
Mining Views: Database Views for Data Mining

Hendrik Blockeel #t1, Toon Calders *2, Elisa Fromont #3, Bart Goethals T, Adriana Prado T5

#Katholieke Universiteit Leuven, Belgium
tLeiden Institute of Advanced Computer Science, The Netherlands
{1hendrik.blockeel,3elisa.fromont}@cs.kuleuven.be

*Technische Universiteit Eindhoven, The Netherlands
2t.calders@tue.n1

t Universiteit Antwerpen, Belgium
{4bart.goethals, 5adriana.prado}@ua.ac.be

Abstract- We present a system towards the integration of
data mining into relational databases. To this end, a relational
database model is proposed, based on the so called virtual mining
views. We show that several types of patterns and models over
the data, such as itemsets, association rules and decision trees,
can be represented and queried using a unifying framework.

I. MOTIVATION

Data mining is not a one-shot activity, but rather an iterative
and interactive process. During the whole discovery process,
typically, many different data mining tasks are performed, their
results are combined, and possibly used as input for other data
mining tasks. To support this knowledge discovery process,
there is a need for integrating data mining with data storage
and management. The concept of inductive databases (IDB)
has been proposed as a means of achieving such integration
[1].

In an IDB, one can not only query the data stored in the
database, but also the patterns that are implicitly present in
these data. The main advantages of integrating data mining
into database systems are threefold: first of all, the data
are mined where they are located: in the database. Hence,
the need for transforming data into an appropriate format is
completely removed. Second, in database systems, there is a
clear separation between the logical and the physical level.
This separation shields the user from the physical details,
making the technology much more accessible for a non-
specialist. Ideally, the user of an inductive database should not
be involved with selecting the best algorithms, the parameter
settings, the storage format of the patterns, etc., but should
instead be able to specify, in a declarative way, the patterns in
which he or she is interested. The third advantage of an IDB is
the flexibility of ad-hoc querying. That is, the user can specify
new types of constraints and query the patterns and models in
combination with the data itself and so forth. Notice that the
functionality of an inductive database goes far beyond that of
data mining suites such as, e.g., Weka [2] and Yale [3]. These
systems typically only share the first advantage of inductive
databases by imposing one uniform data format for a group
of algorithms.

In this work, we focus our attention on determining how
such an inductive database can be designed in practice.

II. DESCRIPTION OF THE SYSTEM

The system proposed in this paper builds upon our prelim-
inary work in [4], [5]. In contrast to the numerous proposals
for data mining query languages, we propose to integrate
data mining into database systems without extending the
query language. Instead, we extend the database schema with
new tables containing, for instance, association rules, decision
trees, or other descriptive or predictive models. As far as the
user is concerned, these tables contain all possible patterns,
trees, and models that can be learned over the data. Of course,
such tables would in most cases be huge. Therefore, these
tables are in fact implemented as views, called virtual mining
views.
Whenever a query is formulated selecting for instance

association rules from these tables, a run of a data mining
algorithm is triggered (e.g., Apriori [6]) that computes the
result of the query, in exactly the same way that normal views
in databases are only computed at query time, and only to the
extent necessary for answering the query. The complete system
is illustrated in Figure 1. When the user formulates his or her
mining query, the parser is invoked by the DBMS creating
an equivalent relational algebra expression. At this point,
the expression is processed by the Mining Extension which
extracts from the query the constraints that can be pushed into
the data mining algorithms. The output of these algorithms
is then materialized in the virtual mining views. After the
materialization, the work-flow of the DBMS continues as usual
and, as a result, the query is executed as if all patterns and
models are stored in the database. Observe that this system
can possibly cover every mining techniques whose output can
be completely stored in relational tables.

This approach also integrates constraint-based mining in a
natural way. Within a query, one can impose conditions on
the kind of patterns or models that one wants to find. In
many cases, these constraints can be pushed into the mining
process. In [4], Calders et al. present an algorithm that extracts
from a query a set of constraints relevant for association
rules to be pushed into the mining algorithm. In this way,
not all possible patterns or models need to be generated, but
only those required to evaluate the query correctly as if all
possible patterns or models were stored. We have extended

978-1-4244-1837-4/08/$25.00 (© 2008 IEEE 1608 ICDE 2008

G-

U

Fig. 1. The integration of data mining into a DBMS

Play Tennis
Day] Outlook T Temp Humidity Wind Play
DI Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
...

PlayTennis Concepts
cid Day Outlook Temp Humidity Wind |Play |
1 ? Sunny ? High ? No
2 ? Sunny ? Normal ? Yes
3 ? Overcast ? ? ? Yes
4 ? Rain ? ? Strong No
5 ? Rain ? ? Weak Yes
6 ? ? ? ? ?

Fig. 2. The PlayTennis data table and its corresponding Concepts table.

this constraint extraction algorithm to extract constraints from
queries over decision trees. The user can refer to [7] for more
details on the algorithm.

III. FRAMEWORK REPRESENTATION

Given a table T(Al,.... An), let Dom(T) = Dom(Al) x
... x Dom(An) denote the domain of T. We create a Concepts
table T Concepts(cid, A1, ... An), such that for every tuple
t in T, there exist 2n unique tuples {t,, t>n} in ConceptsT
such that t'.Aj = t.Aj or t'.Aj= '' for all i C [1, 2n] andj C
[1, n]. We denote the special value '?' as the wildcard value
and assume it doesn't exist in the domain of any attribute. As
each of the concepts can actually cover more than one tuple
in T, a unique identifier cid is associated to each concept.
A tuple, or concept, (cid,a,...,an) C T Concepts

represents all tuples from Dom(T) satisfying the condition
Ailai:A,?, Ai = ai.

Figure 2 shows a data table for the classic PlayTennis
example [8], together with a sample of its corresponding
Concepts table.

A. Representing models as sets of concepts
In this section, we explain how a variety of models can be

represented using virtual mining views. We assume from now

Sets
cid supp sz I Ii
1 40 2

2 60 3

Trees Play
treeid cid
ml un--
Ml 2 sunl<

ml 3

Ml 4 Humidity
MI 5

high nor al

Treescharac Play

treeid T acc sz

1 0.7 8
...

Rules
cida cidc cid conf ...

8 10 11 0.5 ...
...--

|Outlook I
11 \-overcast raijt,

strong we k

Fig. 3. Framework for an Inductive Database

on that the Concepts table presented above is implemented as

a virtual mining view. In this context, given a data table T and
its corresponding virtual mining view T Concepts, the virtual
mining views for itemsets, association rules and decision trees,
based on T Concepts, are given in Figure 3. Although all
virtual mining views are defined over T, in this text we omit
the prefix T when it is clear from the context.

Notice again that Figure 3 only gives one possible instan-
tiation of the proposed approach. As pointed out in Section
II, virtual mining views for other mining techniques can be
added to the system.
The proposed framework can be described as follows:
1) Itemsets and Association Rules: The result of fre-

quent itemset mining can therefore be represented by a view
Sets(cid, supp, sz). For each itemset, there is a tuple with cid
the identifier of the itemset (concept), supp its support, and
sz its size. Other attributes, such as x2 or any correlation
measure, could also be added to the view to describe the
itemsets. Similarly, association rules can be represented by a

view Rules(rid, cida, cidc, cid, conf), where rid is the rule
identifier, cida and cidc are the identifiers for the concepts
representing the antecedent and the consequent of the rule
respectively, cid is the union (disjunction) of these, and conf

1609

DBMS

SQL
Mining
Query

Query
Output

is the confidence of the rule. Many other attributes, such as
lift, conviction, or gini index, could be added to describe the
rules.

2) Decision trees: We represent all decision trees that can
be learned from T for one specific target attribute Ai by
the view Trees Ai(treeid, cid). A unique identifier treeid is
associated with each decision tree and each of the decision
trees is described using a set of concepts (there is at least
one concept describing one leaf). If the user prefers to build
a decision tree from only a subset of the attributes, he should
first create a view on the data table containing exactly those
attributes, such that the mining view Concepts associated with
this view can then be used to describe the tree. We added
a view Treescharac Ai(treeid, acc, sz) to represent several
characteristics of a decision tree learned for one specific target
attribute Ai. For every tree, there is a tuple with a tree identifier
treeid, acc its accuracy and sz its size (number of nodes).
Again, other attributes could be added to describe the decision
trees. Figure 3 shows a decision tree built to predict the
attribute Play using all other attributes in the data table, and
its representation in the mining view Trees, using the first five
concepts of the mining view Concepts from Figure 2.

IV. MODEL QUERYING
In this section, we give some concrete examples of common

data mining tasks that can be expressed with SQL queries
over the virtual mining views. These examples support our
claim that the virtual mining views provide an elegant way to
incorporate data mining capacities to database systems without
changing the query language.

A. Prediction
In order to classify a new example using one or more of

the learned decision trees, one simply looks up the concept
that covers the new example. More generally, if we have a
test set S, all predictions of the examples in S are obtained by
equi-joining S with the semantic representation of the decision
tree given in the virtual mining view Concepts. We join S to
Concepts using a variant of the equi-join that requires that
either the values are equal, or there is a wildcard value.

Consider the PlayTennis example of Figure 2. Figure 4 illus-
trates a query that predicts the attribute Play for all unclassified
examples in table Test Set, considering all possible decision
trees of size < 5.

B. Constraints
For itemsets and association rules, we consider constraints

such as minimal and maximal size, minimal and maximal
support, minimal and maximal confidence, plus the constraints
that a certain item must be in the antecedent, in the consequent
of the rules, and Boolean combinations of these. For decision
trees, we consider constraints on size and accuracy. In addition
to these, we also consider constraints posed on the concepts
that describe the trees. Next to these well-known constraints,
in our approach, the user has also the ability to come up with
new, ad-hoc constraints.

Test Set
Day Outlook Temp Humidity Wind
D7 Sunny Hot High Weak
D8 Rain Hot High Strong
D9 Overcast Hot High Weak
D1O Overcast Mild High Weak
DII Overcast Cool Normal Weak
D12 Sunny Cool High Strong

,~ r r)lT1se

s C,

d
d
d
d
d
d

r .cid = C.cid
DS. Outlook = C
S. Temp = (
D .Humidity = C
S.Wind =d
.treeid = E

emp
iumidit
find
-reeid

1- u l-

'. Temp
'. Humidi
'.Wind

Fig. 4. Prediction

(A)
select R.rid,

C1.*, c
R.conf

from Sets S,
Rules R,
Concepts
Concepts

se

)m Treesch
Trees_E
Concept

~re T.cid
and
and
and
(seand Cl.cid

and C2.cid
and S.supp
and R.conf
and S.sz

(C)
lect disti
Dm Trees_E

Trees_E
Treesch

d, C.
,rac_PlaG
.ay T,
, C
- C. cid

L~ct max (E
Dm Treesc
L~re Dl.s2

(D)
lect disti
Dm Trees_E

Treesch
Concept

ere T.cid
C2 and

id = T2.treeid and
= Cl.cid and

ook= 'Sunny' (se

eid =

<= 5
Kists

Dm Trees_Play Tl,
Treescharac_Play DI

Concepts Cl
L~re Tl.cid = Cl.c
and Tl.treeid = Dl.t
and Dl.sz <= 5
and Cl.cid = C.cid
and Cl.Temp = '?')

s

--S

nd
nd
nd
nd
nd
nd
nd

Fig. 5. Example mining queries

Figure 5 illustrates several mining queries that can be posed
in our inductive database shown in Figures 2 and 3. Some
constraints can be directly imposed using the tables Sets,
Rules and Treescharac as shown in queries (A) and (B).
Query (A) asks for association rules having support of at
least 30, confidence of at least 80%, and size of at most 4.
Query (B) selects decision trees having the attribute Play
as the target attribute and having maximal accuracy among
all possible decision trees of size < 5. The user can also
constrain the concepts by which the models are described.
For example, query (C) asks for decision trees having a test
on "Outlook=Sunny" and on "Wind=Weak", while query (D)
asks for trees where the attribute Temp is never a wildcard

1610

id,
S ,

. *, C .

.. *,

T.treE
D .sz

TABLE I
EXECUTION TIMES FOR THE QUERIES IN FIGURE 5

(A)|

(B)
(C)
(D)

lime (s)
0,60

Time (s)
4,35
1,36
4,59

#Concepts
2397

#Concepts
652
76
652

#Rules
11525
#Trees
439
33
439

output (rows)
11525

Output (rows)
31
2
36 7

value (the attribute is present in every leaf of the tree).
Hence, many well-known and common constraints can be

expressed quite naturally in our model. The declarative nature
of the queries also improves the ability to extract and exploit
constraints in the queries imposed by the user for making the
underlying mining operations more efficient.

V. IMPLEMENTATION

The system was developed into PostgreSQL [9] (written in
C), as follows. When the user writes a query, PostgreSQL gen-
erates a data structure representing its corresponding relational
algebra expression. After this data structure is generated, our
Mining Extension is called (see Figure 1). Here, we process
the relational algebra structure, extract the constraints, trigger
the data mining algorithms and materialize the results in the
virtual mining views. Just after the materialization, the work-
flow of the DBMS continues and the query is executed as if
the patterns or models were there all the time.
The system is currently linked to algorithms for association

rule discovery and exhaustive decision tree learning [5]. All the
constraints listed in Section IV-B and represented as attributes
of the mining views (size, accuracy, support, confidence) can
be extracted and efficiently exploited by the integrated data
mining algorithms. Some types of constraints, however, are
currently not extracted by our implementation (for instance,
the constraint "maximal accuracy" in query (B)); others are
extracted but cannot be exploited by the mining algorithms.
This may affect the efficiency of the system but not its
correctness: the remaining constraints can be used to filter the
results afterwards.

A. Experiments
We now present a set of experiments, which were conducted

for the UCI dataset ZOO [10], with 101 examples, for the SQL
queries showed in Figure 5. For queries (B), (C), and (D),
the target attribute was the attribute "Class", the tests "Out-
look=Sunny" and "Wind=Weak" were replaced by "Hair=true"
and "Feathers=false", respectively, and the test "Temp=?" was
changed to "Feathers=?". Our platform was an AMD ATLON
3.2 GHz processor, with 1 GB of memory, using Linux.

Table I presents the total execution times (in seconds),
the number of intermediate generated concepts, rules (when
applicable), trees (when applicable), and the size of the output
(in rows) for the example queries.

For query (A), the constraints "supp>=30", "conf>=80"
and "sz<=4" were all exploited by the system. Observe that

the number of rows in its output corresponds to the exact
number of rules that were intermediately generated.

For query (B), the constraint "sz<=5" was also exploited.
This was not the case of the constraint "max(accuracy)",
however. Yet, this query was correctly computed. The output
consisted of 9 trees with 31 concepts, in total.

Regarding queries (C) and (D), the constraints "sz<=5"
and "acc>=70" were both exploited. The constraints on the
concepts that describe the decision trees are examples of
constraints that were extracted by the system, but not exploited
by the data mining algorithms. The results were nevertheless
correctly computed.
As can be seen in table I, the execution times of the queries

are rather low, which shows the usefulness and elegance of
the proposed approach. The execution times consist mainly of
the time spent by the data mining algorithms plus the time for
materializing the results.

VI. DEMONSTRATION
The demonstration will focus on showing how the system

works on different datasets using a set of constraints, such
as those presented in Figure 5. Every time a data table T
is created in the system, all virtual mining views associated
with T are automatically created and the user can immediately
query for itemsets, association rules or decision trees over T.

ACKNOWLEDGMENT
Hendrik Blockeel is a post-doctoral fellow from the Re-

search Foundation - Flanders (FWO-Vlaanderen). This re-
search was funded through K.U.Leuven GOA project 2003/8
"Inductive Knowledge bases", FWO project "Foundations for
inductive databases", and the EU project "Inductive Queries
for Mining Patterns and Models".

REFERENCES
[1] T. Imielinski and H. Mannila, "A database perspective on knowledge

discovery," Communications of the ACM, vol. 39, no. 11, pp. 58-64,
1996.

[2] I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques, 2nd ed. Morgan Kaufmann, 2005.

[3] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler, "Yale:
Rapid prototyping for complex data mining tasks," in Proc. 12th ACM
SIGKDD Int. Conf: on Knowledge discovery and data mining. ACM,
2006, pp. 935-940.

[4] T. Calders, B. Goethals, and A. B. Prado, "Integrating pattern mining in
relational databases," in Proc. 10th European Conf: on Principles and
Practice ofKnowledge Discovery in Databases, PKDD. Springer, 2006.

[5] E. Fromont, H. Blockeel, and J. Struyf, "Integrating decision tree
learning into inductive databases," in Knowledge Discovery in Inductive
Databases (KDID), 5th International Workshop, Revised Selected and
Invited Papers, S. Dzeroski and J. Struyf, Eds., 2007.

[6] R. Agrawal and R. Srikant, "Fast algorithms for mining association
rules," in Proc. 20th Int. Conf: Very Large Data Bases, VLDB, J. B.
Bocca, M. Jarke, and C. Zaniolo, Eds. Morgan Kaufmann, 1994, pp.
487-499.

[7] H. Blockeel, T. Calders, E. Fromont, B. Goethals, and A. Prado,
"Mining views: Database views for data mining," in ECML/PKDD-
2007 International Workshop on Constraint-Based Mining and Learning
(CMILE), 2007.

[8] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[9] [Online]. Available: http://www.postgresql.org/

[10] D. N. A. Asuncion, "UCI machine learning repository," 2007. [Online].
Available: http://www.ics.uci.edu/ mlearnll\4LRepository.html

1611

11 r-/\11- j_ II

T-

, 1-

