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Introduction

There were two challenges within the Euro 2016 prediction competition
@ the match prediction challenge and
@ the tournament elimination challenge.

Estimated probabilities for the first challenge were used to generate
predictions for the second one.
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Match outcome prediction

via team rating systems
(Not only) my approach:
© estimate team ratings based on historical match data and
@ use them to predict future match outcomes.
Data — Ratings — Predictions
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Match outcome prediction

via team rating systems
(Not only) my approach:
© estimate team ratings based on historical match data and
@ use them to predict future match outcomes.
Data — Ratings — Predictions

Three rating models were employed:
@ the ordinal logistic regression model,
@ the Poisson model and

@ the least squares model.
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Match outcome prediction

via team rating systems
(Not only) my approach:
© estimate team ratings based on historical match data and
@ use them to predict future match outcomes.
Data — Ratings — Predictions

Three rating models were employed:
@ the ordinal logistic regression model,
@ the Poisson model and
@ the least squares model.

They were combined into an ensemble model.
The data used were:

@ http://laenderspiel.cmuck.de/ - special thanks to Christian
Muck for cordially exporting the data

@ betting odds from http://betexplorer.com/
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Ordinal logistic regression model (1)

Under this model, match outcomes - H (home team win), D (draw) and A
(away team win) - are linked to team ratings via the following equations

1
R v e
1 1
P(D) = 14+ e—c—(ri—ri+h) g e ec—(ri—rj+h)’
1
P(A) =

= 14 e—c—(ri—ri+h)’

where h > 0 is a parameter accounting for the home team advantage and
¢ > 0 in an intercept which governs the draw margin.
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Ordinal logistic regression model (2)

Model fitting: the weighted maximum likelihood method with
regularization was used:

1
LMl )+ - (0= IFIB +alels ).

where M is a dataset of matches and the likelihood function has a form

Jan Lasek (deepsense.io) Euro 2016 Predictions MLSA at ECML PKDD'16 5/ 14



Ordinal logistic regression model (2)

Model fitting: the weighted maximum likelihood method with
regularization was used:

1
LMl )+ - (0= IFIB +alels ).
where M is a dataset of matches and the likelihood function has a form

L(M]r, h,c) Z d(m) - logP(om),
|M| meM

where:
e P(om) equal to the probability of the actual outcome of a match m
attributed by the model and

@ ¢(m) being a weighting function depending both on time and match

type (e.g., friendly game or World Cup finals match).
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Poisson model (1)

The assumption here is that the goals scored by a team can be modelled
as a Poisson distributed variable.

Given the attacking and defensive skills (model's parameters) of teams i
and j, a;, a; and d;, d;, respectively, the rates of Poisson variables for
a home team j and visiting team j, A and p respectively, are modelled as:

A=c+ h+a; —dj,

p=c+a;—d.
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Poisson model (2)

Under this model, the probability of a score x to y is a product of two
individual Poisson variables with rates A and p respectively and equal to

T ety I ol

x| y!

The model’s parameters are estimated using the weighted maximum
likelihood method with regularization.
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Least squares model

The least squares model assumes that the difference s; — s; in the scores
produced by the teams corresponds to the difference in their ratings

si—sp=.r;—r+h

Again, h is a correction for the home team advantage.
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Tuning the predictive power (1)

In the competition, the accuracy was evaluated using logarithmic loss
(logloss)

1 m
i z; log P(opm).
T=

The parameters of the ratings systems are optimized for
e World Cup finals held between 1994 and 2010 (5 tournaments),
e UEFA European Championships 1996-2008 (4) and
o Copa America finals 1999-2011 (5).

This amounts for a set of 562 matches.
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Tuning the predictive power (2)

Finally, the predictions are evaluated against 2014 World Cup finals, 2012
UEFA European Championships and 2015 Copa America.

Table : Evaluation of the final test set (112 matches).

Method Logloss Accuracy
Bookmakers 0.9726 52%
Ensemble 0.9950 56%
Least squares 0.9985 55%
Poisson 0.9991 55%
Ordinal regression 1.0002 52%
FIFA Women World Rankings  1.0060 50%
EloRatings.net 1.0189 51%
Random guess 1.0986 33%
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Challenge | - Match outcome prediction

The final submission was an ensemble of the three discussed models
obtained by averaging. In the contest the solution yielded 1.0776 logloss
and 41% accuracy.

The probabilities generated for the first challenge were used for simulating
tournament outcome 1.000.000 times in a Monte Carlo experiment. Based
on the simulations, the probabilities of advancing a given stage were
estimated.
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Challenge Il - Tournament elimination

Table : Estimated probabilities of advancing past a given stage.

Team Group stage Quarterfinal Semifinal Final Champions
France 98.01% 82.6% 67.71% 51.21% 37.55%
Spain 92.60% 72.24% 51.11% 33.95% 19.08%
Germany 94.71% 70.41% 45.99% 24.88% 13.21%
England 93.52% 67.5% 40.87% 22.25% 10.40%
Belgium 84.38% 48.2% 26.10% 11.51% 4.55%
Portugal 91.37% 54.70% 26.31%  12.09% 4.42%
Italy 72.43% 33.38% 14.83% 5.26% 1.55%
Ukraine 76.81% 37.05% 15.5% 5.53% 1.52%
Croatia 66.00% 31.92% 14.65% 5.27% 1.50%
Russia 75.34% 37.84% 13.07% 4.29% 1.14%
Turkey 61.90% 27.97% 12.07% 4.00% 1.05%
Switzerland 69.98% 30.49% 11.80% 3.97% 0.88%
Poland 67.40% 26.58% 9.35% 2.77% 0.60%
Sweden 57.89% 20.76% 7.45% 2.11% 0.47%
Romania 62.64% 23.82% 8.07% 2.35% 0.45%
Austria 71.63% 27.01% 7.46% 2.07% 0.43%
Slovakia 63.66% 25.57% 6.96% 1.79% 0.37%
Republic of Ireland 54.68% 18.64% 6.38% 1.72% 0.35%
Czech Republic 46.28% 16.19% 5.60% 1.44% 0.29%
Hungary 56.86% 16.08% 3.37% 0.69% 0.11%
Iceland 47.81% 11.32% 2.02% 0.36% 0.05%
Albania 31.46% 6.62% 1.26% 0.19% 0.02%
Wales 34.29% 7.98% 1.19% 0.16% 0.02%
Northern Ireland 28.32% 5.11% 0.88% 0.13% 0.01%
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Can we do better?

How to obtain a model with a better predictive power?
@ apply methods for improving a model efficacy, e.g., bagging

@ use more data on, for example, the players and their skills

Competitions  Datasets  Kernels  Forums  Jobs -L.,,un

Eurobean: occer Da abas?

ayers stats for Eurgpe:

E Kemels  Discussion  Activity ~ Download (35 MB) New Notebook

https://www.kaggle.com/hugomathien/soccer
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That is all!

Many thanks to

@ The organizers for hosting such an exciting competition
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That is all!

Many thanks to
@ The organizers for hosting such an exciting competition
@ The competitors themselves

@ and you for your attention!
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