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Starting point

M national teams. Team u has "strength" s,
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Key challenges with national teams:

1. They play few matches every year: recent data is sparse

2. Their squad change frequently: old data is stale
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The number of parameters explodes.

Seems like it will lead to statistical and computational issues.




Bayesian approach
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Bayesian approach

Keep a distribution over parameters instead of optimizing the likelihood.

p(é'l\ D) p(? | S) X p(f’)

posterior distribution likelihood prior distribution

(e.g. Gaussian)

Statistical issues solved? not clear

4/ Computational issues solved? no
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Inference can be done in the dual space

f(z) ~ GP[0,k(z, z')]

k/ The player kernel!
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La Liga

Bundesliga

Premier League

Friendlies

Euro Qualifications

Euro Championship
Champions League

Europa League

Serie A

Ligue 1
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Results

Logarithmic loss against competing approaches in 2008, 2012 and 2016.

2012 2016
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Ternary outcomes

Rao and Kupper (1967) proposed the following extension.
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x P(u > v)- P(v > u)
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Ternary outcomes

Rao and Kupper (1967) proposed the following extension.

1
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P(u >~ v) =

Plu=v)=1—P(u>v)— P(v > u)
x P(u > v)- P(v > u)

A draw is (essentially) equivalent to one win and one loss.
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