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Abstract. Injury prevention has a fundamental role in professional soc-
cer due to the high cost of recovery for players and the strong influence
of injuries on a club’s performance. In this paper we provide a predic-
tive model to prevent injuries of soccer players using a multidimensional
approach based on GPS measurements and machine learning. In an evo-
lutive scenario, where a soccer club starts collecting the data for the first
time and updates the predictive model as the season goes by, our ap-
proach can detect around half of the injuries, allowing the soccer club to
save 70% of a season’s economic costs related to injuries. The proposed
approach can be a valuable support for coaches, helping the soccer club
to reduce injury incidence, save money and increase team performance.

Keywords: sports analytics, data science, machine learning, sports sci-
ence, predictive analytics.

1 Introduction

Injuries are an important issue in professional soccer, as they can negatively
affect team performance and represent a remarkable expense for soccer clubs.
The cost associated with the process of recovery and rehabilitation for a player
is often considerable, especially in terms of medical care and missed earnings
from merchandising [1]. It has been observed that injuries in Spain cause in
average around 16% of season absence by players, corresponding to a total cost
estimation of 188 million euros just in one season [2]. Hence, it is not surprising
that injury prediction is attracting a growing interest from soccer managers, who
are interested in intervening with appropriate actions to reduce the likelihood of
injuries of their players. Due to its importance for a club’s economy and success,
a big effort has been put in the sports science literature on investigating injury
prediction in professional soccer [10–12]. A major limitation of existing studies
is that they follow a monodimensional approach, i.e., they use just one variable
at a time to estimate injury risk thus not fully exploiting the complex patterns
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underlying measurable aspects of soccer performance. Moreover, in these works
statistical modeling is used mainly to quantify the relation between the chosen
variable and injury likelihood, while an evaluation of the predictive power of a
player’s performance is still missing [8, 6].

In this paper, we propose a data-driven, multidimensional approach to in-
jury prediction, considered as the problem of forecasting whether or not a player
will get injured in the next training session or official game, given his recent
training workload. Our approach is based on automatic data collection through
standard Electronic Performance and Tracking Systems (EPTS) [4, 7, 5, 6], and
it is intended as a supporting tool to the decision making of soccer managers and
coaches. In the first stage of our study, we collect data about training workload
of players through GPS devices, covering half of a season of a professional soccer
club. After a preprocessing task, we extract from the data a set of features used
in sports science to describe aspects of training workload, and we enrich them
with information about all the injuries which happen during the half season. We
found that injuries can be successfully predicted with a small set of three vari-
ables: the presence of recent previous injuries, high metabolic load distance and
sudden decelerations. We investigate a real-world scenario where the classifiers
are updated while new training workload and injury data become available as
the season goes by. The machine learning approach can detect more than half of
the injuries during the season, indicating that by using our predictor the soccer
club could have been saved 70% of injury-related costs.

2 Related Work

Several studies performed by Gabbett et al. [13–18, 21] show that muscular in-
juries are to some extent preventable. In rugby, they find that a player has a high
injury risk when his workload is above a certain threshold. The same results are
observed by Hulin et al. [22] and Ehrmann et al. [11] for cricket players and soc-
cer players, respectively. In particular, all these studies assess the ratio between
acute workload (i.e., the average workload in the last 7 days) and chronic work-
load (i.e., the average workload in the last 28 days), defining specific thresholds
to detect players who could incur in a injury in the future training sessions.

The “monotony session load”, i.e., the ratio between the mean and the stan-
dard deviation of the session load is widely used in literature. In skating, Foster
et al. [23] find that when the session load outweighs a skater’s ability to fully
recover before the next session, the skater suffers from the so-called “overtrain-
ing syndrome”, a condition that can cause injury [23]. In basketball, Anderson
et al. [18] find a correlation between injury risk and monotony session load.
In soccer, Brink et al. [24] observe that injured players record higher values of
monotony in the week preceding the injury than non-injured players.

Some studies also show that technical-tactical performance during official
matches can affect the players’ physical fit. Talukder et al. [25] propose a classifier
able to predict 19% of the injuries occurred in NBA using the players’ technical-
tactical performance. They show that the most important features for injury
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prediction in basket are the average speed, the number of past competitions
played, the average distance covered, the number of minutes played to date and
the average field goals attempted.

From the literature, it is clear that all injury prediction studies for soccer
suffer from a major limitation: they investigate the correlation between a single
aspect of training workload and injury likelihood but they do not construct any
predictor as a tool to make predictions and prevent injuries. Therefore, to the
best of our knowledge, there is no quantification of the potential of predictive
analytics in preventing injuries in professional soccer.

3 Dataset preparation

3.1 Data collection and feature extraction

During the season 2013/2014 we monitor the position of twenty-six professional
football players competing in the Italian Serie B during 23 training sessions –
from January 1st to May 31st – using a portable non-differential 10 Hz global po-
sition system (GPS) integrated with 100 Hz 3-D accelerometer, a 3-D gyroscope,
a 3-D digital compass (STATSports Viper, Northern Ireland). Each player wore
a tight vest where the receiver was placed between their scapulae, and every
player wore his own GPS device for each training session. We recorded a total
of 954 individual training sessions during the 23 weeks and extracted from the
data a set of training workload indicators through the software package Viper
Version 2.1 (STATSports 2014). From every training session we extracted 12
features describing kinematic, metabolic and mechanical aspects of the individ-
uals’ trainings. For each player, we also collected information about age, weight,
height and role on the field. Moreover, for each player’s training session we col-
lected information about the play time in the official game before the training
session and the number of official games played before the training session. Table
1 provides a description of the considered features.

The club’s medical staff recorded all the non-contact injuries occurred during
23 weeks. A non-contact injury is defined as any tissue damage sustained by a
player that causes absence in next football activities for at least the day after
the day of the onset. In this dataset there are 21 non-contact injuries in total.

3.2 Feature engineering and dataset construction

We construct four training sets transforming the 12 workloads features described
in Table 1 in the following way:

1. Workload Features set (WF) – we consider the training workloads in the
6 most recent training sessions by using an exponential weighted moving
average (EWMA). We also compute the EWMA of feature PI with a span
equal to 6 (PIWF) in order to take into account both the number of a player’s
previous injuries and their temporal distance to the current training sessions.
PIWF = 0 indicates that the player never got injured in the past; PIWF > 0
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dTOT Distance in meters covered during the training session

dHSR Distance in meters covered above 5.5m/s

dMET Distance in meters covered at metabolic power

dHML Distance in meters covered by a player with a Metabolic Power
is above 25.5W/Kg

dHML/m Average dHML per minute

dEXP Distance in meters covered above 25.5W/Kg and below
19.8Km/h

Acc2 Number of accelerations above 2m/s2

Acc3 Number of accelerations above 3m/s2

Dec2 Number of decelerations above 2m/s2

Dec3 Number of decelerations above 3m/s2

DSL Total of the weighted impacts of magnitude above 2g. Impacts
are collisions and step impacts during running

FI Ratio between DSL and speed intensity

Age age of players

BMI Body Mass Index: ratio between weight (in kg) and the square
of height (in meters)

Role Role of the player

PI Number of injuries of the players before each training session

Play time Minutes of play in previous games

Games Number of games played before each training session

Table 1. Description of the training workload features extracted from GPS data and
the players’ personal features collected during the study.

indicates that the player got injured at least once in the past; PIWF > 1
indicates that the player got injured more than once in the past.

2. Acute:Chronic Workload Ratio features set (ACWR) – here we consider the
standard de facto used in sports science to estimate injury likelihood [9] and
compute the ratio between the 6 most recent training sessions by the EWMA
and the EWMA of the previous 28 days.

3. Mean over Standard deviation Workload Ratio (MSWR) – we consider an-
other way proposed in literature to estimate injury likelihood [10] and com-
pute the ratio between the mean and the standard deviation of the training
workloads in the 6 most recent days. The higher the MSWR of a player, the
lower is the variability of his workloads during the training week.

4. we build a dataset based on the union of the three feature sets described
above (WF, ACWR and MSWR) and the personal features in Table 1. This
dataset consists of a vector of 42 features and the injury label indicating
whether or not the player gets injured in next match or training session.

Every training set consists of 954 examples (i.e., individual training sessions)
corresponding to 80 collective training sessions.
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4 Experiments

First of all, we perform a feature selection process based on a Decision Tree Clas-
sifier in order to reduce the dimensionality of the feature space and consequently
the risk of overfitting. We use recursive feature elimination with cross-validation
(RFECV) to select the best set of features able to predict injuries in our dataset.

On the new training dataset derived from the feature selection, we train
a Decision Tree classifier (DT) and a Random Forest Classifier (ETRFC).5 In
particular, we investigate a scenario where the club starts to record data at the
beginning of a season and trains the classifier as the season goes by. Hence,
we proceed from the first training week (w1) to the most recent one (wi-1). At
training week wi we train the classifiers on weeks w1. . . wi and evaluate their
ability to predict injuries on week wi+1.

Considering injury prediction as a binary classification problem where the
injury class (1) is the positive class, we measure the goodness of the classifiers
week by week in terms of precision, recall, F1-score and AUC [27]. Precision
indicates the fraction of examples that the classifier correctly classifies over the
number of all examples the classifier assigns to that class. Recall indicates the
ratio of examples of a given class correctly classified by the classifier, while F1-
score is the harmonic mean of precision and recall. AUC (Area Under the Curve)
is the probability that a classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative one (assuming “positive” ranks higher
than “negative”). An AUC close to 1 represents an accurate classification, while
an AUC close to 0.5 represents a random classification.

We compare the goodness of DT and ETRFC with four baselines. Baseline B1

randomly assigns a class to an example by respecting the distribution of classes.
Baseline B2 always assigns the majority class (i.e., class 0, a non-injury), while
baseline B3 always assigns the minority class (i.e., class 1, injury). Baseline B4 is
a classifier which assigns class 1 (injury) if the exponentially weighted average of
variable PI > 0, and 0 (no injury) otherwise. Finally, we estimate the economic
cost of the injuries for the considered soccer club by using the methodology
suggested by Fernandez et al. [3], i.e., we multiply the number of days of “work”
absence by the minimal legal salary per day in the Italian Serie B.

4.1 Results

Just 3 features out of 42 are selected by the feature selection task: PI(WF), d(MSWR)
HML

and DEC(WF)
2 . Feature PI(WF) reflects the temporal distance between a player’s

current training session and the coming back to regular training of a player who
got injured in the past. Features d(MSWR)

HML and DEC(WF)
2 are two training features

indicating high metabolic load and sudden decelerations, respectively. We ob-
serve that 42% of the injuries detected by the classifier happened immediately
after the coming back to regular training of players who got injured in the past,
and are characterized by specific values of d(MSWR)

HML and DEC(WF)
2 , which indicate

5 We use the Python package scikit-learn to train and test all the classifiers.
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the metabolic workload variability and the average of sudden decelerations in
the previous 6 days, respectively.

Figure 1 shows the evolution of the F1-score of DT, ETRFC and the four
baselines (i.e., B1, . . . , B4) as the season goes by. Due to the low number of
injury examples, the classifiers have a poor predictive performance at the begin-
ning of the season and miss many injuries (black crosses in Figure 1). However,
the predictive ability improves by time and the classifiers predict most of the
injuries in the second half of the season (red crosses in Figure 1). The cumula-
tive performance of the classifiers is highly affected by the initial period, where
injury examples are scarce. This suggests that trying to prevent injuries since
the beginning could not be a good strategy since classification performance can
be initially poor due to data scarcity. An initial period of data collection, whose
length depends on the needs and strategy of the club, is needed in order to
collect the adequate amount of data, and only then reliable classifiers can be
trained on the collected data. Regarding this aspect, in our dataset, we observe
that the performance of the classifiers stabilizes after 16 weeks of data collection
(Figure 1). In our case, a reasonable strategy could be to use the classifiers for
injury prevention starting from the 16th week. This suggests that the considered
club could effectively use the classifiers trained on data from a season to perform
injury prediction since the first session of the second half of the current season.

We observe that DT is the best classifier in this scenario detecting more
than half of the injuries (11 injuries out of 21), resulting in a cumulative F1-
score = 0.45 (Figure 1).6 Table 2 shows the classification reports of the two
classifiers and the four baseline at the end of the season. We find that DT is
significantly better than the baselines (Table 2). At the end of the season, DT
detects 58% of the injuries (recall = 0.58) and it correctly predicts 38% of the
cases classified as injuries (precision = 0.38). Although the machine learning
approach significantly adds predictive power with respect to existing methods,
there is still room for improvement. Soccer clubs are indeed interested in an
algorithm with high precision to reduce “false alarms”, which could negatively
affect a team’s performance due to the forced absence of crucial players.

We also train DT, ETRFC and the baselines using the entire feature set,
i.e., without performing any feature selection process. These classifiers perform
slightly worse than the classifiers build on the three selected features (preci-
sion, recall, F1-score and AUC are 0.36, 0.52, 0.43, and 0.74, respectively). To
understand if the role of a player affects injury likelihood, we train distinct clas-
sifiers for every role (defender, midfielder, forwards) and find that they perform
much worse that the classifiers trained without distinguishing between the roles
(precision, recall, f1-score and AUC are 0.01, 0.04, 0.03 and 0.51, respectively).

Figure 2 shows the distribution of the number of days of work absence
recorded during the season. The number of work days of absence due to in-
juries is 139, i.e., 6% of the working days. Generally, a player returns to regular

6 DT has the following meta-parameters: max depth = 3, minimum samples for a leaf
= 2, minimum sample split = 11. For all the other meta-parameters we use default
values suggested by sciki-learn (see documentation: http://bit.ly/1T5sf92).
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Fig. 1. Performance of classifiers in the evolutive scenario. We plot the cumu-
lative F-score of the classifiers and the baselines, week by week. For every week we
highlight in red the number of injuries detected by DT up to that week.

model class prec rec F1 AUC

0 0.98 0.99 0.99
DT

1 0.38 0.58 0.45
0.76

0 1.00 0.98 0.98
ETRFC

1 0.35 0.57 0.43
0.71

0 0.98 0.71 0.83
B4

1 0.04 0.20 0.12
0.56

B1
0 0.98 0.98 0.98

1 0.06 0.05 0.05
0.51

B2
0 0.98 1.00 0.99

1 0.00 0.00 0.00
0.51

B3
0 0.00 0.00 0.00

1 0.02 1.00 0.04
0.51

Table 2. Performance of classifiers compared to baselines. We report the per-
formance of classifiers DT and ETRFC in terms of precision, recall, F1 and AUC at
the end of the season. We compare the classifier with four baseline B1, . . . , B4.

physical activity within 5 days (i.e., 15 times out of 21 injuries), while only 6
times a player needed more than 5 days to recover. We estimate a (minimum)
total cost related to injuries of 11,583 euros (139x83 euros = days of absence
x minimal legal salary per day) corresponding to 3.81% of the salary cost of
the soccer club (from January 1st to May 31st the club spent 303,750 euros for
the players’ salary). By using DT to predict injuries as the season goes by, the
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soccer club could had been able to prevent 11 injuries and save 8,300 euros, 70%
of the economic costs related to injuries during the season (100x83 euros = day
of absence x minimal legal salary per day).
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Fig. 2. Distribution of the number of days of work absence after an injury.

5 Conclusion

This study presents a method to predict injuries of soccer players. Athletic train-
ers, coaches and physiotherapists can use our method to make decisions about
whether or not to stop a player in next official match, thus eventually prevent-
ing his injury, improving team performance and reducing the club’s costs. The
proposed study provides an example of how machine learning can be used to
solve a difficult problem in sports analytics such as predicting injuries. An en-
largement of the dataset to include different teams, which is planned by the
authors of this paper, might allow to build a more general and robust algorithm
for injury forecasting. With more injury cases we could transform the problem
from a binary classification (injury/no-injury) to a multi-class classification or
a regression problem, where information about the typology or the severity of
the injuries can be exploited to produce more diverse predictions. Finally, due to
its flexibility, our multidimensional approach can be easily extended to predict
injuries in other professional sports, like rugby [13] and cycling [28].
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