Qualitative spatial reasoning for soccer pass prediction

Vincent Vercruyssen University of Leuven, Belgium

September 19, 2016

- 1. Research question
- 2. Data
- 3. Challenges
- 4. Methodology
- 5. Results
- 6. Conclusion

1. Research question

- 2. Data
- 3. Challenges
- 4. Methodology
- 5. Results
- 6. Conclusion

Qualitative spatial reasoning

Suppose we have spatiotemporal data.

Hypothesis:

It is possible to learn a meaningful qualititative model over the data

How to test this?

Soccer pass prediction based on spatiotemporal player data: "Can we predict to whom a player is going to give a pass?"

1. Research question

2. Data

- 3. Challenges
- 4. Methodology
- 5. Results
- 6. Conclusion

Soccer match data

- During a soccer match, three, different types of data are available
 - 1. Spatiotemporal data

356778	18500	220
245777	18500	10

time

18500

player_ID

345555

2. Event data

player_ID	time	event	•••	events_half
345555	18500	pass		1
356778	18500	reception		1
245777	22300	pass		2

Χ

-3455

Υ

300

-1567

-908

events_half

1

1


2

3. Background knowledge

player_ID	team	position	•••	name
345555	А	midfield		Jack
356778	А	defender		Stephen
245777	В	attack		John

Pass event

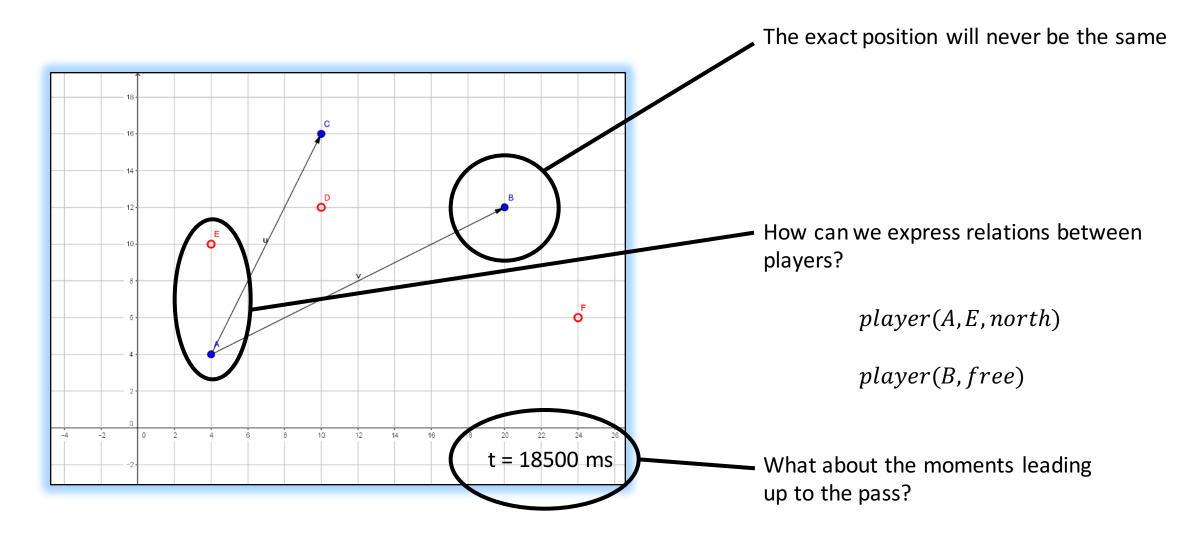
t-2 (no pass)

	Α	В	С	D	E	F
Х	0	14	2	6	-4	28
Y	0	20	12	10	8	-2

	Α	В	С	D	E	F	
Х	2	20	6	8	0	30	
Y	2	16	14	14	6	2	

	Α	В	С	D	E	F
Х	4	20	10	10	4	24
Y	4	12	16	12	10	6

- 1. Research question
- 2. Data


3. Challenges

- 4. Methodology
- 5. Results
- 6. Conclusion

Quantitative reasoning...

- Difficult to learn directly over exact spatiotemporal data
 - No single pass will be given in the same exact locations
 - Size of the pitch will change between stadiums = different reference framework
 - Prone to inaccurate measurements
- Soccer data contain relations and complex interactions
 - players base their decisions on how they are positioned with respect to other players...
 - ...and how these players interact
- Soccer data are inherently dynamic
 - passing decisions are made in the moments leading up to the pass

Challenges: pass event

... or qualitative reasoning?

• Difficult to learn directly over exact spatiotemporal data

 \rightarrow generalization

• Soccer data contain relations and complex interactions

→ framework to express relations + combine different types of knowledge

• Soccer data are inherently dynamic

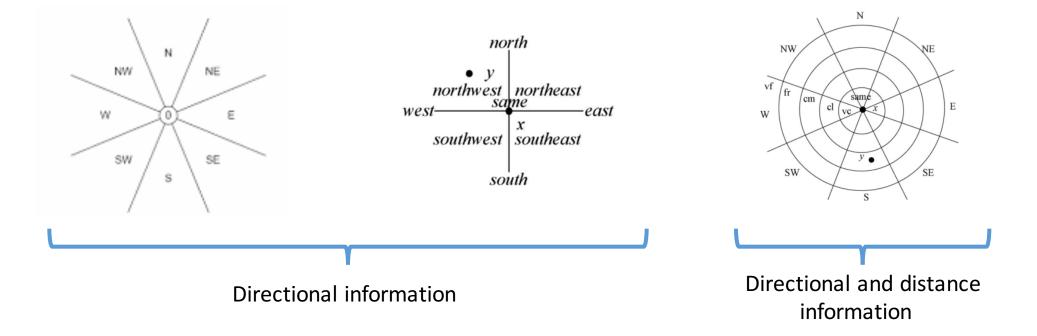
 \rightarrow encode information over time

- 1. Research question
- 2. Data
- 3. Challenges
- 4. Methodology
- 5. Results
- 6. Conclusion

Methodology

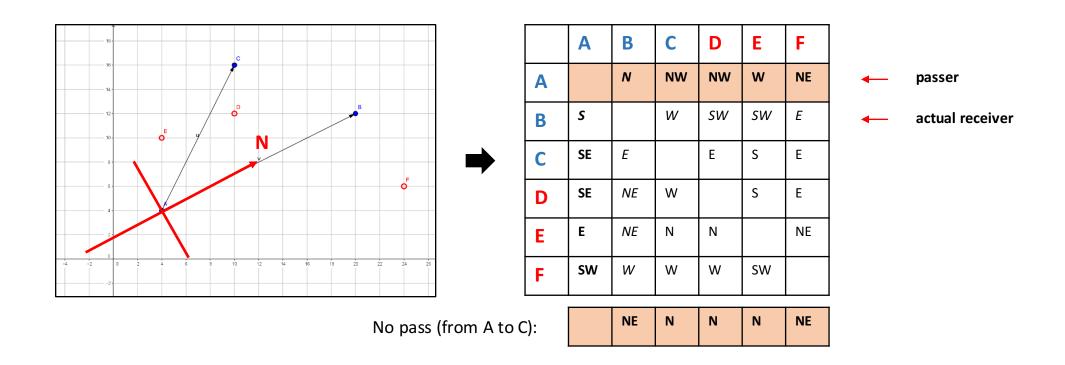
Goal: learn a predictive model from data

- **1. Data**: consider each pass event as a labelled training example
 - Positive example = player that receives the pass
 - Negative example = other teammembers on the field at that time
- 2. Features: extract features that qualitatively describe the pass event
- 3. Model: Learn a prediction model using features and background info
- 4. Predict: Construct ranking of who is most likely to receive a pass in unseen example

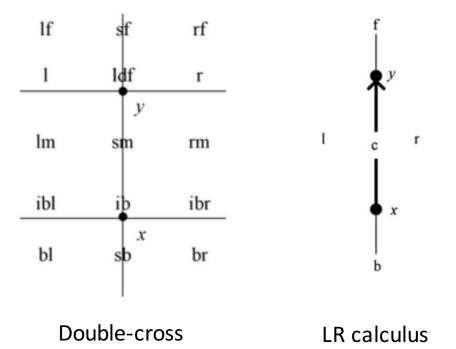

Extract qualitative features

- Qualitative spatial reasoning (QSR) is an umbrella term for a number of formalisms (calculi) that define how entities in a 2D or 3D space behave
- QSR's describe relations between objects in a qualitative way
- Relations are mostly binary, yet can have higher degrees
- Numerous categories of QSR's exist:
 - Mereotopology -
 - Direction
 - Distance

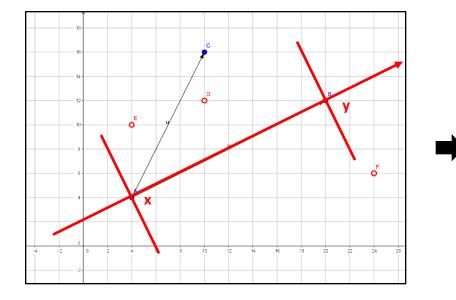
- These are interesting for the problem at hand
- Moving objects _
- Shape
- ...


• Cone-shaped direction calculus OR projection-based direction calculus

- 8 binary relations JEPD (jointly exhaustive pairwise disjoint)
- These basic calculi can be extended with distance information
- Represents static relations

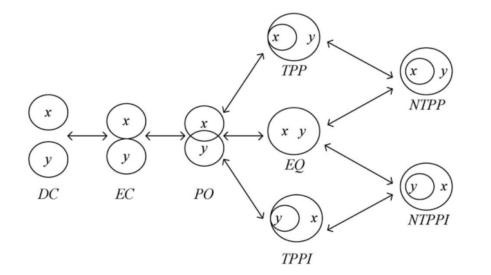

• Cone-shaped direction calculus OR projection-based direction calculus

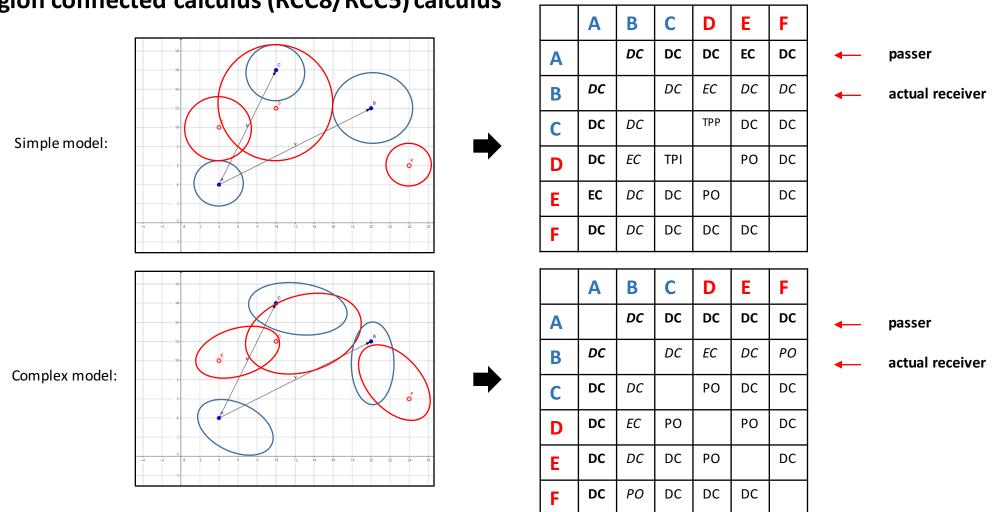
- Use the *receiver* and *passer* as points of reference
- Capture players' position with regards to passer and receiver


• Double-cross calculus OR LR calculus

- 15 ternary JEPD relations
- Represents static relations

• Double-cross calculus OR LR calculus

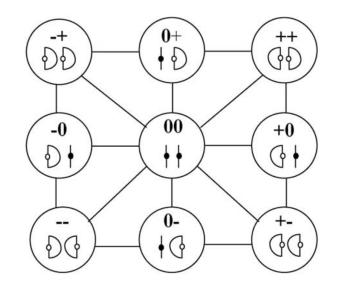

- Use the *passline* as a point of reference
- Captures players' position with regards to the passline



	Α	В	С	D	Ε	F
ref	ib	rf	ldf	rm	lm	rm
ref	ib	ldf	Im	lm	lm	rf

• Region connected calculus (RCC8/RCC5) calculus

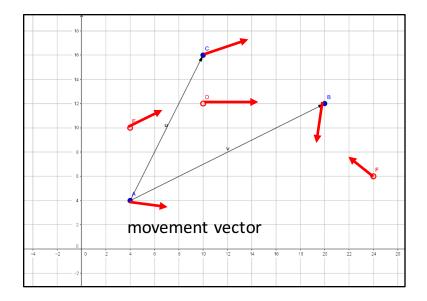
- 8 binary JEPD relations
- Expresses relations between regions
- Represents static or dynamic relations


• Region connected calculus (RCC8/RCC5) calculus

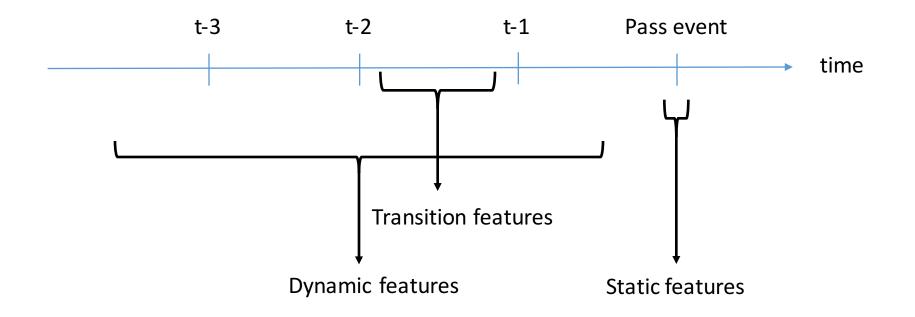
• Dipole calculus OR qualitative trajectory calculus

- Captures movement information
- Both *spatial* and *temporal* information

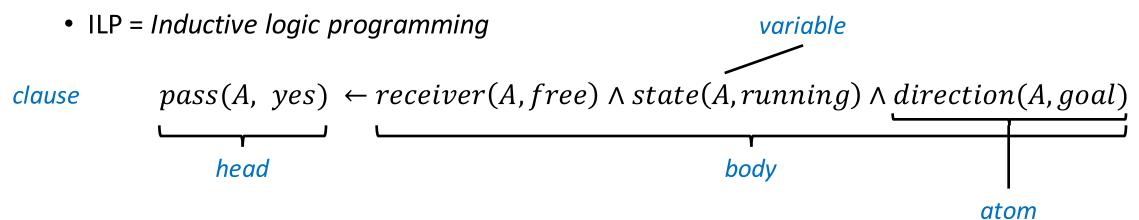
			↑ >				`	\uparrow
L		x rrrl y		x rrll y		x rllr y		x lrrr y
		<u>î</u> ,	îî	> ↑	<i>€</i> ↑	.∜	<	1>
L	$x \operatorname{Irrl} y$	x lrll y	x llrr y	x llrl y	x lllr y	$x \operatorname{lll} y$	x ells y	x errs y
	·····	1	<u>, </u>	î,	ĵ	ţ	Ŷ	\$
L	x lere y	x rele y	x slsr y	$x \operatorname{srsl} y$	x lsel y	x rser y	x sese y	x eses y


Dipole calculus

Qualitative trajectory calculus


• Dipole calculus OR qualitative trajectory calculus

- Captures movement information
- Both *spatial* and *temporal* information


	Α	В	С	D	Ε	F		
Α		llrl	llrr	Llrr	llrr	1111	-	passer
В	-		errs	rIII	errs	rele	-	receiver
С	-	-		rrrr	rrrr	rrrl		
D	-	-	-		llrr	LIII		
Ε	-	-	-	-		rele		
F	-	-	-	-	-			

Capture the dynamics

- Static features only capture information at the moment of the pass
- Dynamic features capture information in moments leading up to the pass
- Transition features describe the transition between moments

Learn a prediction model with ILP

- ILP allows to encode knowledge with *logic programs*
- The above rule states

"If player A is free and running towards the goal, I will pass to him"

→ Ideal to encode the qualitative relations from the QSR's
 → We can express background knowledge in the dataset

Learn a prediction model

- ILP algorithm 1: TILDE
 - Learns a decision tree
 - Divide-and-conquer
 - Transform tree to rule-set
 - PROBLEM: not robust to skewed data distribution & increasing amount of features
- ILP algorithm 2: ALEPH
 - Separate-and-conquer
 - Learns theory (= set of rules) that classifies examples
 - Starts from bottom-clauses that are refined and selected according to criteria
 - More robust to skewed distribution & increasing amount of features

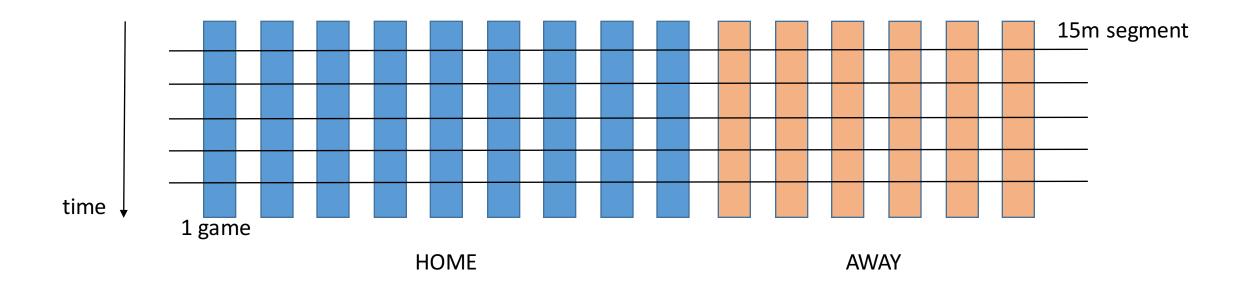
 \rightarrow We can use the learned rules that encode *pass* or *no pass* to predict unseen cases

- 1. Research question
- 2. Data
- 3. Challenges
- 4. Methodology
- 5. Results
- 6. Conclusion

Evaluation metric

- Best evaluation metric is a ranking between players
 - Award higher score if the model ranks the actual receiver higher
 - Example

Example	А	В	С	D	E	 J
1	1	4	6	3	10	2
2	4	2	1	6	8	5


= actual receiver

- Accuracy is only 0.5
- Mean reciprocal rank (MRR) is 0.75
- Accuracy is a lower bound of the MRR:

$$Accuracy = \frac{\sum_{i=1}^{n} x_i}{n} \leq$$

$$MRR = \frac{\sum_{i=1}^{n} \frac{1}{x_i}}{n}$$

Train and test data

- 14 games are available: 9 home and 6 away
- This allows us to construct some interesting sports-related hypotheses

Experimental hypotheses

- Base hypothesis:
 - Is the qualitative approach better than the quantitative at learning a meaningful model?

• Sports-related questions:

- Is there a difference in the passing behaviour of a team at home and away?
- Is there a decrease in performance throughout the game, altering passing behaviour?
- Is passing behaviour team specific?

Results

1. Is the qualitative approach better than the quantitative at learning a meaningful model?

		MRR	top-1	top-2	top-3	Rules
Quant.	Non-rel.	0.11	0.84	0.93	0.93	8
	Rel.	0.24	10.82	18.16	21.76	524
$\operatorname{Qual.}$	Static	0.39	25.49	36.33	41.22	582
	Dynamic	0.32	15.48	26.49	34.75	687
	Transition	0.33	17.48	29.24	35.00	681
	Combined	0.42	27.87	41.59	46.70	555

MRR = mean reciprocal rank

top-* = percentage of times the actual receiver is
ranked accordingly by the learned model

Rules = number of logic rules in the learned theory

- A non-relational quantitative model cannot learn a meaningful model
- The qualitative approach is clearly better than a quantitative model
- The best model considers all information in the moments leading up to the pass

Results

- Is there a difference in the passing behaviour of a team at home and away?
 → a home-trained model performs worse on away data and vice versa
- Is athere a decrease in performance throughout the game, altering passing behaviour?
 → a model performs bets when it is applied to the same moment of the game it is trained on
- 3. Is passing behaviour team specific?

 \rightarrow the model performs better when trained on a specific team and applied to that team

	MRR	top-1	top-2	top-3	Rules
$1 \int$ Train home - test home	0.42	27.87	41.59	46.70	555
1 - Train home - test home Train home - test away	0.37	21.56	35.25	40.58	712
2 - Train 1st half - test 1st half Train 1st half - test 2nd half	0.42	27.87	41.59	46.70	555
2] Train 1st half - test 2nd half	0.38	27.15	31.95	36.03	620
3 - Train 1 team - test multiple Train multiple - test multiple	0.28	13.15	22.44	30.00	591
³ \Box Train multiple - test multiple	0.37	23.71	35.05	40.33	381

- 1. Research question
- 2. Data
- 3. Challenges
- 4. Methodology
- 5. Results
- 6. Conclusion

- Main messages:
 - qualitative, relational approach learns meaningful models
 - dynamics of the game are important
- Questions?