. Our goal is to extract rela-
tional knowledge from a source task and use it to speed up learning in a
related target task. We do so by learning a Markov Logic Network that
describes the source-task policy, and then using it for decision making in
the early learning stages of the target task. Through experiments in the
RoboCup simulated-soccer domain, we show that this approach outper-
forms a previous MLN transfer method that modeled a value function
rather than a policy.

1 Introduction

The transfer of knowledge from one task to another is a desirable property in
machine learning. Our ability as humans to transfer knowledge allows us to learn
new tasks quickly by taking advantage of relationships between tasks. While
many machine-learning algorithms learn each new task from scratch, there are
also transfer-learning algorithms that can improve learning in a target task using
knowledge from a previously learned source task.

In reinforcement learning [11] (RL), an agent navigates through an environ-
ment, sensing its state, taking actions, and trying to earn rewards. The policy of
the agent determines which action it chooses in each step. An agent performing
RL typically learns a value function to estimate the values of actions as a func-
tion of the current state, and its policy typically is to take the highest-valued
action in all except occasional exploration steps.

In complex domains, RL can require many early episodes of nearly random
exploration before acquiring a reasonable value function or policy. A common
goal of transfer in RL is to shorten or remove this period of low performance. Re-
cent research has yielded a wide variety of RL transfer algorithms to accomplish
this goal [12]. In one category of methods, RL agents apply a source-task policy
or value function at some point(s) while learning the target task. Approaches of
this type vary in the representation of the source-task policy and in the timing
and frequency of its application.

Madden and Howley [5] learn a set of rules to represent a source-task policy,
and they use those rules only during exploration steps in the target task. Fernan-
dez and Veloso [2] use the original representation of the source-task policy, and
give the target-task agent a three-way choice between using the current target-
task policy, using a source-task policy, and exploring randomly. Croonenborghs

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).

et al. [1] learn a relational decision tree to represent the source-task policy, and
use the tree as a multi-step action that may be chosen in place of a target-task
action in any step.

Our own work in this area has contributed several relational methods, in
which the knowledge transferred is at the level of first-order logic, and is ex-
tracted from the source task with a relational learning method such as inductive
logic programming [7] (ILP). We transfer several types of relational models.

In one approach [14], the transferred model is a first-order finite-state ma-
chine that we call a relational macro, and it represents a successful generalized
source-task plan. In our most recent approach [13], the transferred model is a
Markov Logic Network [8] (MLN), a statistical-relational model that combines
first-order logic and probability, and it represents the source-task value function.

In this paper, we propose a new method for transfer via MLNs. Instead of
transferring an MLN model that represents the value function, we transfer an
MLN model that represents the policy. This is a more effective method, because
while the source-task action choice is often a good choice for the target task, the
numerical values of actions often differ between the two tasks, due to differences
in reward functions or task difficulty. It is also more effective than our macro-
transfer method in some cases. We show these comparisons with experiments in
the simulated soccer domain RoboCup [6].

2 Reinforcement Learning in RoboCup

In one common form of RL called @Q-learning [11], the value function learned by
the agent is called a @-function, and it estimates the value of taking an action
from a state. The policy is to take the action with the highest @-value in the
current state, except for occasional exploratory actions taken in a small percent
e of steps. After taking an action and receiving some reward (possibly zero), the
agent updates its Q-value estimates for the current state.

Stone and Sutton ([10]) introduced RoboCup [6] as an RL domain that is
challenging because of its large, continuous state space and non-deterministic
action effects. Since the full game of soccer is quite complex, researchers have
developed several simpler games within the RoboCup simulator.

In M-on-N BreakAway (see Figure 1), the objective of the M reinforcement
learners called attackers is to score a goal against N — 1 hand-coded defenders
and a goalie. The game ends when they succeed, when an opponent takes the
ball, when the ball goes out of bounds, or after a time limit of 10 seconds. The
learners receive a +1 reward if they score a goal and 0 reward otherwise. The
attacker who has the ball may choose to move (ahead, away, left, or right with
respect to the goal center), pass to a teammate, or shoot (at the left, right, or
center part of the goal).

Figure 2 shows the state features for BreakAway, which mainly consist of
distances and angles between players and the goal. They are shown in logical
notation since we perform transfer learning in first-order logic; our basic RL
algorithm uses the grounded versions of these literals. Capitalized atoms indicate

distBetween(a0, Player)
distBetween (a0, GoalPart)
Q distBetween(Attacker, goalCenter)
> distBetween(Attacker, ClosestDefender)

(e £) distBetween(Attacker, goalie)
angleDefined By (topRight, goalCenter, a0)
angleDefined By (GoalPart, a0, goalie)

O angleDefinedBy(Attacker, a0, ClosestDefender)
angleDefined By (Attacker, a0, goalie)

timeLeft
Fig.1. Snapshot of a 3-on-2

BreakAway game. The attacking

players have possession of the ball Fig.2. The features that describe a BreakAway
and are maneuvering against the state in their first-order logical form, where variables
defending team towards the goal. are capitalized.

typed variables, while constants and predicates are uncapitalized. The attackers
(labeled a0, al, etc.) are ordered by their distance to the agent in possession of
the ball (a0), as are the non-goalie defenders (d0, d1, etc.).

Our basic RL algorithm uses a SARSA()\) variant of @-learning [11] and
employs a support vector machine (SVM) for @Q-function approximation [4]. It
relearns the SVM @Q-function after every batch of 25 games. The exploration rate
€ begins at 2.5% and decays exponentially over time. Stone and Sutton ([10])
found that discretizing the continuous features into Boolean interval features
called tiles is necessary for learning in RoboCup; following this approach, we
create 32 tiles per feature.

Agents in the games of 2-on-1 and 3-on-2 BreakAway take between 1000
and 3000 training episodes to reach a performance asymptote in our system.
The differences in the numbers of attackers and defenders cause substantial
differences in their optimal policies, particularly since there is a type of player
entirely missing in 2-on-1 (the non-goalie defender). However, the tasks do have
the same objective, and transfer between them should improve learning.

3 Policy Transfer via MLNs

The Markov Logic Network [8] (MLN) is a model that combines first-order logic
and probability. It expresses concepts with first-order rules, as in standard ILP,
but it also puts weights on the rules to indicate how important they are. While
standard ILP rulesets can only predict a concept to be true or false, an MLN can
estimate the probability that a concept is true, by comparing the total weight
of satisfied rules to the total weight of unsatisfied rules.

Formally, a Markov Logic Network is a set of first-order logic formulas M,
with associated real-valued weights W, that provides a template for a Markov
network. With an MLN (M, W), one can calculate the conditional probability of
any node in the network given evidence about the truth values of other nodes.

Table 1. Our algorithm for learning an MLN policy from a source task.

Let M =0 // This will be the set of MLN formulas
Let G be the set of high-reward source-task games
For each source-task action a
Let Pos be the set of states in G games in which a was taken
Let Neg be the set of states in G games in which a was not taken
Learn rules with Aleph to distinguish Pos from Neg
Let R be the rules sorted by decreasing precision on the training set
Let S=10 // This will be the final ruleset for action a
For each rule r € R // Add the rule if it improves the F score
Let T =SU{r}
If F(T) > F(S) then set S «— T
Set M «— MUS
Learn MLN weights W for the formulas M with Alchemy
Return the MLN described by (M, W)

In MLN policy transfer, the formulas M recommend actions. For example,
an MLN formula recommending the pass action in 2-on-1 BreakAway is:

Ir distBetween(a0, GoalPart) > 27

AND angleDefinedBy (topRightCorner, goalCenter, a0) < 75
AND distBetween (a0, Teammate) > 9

AND angleDefinedBy(Teammate, a0, goalie) > 25

THEN pass(Teammate)

Each action may have many such formulas with different weights. In the
Markov network produced by these formulas, there is a node for each action and
a node for each grounded literal. To use the MLN (M, W), a target-task agent
evaluates the conditional probability of each action node given the values of all
the evidence nodes. These represent the probabilities that a source-task agent
would choose each action. The target-task agent chooses the action whose node
has highest probability.

Our algorithm for learning an MLN policy is summarized in Table 1. It begins
by learning rules such as the example above using the ILP system Aleph [9].
We define positive examples for an action as states in high-reward games in
which that action was taken, and negative examples as states in high-reward
games in which a different action was taken. We do not use low-reward games
because we cannot be sure which action(s) were responsible for the low reward.
In BreakAway, high-reward games are those that scored a goal; other tasks could
require different definitions.

From the rules generated by Aleph, our algorithm selects a final ruleset for
each action. It does so using an efficient method that approximately optimizes
for both precision and recall: sorting rules by decreasing precision and greedily
adding them to the final ruleset if they improve its F' score. The combined
rulesets for all the actions form the set of formulas M in the MLN. The algorithm
learns weights W for these formulas using the scaled conjugate-gradient method
in the Alchemy MLN system [3].

The target-task learner uses the MLN (M, W) to choose actions during its
first 100 episodes. In the remaining episodes, it continues learning the target task
normally, choosing actions with its developing Q-function. This demonstration
approach in the target task follows our previous algorithms [13, 14].

0.6 ; . : . :
0.5

T

o

O 04

©

Z 03

'_g ~

Qo

s 92 MLN Policy

. MIN Q-Function -------
01 Relational Macrg e]

. Standard RL —

0

0 500 1000 1500 2000 2500 3000
Training Games

Fig. 3. Probability of scoring a goal in 3-on-2 BreakAway with standard RL, rela-
tional macro transfer from 2-on-1 BreakAway, MLN @Q-function transfer from 2-on-1
BreakAway, and MLN policy transfer from 2-on-1 BreakAway.

4 Experimental Results

To test MLN policy transfer, we learn MLNs from source tasks in 2-on-1 Break-
Away and transfer them to 3-on-2 BreakAway. Figure 3 shows the performance
of MLN policy transfer compared to RL without transfer, macro transfer [14],
and MLN @Q-function transfer [13]. Each curve in the figure is an average of 25
runs and has points averaged over the previous 250 games to smooth over the
high variance in the RoboCup domain. The transfer curves consist of five target-
task runs generated from each of five source-task runs, to account for variance
in both stages of learning.

MLN policy transfer is more effective than both of our previous approaches
in this transfer scenario. The results are statistically significant; the area under
the curves for MLN policy transfer is larger than for all the others (p < 0.05).
MLN policy transfer may perform better because it combines the best aspects of
MLN @-function transfer (the use of a strong statistical-relational model) with
the best aspects of macro transfer (the transfer of policy knowledge rather than
value-function knowledge).

5 Conclusions and Future Work

We propose an improved algorithm for transfer in reinforcement learning via
Markov Logic Networks, by representing the source-task policy rather than its
value function. Through experiments in a complex domain, we show that this
method outperforms MLN @-function transfer and can also outperform another
previous method.

Future work in this area could focus on revision of the transferred model—-
whether it is a macro, MLN, or other type of model- after the initial demon-

stration episodes. Our methods currently revert to standard RL, but they could
instead learn by incrementally revising the source-task knowledge.

A related area of potential work is MLN-based relational reinforcement learn-
ing. Domains like RoboCup could benefit from relational RL, which would pro-
vide substantial generalization over objects and actions. The main challenge to
overcome in performing relational RL in such a complex domain is the compu-
tational cost of learning MLN structures and weights.

6 Acknowledgements

This research is supported by DARPA grants HR0011-07-C-0060 and FA8650-
06-C-7606.

References

1. T. Croonenborghs, K. Driessens, and M. Bruynooghe. Learning relational skills for
inductive transfer in relational reinforcement learning. In International Conference
on Inductive Logic Programming, Corvallis, OR, 2007.

2. F. Fernandez and M. Veloso. Probabilistic policy reuse in a reinforcement learning
agent. In Conference on Autonomous Agents and Multi-Agent Systems, Hakodate,
Japan, 2006.

3. S. Kok, P. Singla, M. Richardson, and P. Domingos. The Alchemy system for
statistical relational AI. Technical report, University of Washington, 2005.

4. R. Maclin, J. Shavlik, L. Torrey, and T. Walker. Knowledge-based support vector
regression for reinforcement learning. In IJCAI Workshop on Reasoning, Repre-
sentation, and Learning in Computer Games, Edinburgh, Scotland, 2005.

5. M. Madden and T. Howley. Transfer of experience between reinforcement learning
environments with progressive difficulty. Artificial Intelligence Review, 21:375-398,
2004.

6. I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer server: A tool for research
on multiagent systems. Applied Artificial Intelligence, 12:233-250, 1998.

7. L. De Raedt. Logical and Relational Learning. Springer, 2008.

8. M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1-
2):107-136, 2006.

9. A. Srinivasan. The Aleph manual, 2001.

10. P. Stone and R. Sutton. Scaling reinforcement learning toward RoboCup soccer.
In International Conference on Machine Learning, Williamstown, MA, 2001.

11. R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

12. L. Torrey and J. Shavlik. Transfer learning. In E. Soria, J. Martin, R. Magdalena,
M. Martinez, and A. Serrano, editors, Handbook of Research on Machine Learning
Applications. IGI Global, 2009.

13. L. Torrey, J. Shavlik, S. Natarajan, P. Kuppili, and T. Walker. Transfer in rein-
forcement learning via Markov Logic Networks. In AAAI Workshop on Transfer
Learning for Complex Tasks, Chicago, 1L, 2008.

14. L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Relational macros for transfer in
reinforcement learning. In International Conference on Inductive Logic Program-
ming, Corvallis, OR, 2007.

