The Player Kernel

Lucas Maystre, Victor Kristof, Antonio González Ferrer, Matthias Grossglauser School of Computer and Communication Sciences, EPFL

MLSA workshop @ ECML-PKDD - September 19th, 2016

Context

Our entry to the EURO 2016 Prediction Competition, Challenge 1
Task: probabilistic prediction of match outcomes

Context

Our entry to the EURO 2016 Prediction Competition, Challenge 1
Task: probabilistic prediction of match outcomes

Context

Our entry to the EURO 2016 Prediction Competition, Challenge 1

Task: probabilistic prediction of match outcomes

Starting point

M national teams. Team u has "strength" s_{u}

Starting point

M national teams. Team u has "strength" s_{u}

$$
P(u \succ v)=\frac{1}{1+\exp \left[-\left(s_{u}-s_{v}\right)\right]}
$$

Starting point

M national teams. Team u has "strength" s_{u}

$$
P(u \succ v)=\frac{1}{1+\exp \left[-\left(s_{u}-s_{v}\right)\right]}
$$

Starting point

M national teams. Team u has "strength" s_{u}

$$
P(u \succ v)=\frac{1}{1+\exp \left[-\left(s_{u}-s_{v}\right)\right]}=\frac{1}{1+\exp \left(-\boldsymbol{s}^{\top} \boldsymbol{x}\right)} \underbrace{(\underbrace{1}_{0}}_{0}\left[\begin{array}{c}
1 \\
\vdots \\
\vdots \\
s_{M}
\end{array}\right] \quad\left[\begin{array}{c}
1 \\
-1 \\
\vdots \\
0
\end{array}\right]
$$

Starting point

M national teams. Team u has "strength" s_{u}

$$
P(u \succ v)=\frac{1}{1+\exp \left[-\left(s_{u}-s_{v}\right)\right]}=\frac{1}{1+\exp \left(-\boldsymbol{s}^{\top} \boldsymbol{x}\right)}
$$

Key challenges with national teams:

1. They play few matches every year: recent data is sparse
2. Their squad change frequently: old data is stale

Inspiration

Many players play against each other in club competitions

Can we transfer information from club matches to international matches?

Source: http://www.estadao.com.br/ infograficos/onde-atuam-os-736-jogadores-da-copa-2010,esportes,280906

Main idea

Embed teams in the space of players. $s_{u}=\sum_{i \in \mathcal{L}_{u}} \tilde{s}_{i}$

Main idea

Embed teams in the space of players. $s_{u}=\sum_{i \in \mathcal{L}_{u}} \tilde{s}_{i}$

$$
P(u \succ v)=\frac{1}{1+\exp \left[-\left(s_{u}-s_{v}\right)\right]}
$$

Main idea

Embed teams in the space of players. $s_{u}=\sum_{i \in \mathcal{L}_{u}} \tilde{s}_{i}$

$$
P(u \succ v)=\frac{1}{1+\exp \left[-\left(s_{u}-s_{v}\right)\right]}=\frac{1}{1+\exp \left(-\tilde{\boldsymbol{s}}^{\top} \boldsymbol{z}\right)} \underbrace{\left[\begin{array}{c}
\vdots \\
-1 \\
-1 \\
-1 \\
\vdots \\
0
\end{array}\right]}_{\left[\begin{array}{c}
\tilde{s}_{1} \\
\vdots \\
\vdots \\
\tilde{s}_{P}
\end{array}\right]}
$$

Main idea

Embed teams in the space of players. $s_{u}=\sum_{i \in \mathcal{L}_{u}} \tilde{s}_{i}$

$$
P(u \succ v)=\frac{1}{1+\exp \left[-\left(s_{u}-s_{v}\right)\right]}=\frac{1}{1+\exp \left(-\tilde{\boldsymbol{s}}^{\top} \boldsymbol{z}\right)}
$$

Club matches and international matches share the same parameters.
$\left[\begin{array}{c}0 \\ \vdots \\ 1 \\ 1 \\ 1 \\ \vdots \\ -1 \\ -1 \\ -1 \\ \vdots \\ 0\end{array}\right]$

Main idea

Embed teams in the space of players. $s_{u}=\sum_{i \in \mathcal{L}_{u}} \tilde{s}_{i}$

$$
P(u \succ v)=\frac{1}{1+\exp \left[-\left(s_{u}-s_{v}\right)\right]}=\frac{1}{1+\exp \left(-\tilde{\boldsymbol{s}}^{\top} \boldsymbol{z}\right)}
$$

Club matches and international matches share the same parameters.

The number of parameters explodes.
Seems like it will lead to statistical and computational issues.

Bayesian approach

Keep a distribution over parameters instead of optimizing the likelihood.

Bayesian approach

Keep a distribution over parameters instead of optimizing the likelihood.

Bayesian approach

Keep a distribution over parameters instead of optimizing the likelihood.

Statistical issues solved? not clear
Computational issues solved? no

Dual viewpoint

In fine, we are only interested in $p\left(\underline{\tilde{\boldsymbol{s}}^{\top} \boldsymbol{z}} \mid \mathcal{D}\right) \longrightarrow$ "strength" difference

Dual viewpoint

In fine, we are only interested in $p\left(\underline{\tilde{\boldsymbol{s}}^{\top} \boldsymbol{z}} \mid \mathcal{D}\right) \longrightarrow$ "strength" difference

Accurate estimation of all parameters is not necessary

Dual viewpoint

In fine, we are only interested in $p\left(\underline{\tilde{\boldsymbol{s}}^{\top} \boldsymbol{z}} \mid \mathcal{D}\right) \quad$ "strength" difference Accurate estimation of all parameters is not necessary

$$
f(\boldsymbol{z})=\tilde{\boldsymbol{s}}^{\top} \boldsymbol{z} \longrightarrow p(\boldsymbol{f} \mid \mathcal{D}) \propto p(\mathcal{D} \mid \boldsymbol{f}) \times p(\boldsymbol{f})
$$

Dual viewpoint

In fine, we are only interested in $p\left(\underline{\tilde{\boldsymbol{s}}^{\top} \boldsymbol{z}} \mid \mathcal{D}\right) \longrightarrow$ "strength" difference Accurate estimation of all parameters is not necessary

$$
\begin{aligned}
& f(\boldsymbol{z})=\tilde{\boldsymbol{s}}^{\top} \boldsymbol{z} \longrightarrow p(\boldsymbol{f} \mid \mathcal{D}) \propto p(\mathcal{D} \mid \boldsymbol{f}) \times \underline{p(\boldsymbol{f})} \\
& \operatorname{Cov}\left[f(\boldsymbol{z}), f\left(\boldsymbol{z}^{\prime}\right)\right]=\sigma^{2} \boldsymbol{z}^{\top} \boldsymbol{z}^{\prime}
\end{aligned}
$$

Dual viewpoint

In fine, we are only interested in $p\left(\underline{\tilde{\boldsymbol{s}}^{\top} \boldsymbol{z}} \mid \mathcal{D}\right) \longrightarrow$ "strength" difference

Accurate estimation of all parameters is not necessary

$$
\begin{aligned}
& f(\boldsymbol{z})=\tilde{\boldsymbol{s}}^{\top} \boldsymbol{z} \longrightarrow p(\boldsymbol{f} \mid \mathcal{D}) \propto p(\mathcal{D} \mid \boldsymbol{f}) \times \underline{p(\boldsymbol{f})} \\
& \operatorname{Cov}\left[f(\boldsymbol{z}), f\left(\boldsymbol{z}^{\prime}\right)\right]=\sigma^{2} \boldsymbol{z}^{\top} \boldsymbol{z}^{\prime}
\end{aligned}
$$

Inference can be done in the dual space

Dual viewpoint

In fine, we are only interested in $p\left(\underline{\tilde{\boldsymbol{s}}^{\top} \boldsymbol{z}} \mid \mathcal{D}\right) \longrightarrow$ "strength" difference

Accurate estimation of all parameters is not necessary

$$
\begin{aligned}
& f(\boldsymbol{z})=\tilde{\boldsymbol{s}}^{\top} \boldsymbol{z} \longrightarrow p(\boldsymbol{f} \mid \mathcal{D}) \propto p(\mathcal{D} \mid \boldsymbol{f}) \times \frac{p(\boldsymbol{f})}{\searrow} \\
& \operatorname{Cov}\left[f(\boldsymbol{z}), f\left(\boldsymbol{z}^{\prime}\right)\right]=\sigma^{2} \boldsymbol{z}^{\top} \boldsymbol{z}^{\prime}
\end{aligned}
$$

Inference can be done in the dual space
$f(\boldsymbol{z}) \sim \mathcal{G} \mathcal{P}\left[\mathbf{0}, k\left(\boldsymbol{z}, \boldsymbol{z}^{\prime}\right)\right]$

Dual viewpoint

In fine, we are only interested in $p\left(\underline{\tilde{\boldsymbol{s}}^{\top} \boldsymbol{z}} \mid \mathcal{D}\right) \longrightarrow$ "strength" difference

Accurate estimation of all parameters is not necessary

$$
\begin{aligned}
& f(\boldsymbol{z})=\tilde{\boldsymbol{s}}^{\top} \boldsymbol{z} \longrightarrow p(\boldsymbol{f} \mid \mathcal{D}) \propto p(\mathcal{D} \mid \boldsymbol{f}) \times \frac{p(\boldsymbol{f})}{\searrow} \\
& \operatorname{Cov}\left[f(\boldsymbol{z}), f\left(\boldsymbol{z}^{\prime}\right)\right]=\sigma^{2} \boldsymbol{z}^{\top} \boldsymbol{z}^{\prime}
\end{aligned}
$$

Inference can be done in the dual space
$f(\boldsymbol{z}) \sim \mathcal{G} \mathcal{P}\left[\mathbf{0}, \underline{k\left(\boldsymbol{z}, \boldsymbol{z}^{\prime}\right)}\right] \longrightarrow$ The player kernel!

The cube

Dataset

Collected data on $\mathbf{2 4 8 8 7}$ matches from main football competitions over the last $\mathbf{1 0}$ years.

33157 distinct players

 appear in the dataset.

Results

Logarithmic loss against competing approaches in 2008, 2012 and 2016.

KICKOFFAA

Ternary outcomes

Rao and Kupper (1967) proposed the following extension.

$$
\begin{aligned}
P(u \succ v) & =\frac{1}{1+\exp \left[-\left(s_{u}-s_{v}-\alpha\right)\right]} \\
P(u \equiv v) & =1-P(u \succ v)-P(v \succ u) \\
& \propto P(u \succ v) \cdot P(v \succ u)
\end{aligned}
$$

Ternary outcomes

Rao and Kupper (1967) proposed the following extension.

$$
\begin{aligned}
P(u \succ v) & =\frac{1}{1+\exp \left[-\left(s_{u}-s_{v}-\alpha\right)\right]} \\
P(u \equiv v) & =1-P(u \succ v)-P(v \succ u) \\
& \propto P(u \succ v) \cdot P(v \succ u)
\end{aligned}
$$

A draw is (essentially) equivalent to one win and one loss.

