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Abstract. Most current solutions in cycling analytics focus on one spe-
cific race or participant, while a sports-wide system could render huge
benefits of scale, by automating certain processes. The development of
such a system is, however, heavily inflicted by the large number of non-
participations as most riders do not compete in all races. Therefore,
value imputation is required. Most popular value imputation techniques
are developed for cases where part of the data is fully observed, which
is not the case for cycling race results. While some methods are adapted
to situations without complete cases, this is not the case for the cross-
sectional imputation algorithm suggested by multiple previous studies
(i.e., KNN imputation). We therefore suggest an adaptation to the KNN
imputation algorithm which uses expert knowledge on race similarity in
order to facilitate the deployment of the algorithm in situations with-
out complete cases. The method is shown to be the most performant
predictive model and does this within a competitive computation time.

Keywords: Sports Analytics · Scouting Analytics · Missing Value Im-
putation · Predictive Modeling

1 Introduction

Cycling analytics has grown as a field of study, with researchers exploring a
range of possible applications. All these applications are, however, very narrowly
scoped with a focus on a specific race’s outcome (e.g., [13]) or on the performance
of one specific athlete (e.g., [12]). While these solutions are useful, they limit
the usability of the systems derived from them. This is a missed opportunity
since athlete performance is even more interesting in relation to other athletes’
performances and fans and coaches often desire predictions of more than one
specific race.

The reason behind these scoped solutions, lays in the nature of the used data.
Not all riders compete in all races, which results in a an extreme number of
missing values. These missing values are extremely common, as most riders only
compete in a selected number out of the hundreds of youth races available on the
calendar. This results in a high number of missing values on a year-by-year result
basis, but the problem also persists when aggregating results across the youth
career, as many riders ride a similar program compared to their previous season.
This results into highly specific setting, where generally no complete cases are
observed. Most imputation methods are not adapted to this specific situation.
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Existing solutions to handle the absence of complete cases, like mean imputation
or Multivariate Imputation by Chained Equations [27], result in over-extensive
computation times or heavy reduction in data variability. The disadvantages of
these solutions, might have dissuaded researchers to come up with a sports-wide
system.

We therefore suggest a solution which deploys the K-nearest neighbor (KNN)
imputation algorithm [26] on subgroups of races, which due to their similarity
in used route attract the same riders. This results in both complete cases being
observed and more quality imputations. The method is proven to give the most
accurate predictions when combined with a random forest regressor.

The remainder of this study is structured as follows. Section 2 discusses
advances made in cycling analytics and discusses current solutions in missing
value imputation, followed by the used methodology in Section 3. Section 4
elaborates on the performance and outcome of the various techniques, while we
end with a concluding remark and a critical note in Section 5.

2 Literature overview

This section discusses current advances in literature. Section 2.1. describes how
the interest in cycling analytics increased in recent years. Nonetheless, this
growth in academic interest did not lead to an sports-wide analytical system
as the nature of the data, with an abundance of missing values inhibits this.
Current solutions on value imputation are therefore discussed in Section 2.2.

2.1 Cycling Analytics

In recent years, there has been an emergence of cycling-related data analytical
studies. While some studies use analytical approaches to facilitate recreational
and commuter cycling [16], less efforts have been made to harness the power of
predictive analytics to boost rider and team performances. Initial introductions
towards analytical methods in the field were made by [10]. The authors were
able to predict a cyclist’s heart rate at various moments in the training ride
using a long short-term memory (LSTM) model. The study can be regarded as
a proof-of-concept, indicating the feasibility of predictive models in the field of
cycling.

This work was quickly followed by a range of studies who focused on practical
applications to the cycling community. For example, [13] developed a real-time
analytical system to estimate power performance of professional riders at the
Tour de France (deployed on 2017 edition) based on GPS and wind sensor data.
This would allow fans to have reliable estimates of the performance of athletes
during the race. Another interesting study by [3] built a model which predicted
the average velocity of a stage, the difference between the average stage velocity
and the velocity of a rider and, finally, the head-to-head wins between two riders
in a stage, using open data from procyclingstats.com. This popular information-
tracking website was also used in other relevant studies. For example, [14] proved
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it was feasible to predict race rankings based on previous race rankings scraped
from the procyclingstats.com website, while [13] was capable to predict individ-
ual rider performance in key mountain stages using a combination of private
training data and the open data available on the procyclingstats.com website.
These studies, and the wide usage of the website among fans, has clearly estab-
lished the procyclingstats.com website as the go-to source for open cycling data.
The field remains to be developed with recent studies (e.g., [4]) being developed
out of collaborations with top-tier teams. Current developments are resulting
in-race applications such as race tactics and nutrition schemes [4].

While data is freely available, the nature of the data inevitably leads to
missing values. Riders do not participate in all races, as they select which races
suit their specific skill set the most. This is further complicated by geographical
orientation, as non-professional athletes often do not have the means to travel
across half the globe. This dispersion has led many studies in cycling analytics
to focus on the prediction of a specific race [14], or on a specific rider [13]. This
solution enables modelers to select the considered features in such a way that the
number of missing values are limited. The usage of such specific scopes, however,
limits the applicability of most analytical approaches as no sports-wide system
can be developed, such as the detection of young rider talents, or a general race
prediction system.

2.2 Missing Value Imputation

Two broad types of imputation methods exist: single imputation and multiple
imputation [19]. While single imputation uses the single outcome of a method
to impute the value, multiple imputation methods average the outcome across
multiple imputed samples, which theoretically ensures a better incorporation of
uncertainty about this value. Nevertheless, single imputation methods have been
proven capable of outperforming multiple imputation methods [12].

An interesting related field of research, are recommender systems (RS). Whereas
value imputation focuses on estimating unknown values in the training, testing,
and deployment sets, do RS focus on estimating unknown values in the user-
rating matrix. While both fields show a clear overlap, there is still a large dis-
tinction. RS solely try to estimate the unknown values, while value imputation
methods need a way to transfer the learned practices towards unseen data, used
for testing and/or deployment. Accordingly, we observe many popular RS tech-
niques like matrix factorization [24] to be unsuited for missing value imputation
in a predictive pipeline.

The three most popular single imputation methods are: mean imputation,
regression imputation, and KNN imputation [12]. Mean imputation replaces the
non-observed values with the mean of the observed values of the variable and is
commonly used due to its simplicity [23, 5]. Regression imputation uses a regres-
sion model, which can be any type of regressor, to predict the missing values,
by using the complete cases as training set and the missing cases as deployment
set. KNN imputation [26] is similar to regression imputation as it also uses the
neighbors of the missing case from the complete cases to see which average value
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the k nearest neighbors have. The k nearest neighbors are defined by a selected
distance measure (in our case the Euclidean distance). It distinguishes itself from
regression imputation as no explicit predictive model is fit. Note how each im-
putation technique can easily be adapted for usage on categorical variables by
using the mode instead of the mean or by using classification techniques instead
of regression techniques.

An issue with above mentioned methods is that most need to be adjusted
when dealing with extreme missingness rates [23]. Mean imputation can be di-
rectly implemented, as no complete cases are needed. This ease-of-use might
explain the popularity of the method despite the large reduction in variance.
Regression imputation and KNN imputation, on the other hand, need complete
cases to estimate missing values.

Multivariate Imputation by Chained Equations (MICE [27]) is a solution
proposed to handle this issue for regression imputation. The method starts by
randomly assigning observed data as imputation of the unobserved data. How-
ever, it is stored which values were unobserved. One feature’s missing values are
then imputed by a regression model which uses the other features’ values (actu-
ally observed + imputed values) as independent features and uses the observed
values as dependent values in the training set. This done for each feature, and
imputed values are updated during a number of iterations. The computational
time is the largest drawback to the method, as the iterative nature causes the
regression imputation method to be very time-consuming.

KNN imputation has no adaptation that handles situations without complete
observations. This translates to the situation where KNN imputation is only used
in situations where complete cases are observed. This is a missed opportunity for
several analytical systems as the algorithm is identified as the best imputation
method for predictive modeling [12]. Therefore, we suggest an adaptation to the
method which uses expert knowledge to group related races together. By doing
so, KNN imputation becomes feasible as no incomplete cases are observed for
the grouped races. In this study, we focus on the imputation of youth race results
to predict a rider’s performance in his professional career. Before explaining this
adaptation, the used data and features-to-be-imputed are discussed.

3 Methodology

3.1 Data

As a case study, we will develop a system to predict a young rider’s expected
future performance. The used data was collected from the procyclingstats.com
(PCS) website, which keeps track of all youth results. A list of popular youth
competitions was created, and for each of these races all the available results
in the period 2005-2020 were scraped, as almost no youth results were available
prior to 2005. These scraped results were used as the basis of the independent
variables. Given the scarcity of results in earlier years, we decided to only select
riders who turned professional in the years 2010-2019. Before 2010, we observed
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the riders to have too little observed race results (i.e., less than 40 observations),
leading to heavy time-based sample bias. Riders who turned professional in 2020
or 2021 were also not selected, as they did not yet have two full years of observed
dependent period. Overall, this resulted in a sample of 1,060 athletes. The goal of
our model is to predict the performance during a period in the rider’s professional
career, based on the results he achieved as youth competitor. This implies that,
for instance, when modelling a rider turning professional in 2018, all his results
up until 2017 will be used as input of the independent variables, while results
from 2018 onwards will be used as input for the dependent variable.

The dependent variable was defined as the PCS points scored in the first two
years as a professional athlete. This definition closely follows the regulations of
the Union Cycliste Internationale (UCI; international cycling federation), which
state that starting professional athletes (defined as competing in one of the top
two tier levels) should be awarded contracts of at least two years. By measuring
their performance during these two years, we can directly measure the return
on investment of the hiring team. This limited time window also filters out
potential negative effects of bad talent development. The option for PCS points
rather than the official UCI points is inspired by the fact that this points system
has remained stable during the entire period 2010-2020, while the current UCI
ranking system only dates back to 2016. The ranking is also often used in cycling
analytics by other researchers [21, 28].

3.2 Feature Engineering

We created a large set of independent variables (in total 242), which represent
both the general rider performance (aggregate features), as well individual rider
performance in one particular race. These race-specific features especially lead
to large missing rates. Nonetheless, they cannot be disregarded as this gives
information about a rider’s talent. For example, it could be that a sprinter is
more likely to score points straight away compared to climber of cobbled classics
specialist. To incorporate individual race results, we included information on best
past race result, and best past time difference, as finishing in the same group
as the race winner can be regarded as a better result than achieving a largely
distanced top-10 placement. When a rider did not finish the race, he received
the placing of the last finishing rider plus one. Race participation is included as
well, acting as imputation indicator. For stage races, number of stage victories,
and best stage result are reported as well. Aggregate features were computed as
well, both with a focus on one of the U23 (aged 19-22) and Junior (aged 17-18)
categories, or averaged across both youth categories. Fully disclosed information
on the set of used features can be obtained when contacting the authors.

3.3 Suggested KNN Adaption

The resulting sample contains a very high number of missing values, with only
49.57% of all the possible feature values observed. The observed rate for the race-
based features (besides participation) only ranges between 5 and 40%, indicating
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that race-based features (e.g., best result) have 60 to 95% missing values. Note
that the overall observed rate of 49.57% is inflated by the fully observed aggregate
and participation features. The reason for this high missingness is related to the
selection decision of the racer and the coach (i.e., races are chosen that fit with
the capacities of the rider and the team), as well as the geographical location.
This results in an atypical situation in which no single complete case is observed
in the data, this while most analytical models can only be used with complete
datasets [15].

As discussed in Section 2.2., current solutions for missing value imputation
in situations without complete cases either result in reduced data variability or
are extremely time-consuming. Therefore, we suggest an alternative method for
value imputation, where we group the races based on domain knowledge into
groups that do have complete cases on which KNN imputation can be applied.

In total, eight categories were created. A first category is the Big Tour cat-
egory, which are races that take place during a period of over a week and over
varied terrain. Diverse riders with good recuperation skills excel in the overall
classification of this type of race. The importance of the races also attracts riders
from quite wide geographical origins and the longitude and importance of the
races make it more interesting for some to solely focus on stage victories rather
than the overall classification. A related category is the Stage Race Climb cat-
egory of French stage races over very hilly terrain, attracting many riders from
France and neighboring countries. Both categories consist of U23 stage races, Ju-
nior stage races are categorized in the Stage Race Junior category, which is more
diverse. This due to the fact that Juniors have more limited calendar options.
Regarding the one day races, we also followed a similar method, with the One
Day Junior races forming one category, and the U23 races divided into Cobbles
and Hilly U23. Cobbled races are quite unique as they are the sole type of races
which favor more heavy riders, while also being located in and near Belgium.
This as opposed to the hilly one day races, which are one a hilly terrain, favoring
more light-weight riders, while also being primarily located in Italy. All other
races are categorized as Rest.

Table 1. Average results

Victory
ratio
U23

Evolution
Wins

Omloop der
Vlaamse
Gewesten
best result

Paris-
Roubaix

U23
best result

Tour de
l’Isard

best result

Tour
d’Alsace

best result

Rider 1 0.238 1.608 6 3 70 88
Rider 2 0.006 0.884 6 8 3 5
Rider 3 0.082 0.589 60 96 1 5
Rider 4 0.000 0.000 60 77 70 88

By using the KNN algorithm on each feature group, rather than across all
features, complete cases are observed as the similarity of the race program at-
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tracts some riders to complete the fully considered race program. This has also
has the advantage that we only use the most relevant features for imputation.
Table 1 provides a simplified example of our proposed imputation method. Note
that the imputed values are highlighted in bold. From this examples, it is clear
that no rider competed in all four races, which would render the base KNN im-
putation method infeasible as no complete cases are observed. In addition, it also
uses a more scoped and better-informed approach. For instance, the imputation-
relevant information to predict the result of a rider in Omloop der Vlaamse
Gewesten will be mainly situated in the Cobbles group (Paris-Roubaix U23 in
this case), while the Stage Race Climb group will contain very limited relevant
information. The benefit of our method is nicely reflected for rider 2. He has a
highly similar profile to rider 3, which would probably be his nearest neighbor.
However, compared to rider 3, he also performs quite well on the cobblestones,
as is reflected by his 8th place in Paris-Roubaix U23. This makes rider 1 a better
candidate for being rider 2’s nearest neighbor in the cobbles group, rendering an
imputed value of 6, rather than of 60.

3.4 Experimental Set-up

We will compare our suggested approach to both the mean imputation technique
and the Multivariate Imputation by Chained Equations (MICE) technique. For
the MICE methodology, we set the number of iterations at 10, acting as a trade-
off between computational time and reaching of convergence. As base regressor,
we chose random forest [1] due to the algorithms capacity to handle non-linear
relationships as well as its good performance without parameter tuning [7]. Pre-
vious research [6] also concluded that recursive partitioning methods are recom-
mended over standard applications of MICE. Do note that this implementation
is essentially the same as the MissForest implementation by [25] The number of
considered neighbors (K) is set to 5 for our KNN adaptation.

The three imputation methods will be compared to each other with regard to
both the speed of execution as well as the performance in a predictive modeling
pipeline. Besides the imputation step, this pipeline will also include a feature
selection step, as a large number of 242 features were considered compared to the
maximal sample size of 1,060 athletes, and a regression algorithm. These result
in the sequence imputation – feature selection – regression being deployed.

A very popular feature selection method is the Boruta algorithm [17]. The
base algorithm used is random forest and the method is based on the idea of
‘shadow variables’. These are created by replacing the actual feature values with
random permutations of these values. When the shadow variable’s variable im-
portance is not significantly different than the actual variable importance, it is
decided that the feature in question is not needed and can be excluded from the
eventual feature list. Since Gini-based variable importance rankings are unreli-
able, we use SHAP-based [20] feature importances.

As regression algorithm, we will deploy random forest regression [1]. This al-
gorithm was selected in our experimental set-up as it is very robust and performs
well without heavy parameter tuning. The number of trees was set sufficiently
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large at 500 and the number of random predictors to select at each tree split
was set at the square root of the number of predictors.

As a season follows the subsequent one and riders compete against each other
in the same season, rather than act as individualistic competitors, one can safely
say that the assumption of independent and identically distributed data is clearly
violated. This influences our test design, as a traditional cross-validated approach
is not adequate in this situation. Rather, we will follow a rolling window approach
where all available information is used up until the moment of prediction [29].
In order to have an unbiased estimation of performance, we use five different
periods for testing: starting years 2015-2019. Note that the validation period
is only used for hyperparameter tuning and that the combined training and
validation period is eventually used for fitting the final model.

Each fold is evaluated against a range of performance measures. The Root-
Mean-Squared-Error (RMSE) calculates how exact the method can predict the
points scored per participant. This is, however, not the main goal, as teams
rather want the best riders to be ranked on top. Therefore, the Spearman rank
correlation between actual results and predicted results is calculated as well,
indicating how consequent the best riders are ranked on top [9]. Another inter-
esting way of dividing professional athletes is by grouping them into the top 10%,
top 25%, or top 50% buckets of all athletes [22]. A good way of measuring the
performance of this binned continuous scale, is accuracy within one [8] as this
filters out the oversensitivity to misclassifications near the arbitrary cut-off. This
adaption to the traditional accuracy measure also accounts ordered predictions
as correct if they deviate only one class from the actual class.

Of special interest to the professional teams, is the absolute top bin of the
top-10% riders. These riders are the ones they want to contact by preference.
By considering this bin as the desired class, we can deploy the traditional binary
classification performance measures. A popular measure based on the top decile
bin, is the lift. By calculating how much more actual top 10% riders there are
in the suggested bin, than on average in the dataset, one can derive how much
better the model is compared to randomly contacting riders. It is clear that this
measure is highly sensitive to the used cut-off of 10% contacted. This is even
more worrisome as it is very feasible that the teams won’t contact 10% of all
riders as their teams simply aren’t large enough to contract so many riders. A
more complete measure is the average precision, which considers different cut-off
rates.

RMSE =

√√√√ 1

N

N∑
i=1

(truei − predicti)2 (1)

Spearman =
1 − 6

∑N
i=1 di

N3 −N
(2)

Lift =
Precision contacted top decile

actual rate
(3)
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Average Precision =
∑
n

(Recalln −Recalln−1)Precisionn (4)

4 Results

Table 2 depicts the average results of the machine learning pipelines across all
five folds. KNN scores best on 3 out of 5 performance measures (i.e., RMSE,
Spearman correlation, and average precision), with competitive scores on the
other 2 measures. This suggests the KNN method as the imputation method
which is most useful in the predictive pipeline.

Table 2. Grouped KNN imputation

RMSE Spearman Accuracy Within One Average Precision Lift

KNN 282.89 0.5213 0.8359 0.3714 3.2121
Mean 294.44 0.4799 0.8437 0.3232 2.9264
MICE 291.36 0.5107 0.8393 0.3681 3.5996

A final argument in method selection can be the time required to come up
with suggested rider rankings. The computation time of the imputation step per
fold is depicted in Table 3. Whereas the grouped KNN and mean imputation
methods take only a couple of seconds, does the chained equation regression step
take almost 10 hours for the calculation of the largest imputed dataset. This time
will probably only further increase with the addition of additional riders to the
dataset. As fast imputation allows quick interpretation of new youth race results,
this could potentially hinder teams in moving fast with regard of the contacting
of a new interesting prospect. Therefore, grouped KNN and mean imputation are
suggested above chained equation regression imputation. Overall, our suggested
KNN imputation adaptation gives the best results when included in a predictive
modelling pipeline, while being highly competitive in terms of computation time.

Table 3. Computation time imputation methods (in seconds)

Fold Train/val/test size KNN imputation Mean imputation MICE

2015 401/80/112 1.92 0.06 13025.15
2016 481/112/110 1.59 0.03 15035.95
2017 593/110/117 2.46 0.06 20488.19
2018 703/117/131 2.75 0.03 26363.01
2019 820/131/109 3.46 0.03 32997.33

To see whether our approach can be effectively used to detect future star
riders early on, we deployed the technique on the riders who turned professional



10 Janssens & Bogaert

during the years 2020 and 2021. Interestingly, we observe several prospects in
our suggested top-10 who have already showed some good form at the profes-
sional level. For instance, Tom Pidcock already finished in the top-5 in the Strade
Bianchi and Amstel Gold Race, some of the most important races on the calen-
dar, and won the Brabantse Pijl against a top tier field of participants. Stefan
Bisegger also already won a stage in the World Tour Paris-Nice stage race.

5 Conclusion

In this paper we developed a method to impute race results to riders who did
not participate. The method leveraged expert knowledge about the similarity
between certain youth races, ending up with complete cases for each subgroup,
enabling the deployment of the KNN imputation algorithm. The used race groups
were Stage Race Junior, One Day Junior, Cobbles, Hilly U23, Big Tour, Stage
Race Climb, ITT, and Rest.

The proposed method was shown to yield the best results when included in
a predictive modelling pipeline, compared to the traditional mean imputation
and MICE solutions. This top performance was achieved within a competitive
computation time. We demonstrated that the detection of young cycling talents
based on youth race results is feasible despite the tendency of the observed data
to have many missing values. The suggested rider rankings have a strong relation
to the actually observed rider rankings.

An avenue for future research might be the inclusion of more various regres-
sion algorithms. While the adapted KNN is shown to yield the most accurate
eventual results, it could be that this is due to a beneficial interplay between
the imputation method and the base regressor. The used methodology should
therefore be evaluated for other algorithms in the future.

Our method was only deployed onto one specific case, namely the detection
of young cycling talents. However, we would like to point out that a similar
grouping can be made with regard to professional races, or even amateur races,
making predictive analytic systems feasible for a wide range of applications by
using the grouped KNN method.
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