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Abstract. In sports, athlete monitoring is important for preventing in-
juries and optimizing performance. The multitude of relevant factors
during the exercise sessions, such as weather conditions, makes proper
individual athlete monitoring labour intensive. In this work, we develop
an automated approach for athlete monitoring in professional road cy-
cling that takes into account the terrain on which the ride is executed
by finding segments with similar elevation profiles. In our approach, the
matching is focused on the shapes of the segments. We use 2.5 years of
data of a single rider of Team Jumbo-Visma and assess the performance
of our approach by determining the quality of the best matches for a
selection of 700 distinct segments, consisting of the most representative
shapes for the elevation profiles. We demonstrate that the execution time
is within seconds and more than ten times faster than exhaustive search.
Therefore, our method enables real-time deployment in large scale ap-
plications with potentially many requests from multiple users. Moreover,
we show that on average our approach has similar accuracy when consid-
ering the correlation to a target segment and approximately only has a
twice as large mean squared error when compared to exhaustive search.
Finally, we discuss a practical example to demonstrate how our approach
can be used for athlete performance monitoring.

Keywords: Sports Analytics · Data Mining · Time Series Data · Road
Cycling

1 Introduction

Over the last decades, technical developments have led to new opportunities for
detailed athlete monitoring in sports. Here, the main focus is on tracking the
fatigue from exercising and the corresponding recovery. In particular, the aim
is finding the right balance between training stress and recovery on an athlete-
specific level [13]. Monitoring this balance has two main benefits for sports prac-
titioners. First, if training programs contain insufficient recovery, this can result
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in severe injuries. Therefore, detailed monitoring could signal early symptoms
of potentially severe injuries that might occur in the future [18]. Second, the
performance of athletes can be enhanced by tracking the adaptions of the body
after completing a training session. Hence, coaches keep an eye on their athletes
on a daily basis to optimize performance and prevent injuries [7,11].

For a coach, athlete monitoring is a complicated task as there is a multitude of
different factors that need to be considered, such as the characteristics of training
sessions or the wellness of an athlete [29]. Hereby, it is crucial to interpret the
findings by taking into account the right contextual information. For example,
an elevated heart rate during a training session could be explained by a higher
body temperature due to environmental factors [15]. Additionally, there is a
potential risk of missing possible relevant information in the often vast amounts
of collected data. As coaches are usually responsible for a group of athletes who
all need an individualized analysis, athlete monitoring is labour intensive and
one of the most important daily occupations of a coach. Hence, there is a need
for efficient and easy-to-implement athlete monitoring methods that can assist
coaches in retrieving the most valuable information [21].

Road cycling is a prime example of a sport with many opportunities for de-
veloping these automated approaches in athlete monitoring [26]. Bikes of cyclists
are typically equipped with multiple sensors and therefore detailed information
of the bike rides is available. This collection of ample sensor data opens up many
avenues to apply machine learning techniques in elite cycling [12,17,30]. In this
work, we will consider an application of machine learning techniques that uses
sensor data in road cycling to develop an approach for comparing the perfor-
mance of a cyclist in different training sessions. In particular, for a given part
of a bike ride, we automatically find other bike rides on a similar terrain and
compare the physiological characteristics, such as the relationship between heart
rate and produced power. By monitoring possible changes in the physiological
characteristics of the rider between both bike rides taking place on distinct dates,
our method can assist in signaling the physical development of cyclists.

The remainder of this article is structured as follows. First, we review some
related work. Hereafter, we discuss the materials that are considered in this work
and elaborate on the modeling approach that we have developed. Subsequently,
we present the results of experiments on the performance of our approach and
give an example of a typical outcome. Finally, we discuss our results and end
with a conclusion.

2 Related Work

In this work, we are dealing with time series data. This type of data is om-
nipresent in multiple domains covering climate studies as well as finance and
medicine research. Therefore, there is a large variety in time series data analy-
ses [9,10,14], such as forecasting, classification or regression settings. Here, we
consider the task of finding the part of a time series that is similar to a given
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segment of distinct time series. So, we are in the research area of time series
similarity or matching of time series [16].

There are many approaches for addressing matching of time series, ranging
from naive brute force methods to statistical analysis and deep representation
learning. Most approaches rely on dimensionality reduction of the time series
data using techniques such as Discrete Fourier Transform [2], Discrete Wavelet
Transform [6] or t-SNE [20]. More recently, the UMAP algorithm [5] is also
applied to map single and multi-attribute biomedical time series data, into a
lower-dimensional feature space [4]. After the dimensionality reduction, the sim-
ilarity of time series can be assessed by comparing their key characteristics.

The time series can also be matched by calculating a distance measure be-
tween entire time series [8]. Here, the most common approach is a point-by-point
comparison of the absolute distance by using the Euclidean distance [31]. Alter-
natively, the similarity can be determined by using Dynamic Time Warping
[25], or by solely focusing on the shape of the time series [3]. After obtaining
the distance between a collection of time series, there are two main options for
determining the similarity between time series [16]. First, given a time series T,
we can explore a database to retrieve all other time series that are within a pre-
defined threshold distance of T. Second, clustering approaches can be applied to
find the groups of similar time series. For example, k-mediods clustering with the
Dynamic Time Warping distance can be used [22]. An overview of the various
approaches of time series clustering can be found in Refs. [1,19].

3 Materials

In this section, we will describe the materials that are used in the study and
elaborate on the preprocession that we have applied.

3.1 Materials

We consider 2.5 years of training and competition data of an elite cyclist of Team
Jumbo-Visma. During the rides, many attributes are collected by using sensors
and a bike computer. We have physiological attributes, such as the produced
power and heart rate, and also environmental information, including the location
and altitude of the terrain. In total, the rider completed almost 800 sessions. The
data of each session is a time series, where the information is collected with a
resolution of 1 Hz. Ignoring sessions with malfunction of the bike computer,
such as a session shorter than 1 kilometer, we find that the average length and
duration of a session is 95.6 ± 56.9 kilometer and 179 ± 95.6 minutes (mean ±
std), respectively.

3.2 Data preprocessing

Before using the data in our modeling approaches, we first apply some prepro-
cessing. In this step, we developed a pipeline to remove outliers, inconsistent
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Fig. 1. The seven main distinct shape types that can be encountered when investigating
the elevation profile of road cycling rides.

data points and missing values. Most importantly, we applied Gaussian smooth-
ing on the altitude variable to overcome the step-wise increase of the altitude
values in the raw data. After exploring different values of the standard deviation
of the Gaussian kernel, we set σ = 3 to remove the discontinuous behavior and in
the meantime preserve most fluctuations. Moreover, segments with less than 60
seconds of consecutive missing values, are filled by applying spline interpolation.
Finally, we down-sampled the original one Hertz data to a 15 second sampling
rate. Although we hereby remove some details, the precision is sufficient to re-
trieve accurate information for our road cycling application.

4 Methodology

The goal of our work is to retrieve core information between comparable ride
segments in different recorded sessions of a given rider. More specifically, we
consider the following challenge

Given: A segment S defined as a specific part of an entire workout that is
of arbitrary length, selected from a collection of time series, and of the form
{(ds, hs), . . . , (df , hf )}. Here, dj is the covered distance, hj is the corresponding
altitude, and the indices s and f correspond to the first and last point of the
segment, respectively.

Goal: Find the segments that are conditioned on similar terrain, i.e., have a
similar elevation profile compared to S.

As mentioned previously in the related work section, there are several options
for addressing this task. For practical usage, our approach should be sufficiently
fast while minimizing the risks of missing relevant matches. Here, we need to meet
this requirement for all different types of elevation profiles. After inspection of
all time series data in our database, we find that an elevation profile is typically
equal to one of the seven different kind of shapes shown in Fig. 1.

In this work, we have applied two different approaches that are accurate and
fast enough for all distinct elevation profiles. Before we will elaborate on these
two procedures in more detail, we first discuss an additional step that both
approaches have in common.

4.1 Selection of potential matches

For our methods to be sufficiently fast, it is unfeasible to take a naive approach
and perform a comparison to all other segments of the same length. Note that this
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is also unnecessary as the characteristics of most of these segments will be quite
different. Therefore, we determine general properties of the selected segment S
and preselect potential matches by imposing conditions on these characteristics.

First, we determine the extreme points in altitude of segment S. Next, we
define a minimum and maximum allowed altitude that is 10% lower or higher,
respectively. Hereafter, we consider all segments of the same length as S and
select the ones for which at all time points, the altitude is in between the mini-
mum and maximum allowed altitude. Subsequently, we filter out matches with
a Pearson’s correlation of less than 0.7 with the query segment.

4.2 Taylor-made approach

After selecting the potential matches, we can apply our approaches for find-
ing similar segments to S. In our first method, we use a similarity measure to
determine the similarity between the segment S and the potential matches.

In principle, there are multiple similarity measures that can be applied. For
optimizing the usability for sport practitioners in this specific use case, an agree-
ment in shape of the segments is most important. Moreover, in the selection of
potential matches, we already ensured that the altitude values are in the same
range by restricting the difference between altitude in both segments and en-
forcing a minimal correlation between them. Therefore, we have chosen the peak
alignment as our similarity measure, which closely corresponds to human judg-
ment of mountainous terrain in cycling. With the peak alignment, we match
the identified peaks between two series in sequential order and compute the
sum of weighted horizontal differences between the summits. The differences are
weighted by the summits relative altitude that is defined as the absolute altitude
of the summit divided by the sessions maximum altitude. Although here we fo-
cus on the objective of peak alignment, the approach can be easily extended to
allow for different (combinations) of evaluation metrics.

We use the scipy signal package4 to identify peaks. If there are no clear peaks
in the original segment, such as sprints or simple climbs, the Pearson correlation
coefficient is used as similarity score. Finally, we sort all matches from most to
least similar and remove overlapping segments to ensure variety in the results.

4.3 Dimensionality reduction approach

In our second approach, we utilize techniques of dimensionality reduction to
project the time series into low dimensional space and apply a k-nearest neigh-
bour (KNN) classification to identify the most similar segments for any given
segment S. In principle, dimensional reduction can be quite time-consuming,
as there is a need for extensive preprocessing and the buffering for non-linear
reduction methods requires a huge memory. From a practical perspective, it is
often not feasible to use this approach if dimensionality reduction has to be

4 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_

peaks.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
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performed for each new query. However, in the case of fixed sized windows, the
computational complexity reduces to a O(1) lookup operation at execution time.
In this case, the dimensionality reduction only has to be performed once and the
results can be stored and retrieved on demand. We experimented with different
forms of dimension reduction such as UMAP, t-SNE and Principal Component
Analysis (PCA). For efficiency reasons, we here opt for PCA.

Before performing the dimensionality reduction, we add the slope of the ter-
rain as additional feature to the original time series data. Hereafter, we apply
normalization of the features and learn an n-dimensional representation of seg-
ments with a given length k. We project all sub-parts of our data collection with
length k into the low-dimensional space and determine the nearest neighbours
with the Euclidean distance measure. The value of n is determined by using a
representative sample of different distance altitude segments for a given k, and
evaluating the average top-5 mean-squared-error as well as the correlation to the
target segment.

Although less efficient when not restricted to segments of fixed length, this
approach also has an advantage compared to the first method. If we apply an
n-dimensional reduction of segments for n < 4, we can visualise the character-
istics of all segments of a given length k that are present in our data collection.
Thereby, we can explore all different type of segments and also find potential
clusters of similar fragments. Hence, the user can visually explore the landscape
of all available segments and find the similar segments without specifying one
specific segment S in advance.

5 Results

In this section, we will present the assessment of the performance of our modeling
approaches and illustrate how our approach can be used for athlete monitoring.

5.1 Modeling performance

To obtain realistic estimates of the performance of our approaches under real-
world conditions, we present the results of experiments on a sample of 700 manu-
ally selected segments of about 1 hour length equally representing the 7 distinct
shape types displayed in Fig. 1. The experiments are executed on a machine with
32 x 8-core Intel(R) Xeon(R) CPU E5-2630-v3 central processing units with a
combined RAM of 440 GB using parallel creation and comparison of the sliding
segment-windows.

Before we can compare our methods, we first need to find the optimal number
of components in our dimensionality reduction approach. After investigating the
performance on a log-2 scale, we find that the optimal number of components is
around 24. However, for more than 22 components the performance, defined as
the average correlation and mean squared error, only marginally increases. We
find that representations with 2- or 3-dimensions already result in compelling
clusters which can be used for visualization.
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Fig. 2. Computation time for finding the three best matches for 100 segments of each
of the 7 distinct shape types of Fig. 1. We display the average computation time for our
taylor made approach (peak), dimensional reduction (clust) approach and exhaustive
search.

We assess the performance of our method by investigating the computation
time and accuracy of our different approaches. In Fig.2, we show the average
time necessary for finding the three best matches. We observe that exhaustive
search has the largest computational time. This method takes more than ten
times longer than our taylor-made approach, which on average needs under three
seconds to obtain the three best matches for a given segment S. The overall
quality of the matches is displayed in Fig.3. We observe that the overall quality
of retrieved matches is very high with an average Pearson’s correlation around
0.85 and mean squared error smaller than 120m altitude for all methods. The
Pearson’s correlation of all methods is comparable, while the exhaustive search

Fig. 3. Comparison of the accuracy of our taylor made approach (peak), dimensional
reduction (clust) approach and exhaustive search. We show the distribution of the
mean squared error (left) and Pearson’s correlation (right) for experiments on a total
700 segments where all 7 different shape types of Fig. 1 are equally represented.
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Fig. 4. The heart rate (left) and pedal power (right) values for the selected segment
and the best match. We observe there is quite a difference in heart rate values although
the produced power in both cases in similar.

method has a mean squared error that is approximately two times smaller than
our taylor-made approach. Note that we combined the results for all distinct
shapes of the elevation profiles, but we obtain similar results if we consider the
distinct shapes separately.

5.2 Athlete monitoring

As an illustration of the usefulness of our approach, we consider of one session
the El Teide climb in Spain with starting point in Chio. This case is of partic-
ular interest for the coaches as this is a popular training location for cyclists.
For this example, we find that the best match is a different climb on Tenerife.
Moreover, the top-5 matches for the given query segment all have a Pearson’s
correlation coefficient above 0.99 and a mean-squared error difference smaller
than 50 meters.

To obtain interesting insights for athlete monitoring, we analyze the exercise
intensity via the produced pedal power and relate this to the heaviness that is
experienced by the rider by means of the heart rate. In Fig. 4, we compare the
heart rate and produced pedal power of the original segment and the best match.
Although for the most similar segment, there are some more large values, overall
the produced pedal power in both cases is quite similar and differs by only 16
W. On the other hand, the heart rate values are much different and on average,
we find that the heart rate is almost 18 bpm, or roughly 15%, higher. This found
difference in heart rate at similar exercise intensities, points to coach to having
a closer look at both sessions and consider some contextual information.

For example, it is worthwhile to compare the temperature in both cases.
We observe that during the ride on the original segment the average tempera-
ture is almost 8 degrees Celsius lower than during the compared session. This
might indicate that the temperature difference could be the explanation for the
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observed dissimilarity in heart rate. We can further investigate this claim by
comparing the second best match to the original segment. In this case, we have
a comparable difference in temperature as found before. Moreover, compared to
the original segment, the average heart rate is 8 bpm lower and on average the
cyclist produced 28 W less power. Hence, there is a larger difference in produced
pedal power, but the heart rate is more similar. Therefore, this suggests that the
difference in heart rate as shown in Fig. 4 can not only be caused by the change
in temperature. In a similar fashion a coach could consider other contextual in-
formation, such as the run-up to the segment in both rides. Hereby, it is possible
to study whether the observed difference in heart rate at similar produced pedal
power was a consequence of a change in fitness of the rider or there was another
explanation.

6 Discussion

We have presented three approaches for finding similar elevation profiles in pro-
fessional road cycling. Although exhaustive search is most accurate, there is only
a relatively small gain compared to our other two approaches, especially in terms
of the correlation metric. On the other hand, exhaustive search often takes over a
minute to find results and our taylor-made method retrieves comparable results
in under three seconds. This demonstrates that this approach is suitable for any
real-time deployment if the application needs to be scaled up to a service with
multiple simultaneous requests.

Thereafter, we illustrated the usefulness of our approach by considering a
practical example. Although the races were executed on similar terrain and the
exercise intensities were comparable, we observed that there were significant
differences in heart rate that could not be explained by only looking at the
temperature difference in both sessions. This elevated heart rate at the same
exercise intensity could indicate a decrease in performance [32] or a reduction in
training volume [23,24] at the original segment. However, before drawing these
conclusions, it is important that the coach also takes into account all contextual
information. For example, the exercise intensity and exercise duration before
starting the segment could have been different. Therefore, it would be worthwhile
to extend our approach by including some restrictions, such as enforcing similar
physiological starting conditions. For instance, the energy used until the starting
point of a segment could by calculated by determining the work done up until
starting the segment.

In addition to the application of our method for athlete monitoring, we have
another useful utilization for sport practitioners in road cycling. Instead of find-
ing the most similar segment in historical data, we can also use the elevation
profile of a future race. In this case, we can select parts that are expected to be
important for the race outcome and use our approach to find similar segments in
our data collection. Hereby, we can determine specific areas in popular training
destinations that have a similar elevation profile. This can be an asset in the
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build-up for important races as this allows riders to experience the terrain of the
race, without the additional need for travelling to the specific location.

There are multiple opportunities for future research. As mentioned before,
for athlete monitoring it can be important to extend our approach and include
some restrictions on the matches. Moreover, it is interesting to investigate mul-
tiple riders as this also allows for comparison of the physiological characteristics
between different riders. Finally, we can also explore alternatives for some choices
that we have made in our approach. For instance, we have preselected candidate
segments based on the extreme values of the altitude of the target segment and
the Pearson’s correlation. These specific choices are most appropriate for seg-
ments that include high altitudes and sufficient elevation differences. On the
other hand, a preselection based on absolute errors between the elevation pro-
files might be more reliable for segments that contain little elevation differences.
While the segments with large altitude difference are the most important for
coaches as these are typically very demanding for cyclists, it also might be in-
sightful to accurately compare other type of segments. Therefore, an extension
of our approach could be a more flexible procedure for the preselection of poten-
tial matches that is based on the characteristics of the target segment. Finally,
we could also apply different approaches, such as hierarchical clustering [27], or
clustering based on Dynamic Time Warping Barycenter Averaging [28].

7 Conclusion

In this work, we have developed methods for athlete monitoring in professional
road cycling. We obtained insights about the physical abilities and fatigue of
a professional road cyclist by finding similar elevation profiles of bike rides.
Our main approach uses multi-stage filtering and peak alignment to assess this
similarity, which is most in line with the human perception if segments are alike.
We have shown that this approach is sufficiently accurate and fast to allow for
real-time application. In addition to comparing the physiological characteristics
of a rider between segments with similar elevation profiles occurring on different
dates, our approach can also be used to prepare for future races by identifying
areas in training locations with similar terrain as a given future race. Concluding,
we have constructed a valuable tool for sport practitioners in professional road
cycling that can be used for efficient and effective athlete monitoring to support
performance optimization.
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