
Bagging using Statistical Queries

Anneleen Van Assche and Hendrik Blockeel

Computer Science Department, Katholieke Universiteit Leuven, Celestijnenlaan
200A, 3001 Leuven, Belgium

Abstract. Bagging is an ensemble method that relies on random re-
sampling of a data set to construct models for the ensemble. When only
statistics about the data are available, but no individual examples, the
straightforward resampling procedure cannot be implemented. The ques-
tion is then whether bagging can somehow be simulated. In this paper
we propose a method that, instead of computing certain heuristics (such
as information gain) from a resampled version of the data, estimates the
probability distribution of these heuristics under random resampling,
and then samples from this distribution. The resulting method is not
entirely equivalent to bagging because it ignores certain dependencies
among statistics. Nevertheless, experiments show that this “simulated
bagging” yields similar accuracy as bagging, while being as efficient and
more generally applicable.

1 Introduction

Ensemble methods build a set of different models and combine their predictions
to classify new examples. These methods vary in the way they build the separate
models and in the way they combine their predictions. Bagging [1] builds several
models on replicate training sets that are produced by sampling with replacement
from the original training set. By doing so it is able to improve the predictive
accuracy.

In some learning settings, direct access to individual examples of the data
is not available; instead, the learning algorithm has access only to summary
statistics about the data. Several authors have described how various predictive
models (such as decision trees) can be learned from precomputed statistics such
as itemset frequencies [2] or AD-trees [3], and what the advantages are of do-
ing so. When trying to apply bagging in the context of learning from statistics,
one is confronted with the fact that statistics are needed for several resampled
versions of the dataset, rather than for the dataset itself. Since no direct access
to the data is available, resampling the dataset by randomly selecting (with re-
placement) individual examples from it is not possible, so the straightforward
approach of resampling the dataset and computing the statistics for these resam-
pled versions is not possible. An alternative is to simulate the computation of
statistics from randomly resampled versions of the dataset by computing the dis-
tribution (under random resampling of the dataset) of the statistics themselves,

and then sampling values for these statistics from those distributions. This ap-
proach, applied to the specific case of bagging decision trees, is the subject of
this paper.

The paper is organized as follows. First we describe the learning problem
in Sect. 2. Then Sect. 3 deals with bagging: we explain the basic algorithm we
use in the bagging procedure, namely decision trees, and show how it is applied
using statistical queries. Next we briefly focus on bagging. In Sect. 4 we provide a
new way to simulate the use of bootstraps and indicate how this method differs
from the original bagging procedure. Section 5 describes experimental results
comparing this new method to the original bagging procedure. These results
show that bagging can be simulated efficiently with the proposed approach. In
Sect. 6 we conclude and provide some directions for future work.

2 Learning from Statistics

We start with defining and motivating the exact problem setting. We address the
problem of classification using only statistical information about the data set to
learn a classification model. We assume the data set is described by m attributes
(A1...Am) from which Am is the class attribute C consisting of nc possible class
labels (c1 . . . cnc

). The learning algorithm does not have access to the training
set E but is provided an oracle O that can be queried for frequencies fr(Cr) =
|{e ∈ E|Cr(e)}|, where Cr ∈ C is taken from some (possibly restricted) space of
conditions. For instance, C might contain all conditions of the form Ai = a with
a some value of Ai; all conjunctions of such conditions; all such conjunctions
with at most K conjuncts; all such conjunctions of which the frequency is above
some predefined threshold; etc. Note that if there are no restrictions to C (more
specifically, if C is sufficiently expressive to identify any individual instance),
then full information on the dataset is available and then this setting does not
differ essentially from learning from the dataset itself, except for implementation
issues.

Several researchers have worked in this setting. For instance, after running an
algorithm such as Apriori [4] on a dataset, the frequencies of all itemsets with
a frequency above Apriori’s minimal support parameter have been computed
and stored; Panov et al. [2] show how predictive models such as decision trees,
decision rules and Naive Bayes can be computed from only this information. Sim-
ilarly, Moore and Lee [3] proposed AD-trees, a data structure to efficiently store
the frequency of any conjunction of attribute-value combinations in a dataset,
and showed how for instance decision trees can be learned from AD-trees.

The advantage of this setting is that, once an efficient oracle is available
(the AD-tree has been built, or the itemsets mined), predictive models can be
built with far greater speed than when having to recompute all the necessary
statistics (which involves at least one pass over the whole dataset) each time
they are needed. The setting is also useful when mining databases where for
reasons of privacy only statistical queries are allowed.

The oracle knows certain statistics about a single data set, the training set.
But some learners employ randomly resampled versions of the training set. For
instance, as Panov et al. [2] mention, Ripper prunes its rule sets by means of
random resampling. Also bagging uses resampled versions of the training set.
It is not obvious how such methods can be used in the setting of learning from
frequencies. For bagging, we investigate this in this paper.

3 Bagging

3.1 Decision Trees

Decision trees are usually constructed top-down, from the root to the leaves. At
each node of the tree a “most informative” test for that node is selected using
some heuristic. Different heuristics have been proposed to select the best test [5,
6]. In the remainder of this text we use information gain, but our method also
works for other heuristics. The information gain IGA(E) of an attribute A rela-
tive to a set of examples E is defined as IGA(E) = E(E)−

∑
v∈Values(A)

Ev

E
E(Ev)

where E(E) is the entropy of E (E(E) =
∑c

i=1 pilog2pi, where pi is the propor-
tion of E belonging to class i). We see that the heuristic is determined by the
class distributions pi within a node, which in turn directly follow from frequen-
cies fr(c ∧ L)/fr(L) where L represents the conditions on the path from the
tree’s root to the current node, fr(L) is the number of examples covered by this
node, and fr(c ∧ L) is the number of such examples of class c. Similarly, other
statistics used by tree learners (e.g., for the stopping criterion) can be defined
in terms of such frequencies. Panov et al. [2] describe how a good decision tree
can be learned even from incomplete statistics (when the frequency of itemsets
is unknown if it is below a certain threshold). In this paper we assume that de-
cision trees can be learned in the described setting, and we focus on the bagging
procedure.

3.2 Bagging

Bagging [1] operates by repeatedly resampling the training set and building
trees on these resamples. The resamples Ei form replicate data sets (also called
bootstraps), each consisting of n examples (with n equal to the size of the original
data set E), drawn at random, but with replacement, from E. So each example
e from E may appear repeated times or not at all in any particular Ei.

But since in our setting, examples cannot be accessed individually, straight-
forward sampling with replacement on the original data cannot be performed
anymore. We only have statistics about the original data available. In the next
section we explain how we will sample the statistics instead of the dataset.

4 Sampling the Statistics

The key idea to bagging without bootstrapping is the following. In classical bag-
ging, the information gain IGA (or some other heuristic) of an attribute A is

computed from a random resample Ei of the original data set E. Since the re-
sample is chosen randomly, it might just as well have been another one, which
would have lead to a different value for IGA. Clearly, computing the exact IGA

on a random resample Ei is equivalent to sampling IGA from its own distribu-
tion. Put differently: since IGA is a function of the data set, and considering
Ei a stochastic variable of which the distribution is known, the distribution of
IGA(Ei) can be computed. Generating values for IGA from this distribution is
equivalent to generating Ei from its own distribution and computing IGA from
it. We will refer to this procedure as “resampling the statistics” as opposed to
“resampling the data sets” (and computing the statistics from them).

In our approach, we will not resample information gain directly; the statis-
tics that we resample are frequencies of class and attribute values, from which
information gain but also other useful statistics can be computed efficiently.

Resampling Statistics for a Single Test. Assume for the sake of illustration
that we have 3 boolean attributes (A, B, C) and a binary class variable with
values +, -. Figure 1a shows for each attribute the joint distribution of that at-
tribute and the class attribute in a training set with 100 examples. (Note that
in this paper the term distribution will usually refer to a sample distribution,
measured by absolute frequencies, and not a population distribution.) From the
frequencies shown there, the information gain of A, B and C can easily be com-
puted. If we take a bootstrap sample of 100 instances from the training set, what
will the joint distribution of the attributes and the class variable look like? Each
instance, being randomly taken from the training set, has a 60/100 = 0.6 chance
of being (+,¬A), a 0.2 probability of being (−, A), a 0.5 probability of being
(+, B), etc., and hence has the same probability of ending up in the correspond-
ing cell in the joint distribution table of the resampled set. Clearly, the vector
(n+,A, n+,¬A, n−,A, n−,¬A) is multinomially distributed with parameter (0, 0.6,
0.2, 0.2), and similarly for B and C.

Generally, if we have nc classes c1, . . . , cnc
and na values a1, . . . , ana

of an
attribute A, then the nanc-dimensional vector (X11, . . . , Xnanc

) where Xij de-
notes the number of instances in dataset E with A = ai and class value cj , is
multinomially distributed with parameters (p11, . . . , pnanc

) where pij = Xij/n,
with n =

∑
Xij (the total number of instances in E):

P (X ′

11 = x1, ..., X
′

nanc
= xk) =

n!

x1!..xk!
px1

11 ...pxk

nanc

where k = nc ∗ na. We use the method proposed by Devroye [7] to generate this
vector; this method consists of repeatedly generating a number for each separate
component Xij (so na ∗nc times) according to a binomial distribution, using the
BTPE algorithm from [8].

Choosing the Best Test for a Single Node. With the above method for
generating the X ′

ij , we can accurately model how the IG of each attribute will be

A ¬A

+ 0 60
− 20 20

B ¬B

+ 50 10
− 10 30

C ¬C

+ 30 30
− 30 10

(a) Example of statistics S[t]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Information Gain

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

%
of
sa
m
pl
es

IG for test A
IG for test B
IG for test C

ABC A¬BC AB¬C A¬B¬C

+ 0 0 0 0
− 5 0 12 3

¬ABC ¬A¬BC ¬AB¬C ¬A¬B¬C

+ 30 0 20 10
− 3 10 2 5

(b) Example of a joint distribution (c) The distribution of information gains on
of Fig. 1a random resamples of the original data for

test A, B and C according to Fig. 1a

Fig. 1.

distributed, under the resampling conditions used by bagging. Figure 1c shows
the distribution of the IGs of attributes A, B and C under bootstrap resampling
of the training set summarized in Fig. 1a. It can be seen, for instance, that the
probability that C is the best test in any random bootstrap is very low.

Unfortunately, the situation is not so clear for A and B. It might seem that
we get a good estimate of the probability that IGA > IGB by just generating
random IGA and IGB and checking how often IGA > IGB. But with this
procedure we are assuming that IGA and IGB are independent. This is not
necessarily the case: A and B may be correlated and so may their IGs. Consider
for instance the joint distribution over A, B, C and the class, shown in Fig. 1b.
This distribution gives the same marginal distributions as shown in Fig. 1a and in
Fig. 1c. Yet, this joint distribution is such that P (IGA > IGB) is approximately
1, whereas sampling IGA and IGB independently gives P (IGA > IGB) = 0.72.

It is impossible to correctly compute P (IGA > IGB) from the distributions of
IGA and IGB; we need the joint distribution. To compute the latter we need the
joint frequency distribution of A, B and the class. Generally, to correctly mimic
bagging, the full joint distribution of all attributes and the class is required.

Unfortunately, using the full joint distribution may be infeasible in practice.
First of all, knowledge of the full distribution corresponds to perfect knowledge
of the training dataset; it may not really be interesting to try to simulate bagging
in that context (unless, for instance, it would yield an efficiency gain). Further,
the number of X ′ variables that need to be generated grows exponentially in the
number of attributes, which makes this approach practically infeasible.

Of course, while we know that our approach is theoretically only an approxi-
mation of what happens in bagging, the question remains how much this matters
in practice. In practical datasets, the correlations between attributes may be such
that the probability of an attribute having the highest information gain under

our approximate method or true bagging seldom differs strongly; and if these
probabilities differ, there is still the question of how much this affects the quality
of the bagged ensemble. The latter question is of more practical importance and
we will focus on that in our experiments.

Choosing the Best Test in Multiple Nodes. The procedure described above
assumes we are in the root node of the tree. Deeper in the tree, the statistics
we resample for each possible test Ai in a certain node with path L from the
root are the frequencies fr(L ∧Ai = a ∧C = c) for each value a of Ai and each
value c of the class attribute C. This means that for the different paths in the
tree we need joint distributions over several attributes, but this is usually only
a small subset of the full joint distribution. Note that while in real bagging one
complete tree is built on one particular bootstrap, here new samples are drawn
at each node. Again, we see that a perfect simulation of bagging is only possible
by using the full joint distribution, which may not be feasible. So it remains to
be seen experimentally how much our simulated bagging procedure differs from
actual bagging.

5 Experiments

We implemented this simulated bagging method in the Weka data mining sys-
tem [9]. As a basic decision tree algorithm we started from ID3 [10]. For the
binomial random number generation we used the Cern Java library [11] con-
taining a high performance implementation of the BTPE algorithm [8]. More
details about the implementation can be found in [12].

We compared the accuracy of simulated bagging (using resampling of the
statistics) to original bagging (using resampling the data) on 12 UCI data sets1.
We selected data sets with a varying data set size (from 286 to 67557 examples),
all consisting of mainly nominal attributes, as this is required by the ID3 decision
tree algorithm. We performed discretization where still necessary and removed
missing values. To allow accuracy comparison between simulated bagging and
the original bagging approach, no constraints were imposed on the frequencies
that simulated bagging could query. Both methods are performed using 20 iter-
ations of bagging and are evaluated by averaging over 5 stratified ten-fold cross-
validations. Results on accuracy, size of the ensembles and runtimes are shown in
Table 1 for simulated bagging (SB), simulated bagging with an adapted stopping
criterion (SB stop, discussed below) and regular bagging (Bag). As can be seen
from the upper part of the table, in general the accuracy results are not sig-
nificantly different from each other (also when taking standard deviations into
account). Also, despite the fact that simulated bagging neglects dependencies
among attributes, we found that the number of different tests chosen among the
different iterations at a certain level in the trees was very similar for the two

1 breast-cancer (br), kr-vs-kp (kr), primary-tumor (pr), soybean (so), splice (sp),
waveform-5000 (wa), credit-a (cr), hypothyroid (hy), mushroom (mu), vote (vo),
nursery (nu), connect-4 (co)

Table 1. Results on accuracy, size of the ensembles and runtime of simulated bagging
(SB), SB with stopping criterion (SB stop) and normal bagging (Bag) on 12 UCI data
sets (abbreviations of data sets are mentioned in text above).

br kr pr so sp wa cr hy mu vo nu co
Accuracy

SB 65.7 99.6 39.8 91.7 94.3 79.1 82.7 99.5 100.0 95.3 99.1 79.6
SB stop 65.9 99.6 39.8 91.7 94.3 79.6 84.2 99.5 100.0 95.7 99.0 80.0

Bag 66.0 99.6 36.4 90.1 93.8 77.4 82.6 99.4 100.0 94.6 99.0 79.3
Size (number of nodes)

SB 7262 1931 7287 4351 19941 100863 8346 1933 575 1400 17471 968167
SB stop 4919 1720 5231 3155 14127 66582 5970 1592 566 1089 13432 671063

Bag 4523 1302 4980 2545 8416 42042 4276 1113 502 732 16006 534225
Time (seconds)

SB 0.436 1.102 1.616 1.050 6.396 6.466 0.556 0.440 0.252 0.214 1.156 209.786
SB stop 0.296 0.986 1.178 0.788 5.140 4.154 0.404 0.400 0.246 0.180 0.946 100.384

Bag 0.282 2.216 0.842 1.078 5.692 5.574 0.566 1.298 2.060 0.224 3.074 187.624

methods. The only point where trees of the two methods really differ is in their
size. The middle part of Table 1 shows that sizes of the ensembles output by
simulated bagging are in general larger than those of the ensembles of regular
bagging. This is because in simulated bagging the frequencies that are queried in
all nodes are always computed on the complete data set and not on a bootstrap,
which only contains 63% of the original examples. Table 1 also shows results
when applying a stopping criterion that only looks at 63% of the data while
checking the minimal leaf size condition to decide whether to stop or not, which
results in shorter trees.

From the efficiency results, we can see that even in a normal learning setting
where the data set is provided and regular bagging can be applied, simulated
bagging can be useful as it yields similar accuracy often in less time. In [12] we
discuss the time complexity of using this simulated bagging in a normal learning
setting where the data set is available and compare it to regular bagging and
a more efficient implementation of bagging [13]. We point out conditions under
which simulated bagging might be preferred over regular bagging.

We conclude that ignoring dependencies between tests when sampling the
statistics does not have a detrimental effect, while making bagging more generally
applicable.

6 Conclusions

We have proposed a new method for approximating bagging in a learning setting
where only statistics about the data and not the individual data instances them-
selves are available. In this context resampling the data set (with replacement),
as is usually done by bagging, cannot be applied anymore. Here we propose a
simulation of bagging that resamples the statistics instead of the data. Although
it ignores certain dependencies among the statistics, it shows to be a good and
efficient approximation to bagging.

The applicability of the described technique is not restricted to bagging. It
can be applied to all methods using resampling, such as certain pruning methods
(Panov et al.[2] described the need for that), some methods for error assessment,
etc.

Our current implementation, based on ID3 [10], only handles data sets with
nominal attributes. For numerical attributes the basic ideas presented here still
apply, but there are some technical details that are more complicated. When
computing statistics for each possible threshold for a numeric attribute, it suffices
to go over the data set only once if examples are sorted according to the attribute.
Then for each of the iterations of bagging we could take a sample of each of these
statistics and compute the information gains on them. But statistics of successive
thresholds are strongly correlated and by randomly sampling we would lose this
characteristic. So after we have taken a sample for the first threshold we might
want to impose some constraints on the samples of the next thresholds. This
method will be investigated in the near future.

Acknowledgements Anneleen Van Assche is supported by the Institute for
the Promotion of Innovation by Science and Technology in Flanders (I.W.T.-
Vlaanderen). Hendrik Blockeel is a Postdoctoral Fellow of the Fund for Scientific
Research - Flanders (Belgium) (F.W.O.-Vlaanderen). We would like to thank the
reviewers and chairs for their valuable comments and suggestions.

References

1. Breiman, L.: Bagging predictors. Machine Learning 24(2) (1996) 123–140
2. Panov, P., Džeroski, S., Blockeel, H., Loškovska, S.: Predictive data mining using

itemset frequencies. In: Proc. of the 7th Int. Multiconf. Information Society. (2005)
3. Moore, A.W., Lee, M.S.: Cached sufficient statistics for efficient machine learning

with large datasets. Journal of Artificial Intelligence Research 8 (1998) 67–91
4. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of

items in large databases. In Buneman, P., Jajodia, S., eds.: Proc. of ACM SIGMOD
Conf. on Management of Data, Washington, D.C., USA, ACM (1993) 207–216

5. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann series in
Machine Learning. Morgan Kaufmann (1993)

6. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth, Belmont (1984)

7. Devroye, L.: Non-Uniform Random Variate Generation. Springer-Verlag (1986)
8. Kachitvichyanukul, V., Schmeiser, B.: Binomial random variate generation. Com-

munications of the ACM 31 (1988) 216–222
9. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and tech-

niques. Morgan Kaufmann (2005) 2nd Edition.
10. Quinlan, J.R.: Induction of decision trees. Machine Learning 1 (1986) 81–106
11. Cern: European org. for nuclear research (1999) http://dsd.lbl.gov/˜hoschek/colt/.
12. Van Assche, A., Blockeel, H.: Simulating bagging without bootstrapping. In Saeys,

Y., Tsiporkova, E., De Baets, B., Van de Peer, Y., eds.: Proc. of the 15th Annual
Machine Learning Conf. of Belgium and the Netherlands. (2006) 25–32

13. Blockeel, H., Struyf, J.: Efficient algorithms for decision tree cross-validation.
Journal of Machine Learning Research 3(Dec) (2002) 621–650

