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Abstract. The probabilistic formal verification (PFV) of modern
AI systems is made particularly challenging by the widespread use
of machine learning (ML) models. On the one hand, the techniques
developed by the formal methods community are not suited to the
verification of ML models. On the other hand, the contributions in
the ML community so far have been limited to ad-hoc algorithms
for specific classes of models and/or properties. First, we propose a
unifying framework for the PFV of AI/ML systems, trying to frame
the problem in the most general terms possible. Then, we show how
to solve the quantitative verification task by reducing it to Weighted
Model Integration (WMI) computations. We conclude by describing
a number of open problems and research directions related to this
promising approach.

1 Introduction and motivation
Given the increasing ubiquitousness of artificial intelligence (AI)
in our everyday life, the development of verification techniques for
modern AI systems is considered an important problem [48, 3].

In the last three decades, model checking has made huge progress
in the verification of both hardware and software systems, guaran-
teeing the deployment of safe systems in many fields [17]. The most
prominent approach in model checking reduces the verification prob-
lem to a sequence of decision or optimization problems.

This paradigm is also the mainstream approach in the verifica-
tion of machine learning (ML) models, reducing the task to com-
binatorial reasoning problems like Satisfiability Modulo Theories
(SMT) [28, 30, 31, 23, 19], linear (LP) [8] or mixed integer-linear
programming (MILP) [53, 15]. This approach can answer whether a
property is satisfied or not, but it falls short when we need to compute
how likely a property will hold in an uncertain environment. The re-
search community has identified many properties that are inherently
quantitative, including fairness [22] and robustness [52].

Techniques developed in the field of probabilistic formal verifica-
tion (PFV) [54, 18, 34, 29] have been applied to increasingly com-
plex sequential stochastic systems, such as iterative probabilistic pro-
grams or network protocols. The scalability of model checking for
sequential models with probabilities has been achieved by making
strong distributional assumptions on the priors [26], such as indepen-
dency or unimodality. For instance, random variables such as transi-
tion delays in timed automata are usually modelled with independent
exponential distributions. In these scenarios, the high dimensionality
of the search space is due to the sequential nature of the system under
verification, rather than its inherent combinatorial complexity.
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Given the restrictive nature of the distributions considered, the
techniques developed in this field do not readily support the verifi-
cation of modern AI systems, which typically include ML compo-
nents. In contrast with the traditional PFV use cases, these systems
are highly structured parametric models, solving predictive problems
over high-dimensional, multi-modal distributions.

The probabilistic verification on ML models is in its infancy. The
large majority of works have focused on verifying whether a spe-
cific property, such as robustness [36, 56, 38] or fairness [9], holds
with probability higher than a given threshold. While useful, these
techniques provide little information on how far the system is from
satisfying certain requirements. Alternatively, quantitative verifica-
tion tasks can be reduced to a combinatorial counting problem. This
approach was initially applied to the evaluation of loop-free proba-
bilistic programs with univariate priors on random variables [16, 24].
This approach was later extended to fairness verification of decision
procedures based on small ML models like decision trees, support
vector machines and shallow piecewise-linear neural networks [2].
Quantitative robustness verification of binarized neural networks was
also reduced to a counting problem, leveraging the advances in ap-
proximate counting over proposititional logic theories [5].

In general, due to the large variety of models and their inher-
ent combinatorial complexity, verification efforts in the ML com-
munity typically target specific classes of predictors, properties, or
both. Investigating the probabilistic verification of AI systems un-
der the lenses of a unified framework has several benefits. First, it
will increase the chances that the progress made will generalize to
the broadest possible context. In fact, on a smaller scale, develop-
ing a unified approach has proven to be beneficial to the qualitative
robustness verification of piecewise neural networks [13]. Second,
safety and trustworthiness are complex concepts that cannot be cap-
tured by a single evaluation metric or formal property. In our quest
for more trustable AI systems, developing a single framework for the
certification of many properties is a promising yet mostly unexplored
research direction.

To fill this gap, we propose a unifying formulation for the prob-
abilistic verification of AI systems. In the spirit of formalizing the
problem in the most general terms possible, we consider the quan-
titative task rather than its more scalable decision variant. Comput-
ing how close a system is to satisfying a formal requirement is use-
ful even when no distributional assumption is made, by uniformly
distributing the uncertain variables over their domain [5]. An ideal
framework should satisfy a number of desiderata, including:

D1) It should support arbitrary distributions over continuous and dis-
crete domains, including complex models learned from data.



D2) It should provide a single representation language for arbitrary
combinations of logical and algebraic constraints, with constructs
that are flexible enough to represent a broad range of AI systems.

D3) The same representation language should be able to encode many
properties of interest, ranging from ML-specific to system-wide
properties that are typically considered in PFV.

In this paper, we show how a recent computational formalism,
dubbed Weighted Model Integration (WMI) [10], provides a concrete
implementation of a framework that matches our desiderata. Broadly
speaking, WMI is the task of computing probabilities of arbitrary
combinations of logical and algebraic constraints given a structured
joint distribution over both continuous and discrete variables. Our
contribution is twofold, we propose:

1. a unified perspective on the PFV of AI systems;
2. a reduction of the tasks defined above to WMI computations.

After providing the necessary background on WMI in Section 2,
we present our two contributions in Section 3. We conclude in Sec-
tion 4 by discussing the limitations of this work and and proposing a
number of promising research directions.

2 Background on Weighted Model Integration

We assume the reader is familiar with the basic syntax, seman-
tics, and results of propositional and first-order logic. We adopt
the notation and definitions in [41] — including some terminology
and concepts from Satisfiability Modulo Theories (SMT) — which
we summarize below. We will restrict SMT to quantifier-free for-
mulas over linear real arithmetic (SMT(LRA)), which consist in
atomic propositions over some set A (aka Boolean atoms), linear
(in)equalities (

∑
i aixi ▷◁ b) over a set of continuous variables x s.t.

ai, b are rational constants and ▷◁ ∈ {≤,≥, >,<,=, ̸=} (aka LRA
atoms), all of them combined with the standard Boolean operators
{¬,∧,∨,→,←,↔}. The notions of literal, clause, partial and total
truth assignment extend straightforwardly to SMT(LRA) atoms. We
represent truth assignments µ as conjunctions of literals, s.t. positive
and negative literals in µ mean that the atom is assigned to true and
false respectively.

For brevity, we introduce interval formulas (x ∈ [l, u])
def
=

(l ≤ x) ∧ (x ≤ u) and if-then-else terms ite(.; .; .) s.t. t =

ite(cond; e1; e2)
def
= (cond→ t = e1) ∧ (¬cond→ t = e2).

SMT is concerned with finding a truth assignment µ to the atoms
of a formula ∆ that both tautologically entails ∆ (µ |=B ∆) and
is LRA-satisfiable. We denote with T T A(∆) the set of all the T -
satisfiable total truth assignments satisfying ∆. For instance, if ∆ def

=

(x < 0)∨(x > 1), then µ
def
= (x < 0)∧µ(x > 1) |=B ∆ but it is not

LRA-satisfiable. Thus, the formula has only two LRA-satisfiable
total truth assignments: T T A(∆) = {(x < 0) ∧ ¬(x > 1),¬(x <
0) ∧ (x > 1)}. (Hereafter, we may drop “LRA-satisfiable” when
referring to assignments in TTA(∆) since this is clear from context.)
Notice every µ ∈ T T A is a convex subregion of ∆. We denote with
µLRA the portion on µ mapping LRA-atoms to truth values.

Example 1 The SMT(LRA) formula ∆
def
= (x ∈ [0, 1]) ∧ (y ∈

[0, 1]) ∧ (A → (x + y ≤ 1)) defines a region over A
def
= {A}

and x
def
= {x, y}, depicted in Figure 1 (left). It results in 3

(total) LRA-satisfiable truth assignments (in each µi we omit
(x ∈ [0, 1]) ∧ (y ∈ [0, 1]) for short):

T T A(∆) ={

µ1︷ ︸︸ ︷
A ∧ (x+ y ≤ 1),

µ2︷ ︸︸ ︷
¬A ∧ (x+ y ≤ 1),

µ3︷ ︸︸ ︷
¬A ∧ ¬(x+ y ≤ 1)}. ⋄

We introduce non-negative weight functions w : x ∪ A 7→ R+,
which intuitively defines a (possibly unnormalized) density function
over A ∪ x. w(x,A) is defined by: (1) a SMT(LRA) formula χ,
called the support of w, outside of which w is 0; (2) a combination of
real functions whose integral over µLRA is computable, structured
by means of nested if-then-elses with LRA-conditions (we refer to
[41] for a formal definition of w(x,A)). When (2) is a DAG with
polynomial leaves, as depicted in Fig. 1 (right), it is equivalent to the
notion of extended algebraic decision diagram (XADD) introduced
by Sanner et al.[47]. w[µ] denotes w restricted to the truth values
of µ. The Weighted Model Integral of a formula ∆(x,A) and a
weight function w(x,A) over χ is defined as:

WMI(∆, w)
def
=

∑
µ∈TTA(∆∧χ)

∫
µLRA

w[µ](x) dx (1)

WMI generalizes Weighted Model Counting (WMC) [46]. As with
WMC, WMI can be interpreted as the total unnormalized probability
mass of the pair ⟨∆, w⟩, i.e. its partition function. The normalized
conditional probability of Γ given ∆ can then be computed as:

P (Γ|∆) = WMI(Γ ∧∆, w)/WMI(∆, w). (2)

Example 2 Consider the formula ∆ in Ex.1, with weighted literals:

w(x+y≤1)(x, y) = x, w¬A(x, y) = y,

wℓ(x, y) = 1 ∀ℓ /∈ {(x+ y ≤ 1),¬A}

That is, w defines the following piecewise density over the convex
subregions of ∆ (Fig. 1, center):

w(x,A)
def
= ite((x+ y ≤ 1);x; 1)× ite(A; 1; y)

with χ
def
= ⊤, so that:


w[µ1](x, y) = x× 1 = x
w[µ2](x, y) = x× y = xy
w[µ3](x, y) = 1× y = y

.

Then, the weighted model integral of the pair ⟨∆, w⟩ is:

WMI(∆, w) =

∫ 1

0

∫ (1−y)

0

x dx dy +

∫ 1

0

∫ (1−y)

0

xy dx dy

+

∫ 1

0

∫ 1

(1−y)

y dx dy =
1

6
+

1

24
+

1

3
=

13

24
.

We can now compute normalized probabilities such as

P (A|∆) =
WMI(A ∧∆, w)

WMI(∆, w)
=

1/6

13/24
=

4

13
⋄

Crucially for our purposes, Γ and ∆ in Eq. 2 can be arbitrarily
complex SMT-LRA formulas. This gives as a very powerful com-
putational tool for quantifying the probability associated to complex
events or properties.

This flexibility comes at a cost: being a strict generalization of
model counting (#SAT), enumerating T T A is #P-hard. Moreover,
integrating a density inside an arbitrary convex polytope is at least
as hard as computing its volume, which is #P-hard in itself [6].



Figure 1. (Left) The hybrid region defined in Ex. 1. (Center) The weighted formula in Ex. 2. (Right) An equivalent XADD representation of the weight.

Nonetheless, since its introduction the problem has attracted the
attention of many researchers, which resulted in steady advances
in solving the problem [41, 32, 51], finding practical approxima-
tions [11, 20, 1] and identifying tractable subclasses [58]. We refer
to [42] for a survey on the algorithmic progress in this field, focusing
in this work on the opportunities offered by the WMI framework in
the context of probabilistic formal verification of AI systems.

3 WMI-based verification of AI systems

In this Section we introduce our unifying perspective on the prob-
abilistic verification of AI systems. We envision two roles, the de-
veloper of the system under verification S and the verifier (e.g. a
regulatory body) that provides a specification of the requirementsR.

The developer is responsible of faithfully modelling S with a log-
ical encoding ∆S of its deterministic behaviour, such as the func-
tional relationships between its input and output. In many practical
scenarios, however, S is not fully deterministic. For instance, the im-
ages captured by a camera might be subject to noise introduced by
the sensor. The developer is then expected to model the uncertainty
of S with a probabilistic model PS .

Similarly, the requirements R provided by the verifier include a
logical formula ∆R, encoding a desirable property that the system
should satisfy with high probability. This probability is computed
with respect to a probabilistic model that encodes the uncertainty of
the environment where S is expected to be deployed, denoted by
PR. A standard underlying assumption in verification tasks is that
the formal specification of the requirementR is correct. Not only the
property encoded in ∆R should not contain errors, but the model PR
should accurately model the environment.

The goal of the verification is computing the probability of the sat-
isfaction of a requirementR by the system S given (1) a probabilistic
model that jointly represents the uncertainty of S and of its surround-
ing environment and (2) a logical encoding of S and of the property
described in R (Figure 2). In what follows, we denote with x and y
the input and output of S respectively, and with e, we denote extra
environmental variables that are not observed by S but might be part
of the specification, such as protected attributes that shouldn’t be ac-
cessed by a fair hiring system (e.g. the gender of a job applicant).
The probabilistic verification task can be formalized as computing :

P (R | S) =

∫
∆R(e,x,y)∧∆S(x,y)

P (e,x,y) de dx dy∫
∆S(x,y)

P (e,x,y) de dx dy
, (3)

where P (e,x,y) models the probabilistic relationship between in-
puts, outputs and environment, and factorizes as:

P (e,x,y) = PS(y | e,x) · PR(e,x).

The definition of PS(y | e,x) accommodates both uncontrollable
sources of uncertainty as well as any deliberate probabilistic mecha-
nism in S, even those that are not conditioned on the input, such as
randomly sampled latent variables in a generative model.

Figure 2. An overview of the PFV task. A probabilistic model encoding
both the uncertainty of the system and the environment is complemented
with a logical encoding of the determinism in S and a property R. The

output is the probability mass of R given S.

Example 3 Consider a system composed by a security camera con-
nected to a gate, using machine learning to unlock the gate and grant
access to authorized individuals only. The camera observes the en-
vironment x, feeding the captured signal yc to two convolutional
neural networks f and g. The first network implements a binary clas-
sifier, which outputs f(yc) = yf ∈ {authorized, unauthorized}.
The network g instead predicts the distance g(yc) = yg ∈ R of
the individual from the gate. Finally, the output of the two networks
is fed into a simple decision procedure that can unlock the gate,
d(yf , yg) = yd ∈ {locked, unlocked}. While the system is mostly
deterministic and can be logically modelled with ∆S , the camera is
likely to introduce noise in the captured images. In our framework,
this is accounted for and modelled with PS(yc |x). The verifier pro-
vides both a probabilistic model of the environment that the system
would observe through the camera, PR(x), as well as one or more
logical properties ∆R that should hold with high probability.

Following Eq. 2, we notice that the inference problem can be
solved by computing the following weighted model integrals:

P (R | S) = WMI(∆R ∧∆S , w)

WMI(∆S , w)
(4)

where ∆R and ∆S are SMT formulas over e,x,y encoding R and
the deterministic aspect of S respectively. The weight function en-
codes the probabilistic aspect of both S and the environment:

w(e,x,y) = wS(y | e,x) · wR(e,x) ∝ P (e,x,y).

Almost all the properties described below can be expressed in
terms of algebraic and/or logical preconditions and postconditions



(Rpre → Rpost). When Rpre is defined on variables in x only, the
verification of a system S involves computing P (Rpost|Rpre,S) (or
ratios of these quantities, as shown in Eq. 6 and 7). If instead Rpre

also includes variables in y, the quantity P (Rpre | S) becomes rele-
vant for the purpose of verifying S, requiring instead the computation
of P (Rpre →Rpost |S) = P (Rpre,Rpost |S)+(1−P (Rpre |S)).
A WMI-based implementation of the framework can support any of
the use case above. For instance, the former case is computed as:

P (Rpost | Rpre,S) =
WMI(∆Rpost ∧∆Rpre ∧∆S , w)

WMI(∆Rpre ∧∆S , w)
(5)

We also observe that properties with no preconditions are special
cases of the framework, i.e. ∆Rpre holds with probability 1. Since
SMT(LRA) encoding can be naturally conjoined and the class of
weight functions supported by the formalism is closed under multi-
plication, it is trivial to combine arbitrary encodings of S andR both
from both logical and probabilistic perspectives. Now, we answer the
question: "what kind of systems and properties can be encoded in this
framework?".

3.1 Probabilistic modelling of S and R
Prior work on WMI has almost exclusively focused on using poly-
nomials as building blocks for their structured weight functions.
The reason is twofold: 1) polynomials are easy to work with, being
closed under sum, product and integration over polytopes; 2) they
can approximate any density with arbitrary precision. Compared to
prior work using piecewise-constant approximations [16, 2], higher-
degree polynomials result in either a drastic reduction in the number
of pieces for a fixed approximation error or, conversely, in a tighter
approximation for a fixed number of pieces (Fig. 3). Notably, the
complexity of integration grows only polynomially with respect to
the degree [4]. We remark that WMI is not limited to polynomials,

Figure 3. Piecewise approximation of a Gaussian distribution (black
dotted line) with degree 0 (light blue) and degree 1 (dark green) polynomials.

any function can be adopted as long as it is integrable, exactly or ap-
proximately, in the regions defined via SMT(LRA). Gaussians were
also employed in the literature, either by restricting to axis-aligned
LRA-atoms or by approximating the resulting integrals [37, 20].

The structured representation described in Section 2 has been used
to model and reason over a variety of popular probabilistic models,
including graphical models like Bayesian and Markov networks [10,
2], probabilistic logic programs with continuous variables [20], and
tractable models like density estimation trees (DETs) [45] or sum-
product networks (SPNs) [44]. For illustrative purposes, we report
the encodings of the latter two models. In both cases, the support
χ =

∧N
i=1(xi ∈ [li, ui]) is typically an-axis-aligned hyperrectagle

s.t.
∑

A

∫
χ
w(x,A) dx = 1, albeit more complex and possibly non-

convex supports can be used [40].

DETs The density estimation variant of decision or regression
trees shares the same internal structure with binary decision nodes
of the form (xi ≤ k) or a proposition A. Different from its predic-
tive variants, each leaf of a DET encodes the probability mass corre-
sponding to the subset of the support induced by the decisions in its
path from the root. DETs can be trivially encoded as a tree of nested
if-then-elses with constant leaves.

SPNs This class of models combine tractable univariate distribu-
tions by means of mixtures (weighted sums) over the same variables
or factorizations (products) over disjoint sets of variables, resulting
in a tractable but expressive joint probability. The common choices
for the univariate distributions, Gaussians and piecewise polynomi-
als [39], as well as their combinations by means of sums and prod-
ucts, are integrable in LRA and encodable in the formalism.

3.2 Encoding the determinism in S
Besides probabilistic models, other complex functional relationships
arising from ML models can be modelled as SMT formulas.

Tree-based predictors As shown above for DETs, the structure
of tree-based predictors can be encoded by means of nested if-then-
elses with propositional or linear conditions. Leaves are simply en-
coded with (a conjunction of) atoms (y = ci), mapping output vari-
ables to their respective values. If axis-aligned splits are not expres-
sive enough, arbitrary LRA-conditions enable more complex piece-
wise decompositions of the joint density, such as those employed in
Optimal Classification Trees [12].

Non-linear predictors Support for linear models, which can be
trivially encoded in SMT(LRA) as (y = (wx + b)), can be ex-
tended to non-linear cases. For instance, we can model neural net-
works with rectified linear activations [30, 31] by encoding each unit
i with inputs xi, weights wi and bi as:

(hi = (wixi + bi)) ∧ (yi = ite(hi > 0, hi, 0))

The full network is then encoded by conjoining the SMT(LRA) rep-
resentation of each unit. Other non-linear activation functions can
be approximated with arbitrary precision. Common operations like
convolutions and max/average pooling have SMT(LRA) represen-
tations. Other non-linear predictors, such as support vector machines
with piecewise linear feature maps [27] can be similarly encoded.

Complex models The compositional nature of SMT(LRA) can
support arbitrary ensembles of K ML models,

(y = a(y1, ...,yK)) ∧
K∧
i=1

∆fi(x)

as long as the aggregation function a can be encoded, such as the
average. More in general, if every component of an AI system can be
modelled with SMT(LRA), its behaviour can be verified as a whole.
This is in stark contrast with most approaches in literature, which
are only able to verify ML components in isolation. As verification
of "traditional" software and hardware systems often relies on SMT
modelling and solving, using the same paradigm for the verification
of modern AI systems is a promising direction.



3.3 Encoding the properties of R
So far we demonstrated the flexibility of WMI in modelling and rea-
soning probabilistically over a wide range of AI systems, but this
would be a pointless exercise if we couldn’t use it to quantify prop-
erties of practical interest. The ML community has identified a num-
ber of important properties that learned models should satisfy. For
instance, in contexts with high socio-economic stakes, predictions
over individuals of a population should be fair. Many definitions of
fairness are probabilistic in nature, being based on the notion of pop-
ulation model P (x).

Set-based properties For instance, if f is determining a positive
vs. negative outcome for an individual 1, like being hired or getting
a loan, it is often desirable to quantify the demographic parity of a
system relative to a protected subpopulationM [14] by computing
the ratio:

P (f(x) = pos | x ∈M)

P (f(x) = pos | x ∈M)
[∈ [1− δ, 1/(1− δ)]] (6)

In short, the ratio of positive outcomes among members ofM and
its complementM should be close. A limitation of this notion is that
it does not take into account whether the candidate individuals are
qualified for the positive outcome in the first place. If the qualified
subpopulation Q is known to the verifier, the notion of equality of
opportunity can be quantified instead [25]:

P (f(x) = pos | x ∈M∩Q)
P (f(x) = pos | x ∈M∩Q)

[∈ [1− δ, 1/(1− δ)]] (7)

We notice that these preconditions can be trivially encoded when
the subsetsM andQ are characterized by a combination of categor-
ical features, arguably the most common case in fairness scenarios.
Additionally, numerical constraints can be encoded with arbitrary
piecewise linear sets. For instance, assuming that the output of the
model is a binary decision yhire, that ∆M

def
= xfemale and that the

qualified group can be defined in terms of GPA and years of work
experience ∆Q

def
= (xGPA > 3.5) ∨ (xexperience > 20), we can

compute the ratio in Eq. 7 as [2]:

WMI(yhire ∧ Γ, w)

WMI(Γ, w)
/

WMI(yhire ∧Ψ, w)

WMI(Ψ, w)

where Γ
def
= ∆M ∧∆Q ∧∆S , Ψ

def
= ¬∆M ∧∆Q ∧∆S .

Distance-based properties The above notions, which are defined
on subpopulations or groups, are commonly referred to as group
fairness properties. An alternative notion is individual fairness [22],
stating that similar individuals, according to a suitable metric d and
threshold ϵ, should receive similar treatment/outcomes:

P (f(x) = f(x′) | d(x,x′) < ϵ) [> 1− δ] (8)

Notice that the property above is akin to the notion of probabilis-
tic robustness [56, 38]. In contrast with fairness verification, where
P (x) is defined globally, the distributional assumptions over the per-
turbations are typically local. For instance, one might verify the ro-
bustness of predictions of an image classifier when a Gaussian noise
is added to the input instances.

1 These concepts apply to regression tasks by considering a suitable notion
of distance and a threshold.

Encoding distance-based properties poses additional challenges,
requiring to define the system’s behaviour inside the local neighbor-
hood of infinitely many points. In turn, this requires multiple instanti-
ations of the same random variable x,x′ ∼ P (x) in the SMT(LRA)
formula. We observe that a simple solution is “cloning” the weight
function w(x) and its support ∆:

cl(∆)
def
= ∆ ∧∆′, cl(w)

def
= w · w′

where expr′ denotes the expression obtained by substituting every
variable occurrence v with a fresh copy v′ in expr. This approach,
which guarantees that x and x′ are independently drawn from the
same distribution, is called self-composition in program analysis [7].
We can then compute queries involving both, such as x′ ∈ [x−ϵ, x+
ϵ] (Fig. 4).

Figure 4. (Left) A simple distribution ∆ = (x ∈ [0, 1]) and w(x) = x.
(Right) the distribution obtained by self-composition, enabling the

computation of queries like P (x′ ∈ [x− ϵ, x+ ϵ]).

In terms of distances, both L1 and L∞ can be encoded in
SMT(LRA), by defining absolute values as auxiliary variables
ite((a ≤ b), (absa,b = b− a), (absa,b = a− b)):

(Lx,x′

1 =

N∑
i=1

absxi,x
′
i
), (Lx,x′

∞ = maxN
i=1 absxi,x

′
i
)

where max(.) is encoded with nested if-then-elses:

max({v1, v2})
def
= ite(v1 < v2; v2; v1)

max({v1, v2} ∪ V )
def
= ite(v1 < v2;max({v2} ∪ V );

max({v1} ∪ V ))

Following Eq. 8 and assuming without loss of generality a binary
classifier y = f(x), we can quantify individual fairness as:

WMI((y ↔ y′) ∧ (Lx,x′
∞ < ϵ) ∧ cl(∆S), cl(w))

WMI((Lx,x′
∞ < ϵ) ∧ cl(∆S), cl(w))

Probabilistic robustness can be similarly encoded, with the differ-
ence that the distribution of noisy inputs x′ is conditioned on x and
explicitly provided as part ofR: wR(x,x′) = wR(x) · wR(x′ | x).

Other algebraic properties In general, with arbitrary combina-
tions of linear inequalities and logical constraints, we can encode
many useful algebraic properties. Beyond fairness and robustness,
there has been considerable work in enforcing and verifying mono-
tonic behaviour of learned predictors [49, 21, 55, 35, 50]. In a prob-
abilistic setting, this can be quantified as P (f(x) < f(x′) |x < x′).
Again, this can be computed in WMI by leveraging self-composition:

WMI((y < y′) ∧ (x < x′) ∧ cl(∆S), cl(w))

WMI((x < x′) ∧ cl(∆S), cl(w))
(9)



Checking the equivalence of two predictors f and g finds applica-
tions in verifying that a compressed model that has to be deployed
in a resource-constrained setting behaves consistently with respect to
the original model [43]:

P (f(x) = g(x)) =
WMI((yf = yg) ∧∆S , w)

WMI(∆S , w)
(10)

Monotonicity and equivalence are not the only algebraic properties
of interest for the ML community. In their influential paper, Katz et
al. ( [30]) verify a NN-based collision detection system for unmanned
aircrafts against properties such as: “If the intruder is directly ahead
and is moving towards the ownship, the system won’t issue a clear-
of-conflict advisory”, encoded as combinations of inequalities over
linear and angular quantities. Since all these cyber-physical safety
constraints are effectively encoded in SMT(LRA), they can be nat-
urally encoded in our framework.

Semantic properties Until now, the properties that we presented
are all defined on the concrete input space of the system under veri-
fication. Yet, being able to define and verify properties using seman-
tic features is deemed crucial step for advancing the trustworthiness
of our AI sytems [48]. In our conceptual framework, joint logical
and probabilistic reasoning over S and R is achieved via a unified
computational tool, using the same representation language for both.
Thus, the classes of ML model that can be encoded in our framework
can seamlessly be used when defining both S and R. For instance,
since convolutional NNs with ReLU can be encoded, then R can
also be defined in terms of these models, effectively implementing
neuro-symbolic verification. Borrowing an example from the semi-
nal work of Xie et al. ( [57]), this would enable the verification of
properties like “If a stop sign is in front of the camera, a deceler-
ation command is issued” on systems operating at pixel level. The
precondition is logical predicate implemented via a binary classifier
Rpre = stop(x), mapping images to true if and only if they con-
tain a stop sign. Similarly to PR, the neural predicate stop(x) is
part of R and thus it is assumed to be a certified model with appro-
priate predictive performance. With our framework, we can quantify
P (f(x) = decelerate | stop(x)).

Example 4 We consider the system described in Ex. 3. Given the
high dimensionality of x, it would be impossible to define PR(x)
manually. Luckily, the verifier provided a validated prior on x (e.g.
an SPN) as part of R, whose unnormalized density is denoted
with wR. The noise introduced by the camera can be modelled
with a piecewise polynomial approximation of a Gaussian function
wS(n;σ) ≃ N (0, σI) that conservatively over-estimates the noise
level added to each pixel independently: ∆c

def
= (yc = x + n). We

denote with ∆f and ∆g the SMT(LRA) encoding of the CNNs f
and g. Without loss of generality, we assume that (yf ≥ 0) iff an in-
dividual is authorized. The decision procedure d simply unlocks the
gate if the camera captures an authorized individual that is at most
4 meters away ∆d

def
= (yd ↔ ((yf ≥ 0) ∧ (yg ≤ 4))). In reality,

d can be a complex software and or hardware system driven by the
predictions. The overall encoding is:

∆S(x,y) = ∆c(x,n,yc) ∧∆d(yf , yg, yd)

∧∆f (yc, yf ) ∧∆g(yc, yg)

w(x,n) = wR(x) · wS(n;σ)

We can compute how robust are the decisions in noisy (yd) vs. noise-
less (y′

d) settings. To do so, we need self-composition to clone the rel-

evant part of S, computing how likely the decision would not change:

WMI((yd ↔ y′
d) ∧ Γ, w) / WMI(Γ, w)

where Γ
def
= (y′

c = x) ∧∆c ∧ cl(∆f ∧∆g ∧∆d)

Additionally, if we have access to a binary neural predicate ind(x)
that returns true iff an individual is present in a frame x, we can
ensure that the gate is never unlocked when nobody is there:

WMI((yd → ind(x)) ∧∆S , w) / WMI(∆S , w)

4 Conclusion and future work

Our WMI-based perspective on the probabilistic verification of AI
systems has many benefits. WMI enables flexible probabilistic rea-
soning over a broad range of probabilistic models, including distribu-
tions over mixed logical/numerical domains (D1). These probabilis-
tic models can be combined with multiple machine learning models,
using a representation language that is commonly used in PFV. This
aspect shows promise in addressing (D2). These aspects, paired with
the ability to verify many different properties (D3), offer unprece-
dented flexibility in a single framework. Since the focus of this paper
is providing a unifying perspective on the problem rather than push-
ing the scalability of the existing approaches, no empirical evaluation
was included. Nonetheless, all the models and properties discussed
in the paper could be in principle verified using a single off-the-shelf
WMI solver [33]. We conclude by suggesting a number of promising
research directions.

Scalability While WMI offers suitable computational means to
implement our unifying framework, scaling this approach to large
real-world settings requires further work. We have witnessed remark-
able progress in solving WMI since its inception, with a multitude of
papers focusing on algorithmic and theoretical aspects rather than
practical use cases. On the one hand, we hope that this concrete ap-
plication will become a driving force in the further development of
WMI solvers. On the other hand, identifying common factors that
hinder the verification might lead to the development of novel mod-
els with a favourable trade-off between empirical accuracy and veri-
fiability.

Sequential systems In this work, we focused on non-sequential
systems. Yet, most ML models are part of larger software and/or
hardware systems with memory. Extending this theoretical frame-
work to sequential systems is thus a fundamental research direc-
tion. In terms of implementation, the main advantage of integrating
a single interface with respect to implementing multiple system- or
property-specific approaches and algorithms, is a less cumbersome
and error-prone development process. This makes our framework an
appealing candidate to be integrated into existing PFV tools.

Non-linear extensions While WMI is in principle not restricted to
SMT(LRA) formulas, most works have focused on this setting due
to the complexity of reasoning over non-linear constraints while pro-
viding bounds on the approximation. Further extensions of WMI to
other theories like non-linear algebra, or the support of other families
of weight functions, could further push the boundaries of WMI-based
verification.



Acknowledgments

We acknowledge the support of the PNRR project FAIR - Future
AI Research (PE00000013), under the NRRP MUR program funded
by the NextGenerationEU. This research was partially supported by
TAILOR, a project funded by EU Horizon 2020 research and inno-
vation programme under GA No 952215. The work was also par-
tially supported by the project “AI@TN” funded by the Autonomous
Province of Trento.

References
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