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Monetary Aspects

http://www.statista.com/topics/ | 774/bundesliga/

Revenue of European soccer market €19.90bn
Revenue of German Bundesliga €2,172.59m
German Bundesliga total value of player assets €413.77m
FC Bayern Munich brand value €794.60m
FC Bayern Munich profit after tax €14.00m
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Traditional Sports Analytics

® Monetary aspects

® Statistics to serve information needs...
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Descriptive Statistics
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Distribution of Goals

home team
4 5 6 7 8 9

231% 070% 0,28% 0,10%

251% 0,73% 023% 003% 0,03%

2 1,18% 045% 0,15% 0,03%
5
9 3 199% 329% 211% 1,18% 028% 020% 0,08%
g
© 4 0,78% 1,18% 088% 0,18% 0,13% 0,05% 0,03%

5 0,15% 033% 0,13% 0,05%
6 0,15% 0,10% 0,08% 0,05%

8 0,03%
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Yellow cards
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Average Player Value
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® Yeah, interesting... but what does it tell us!?
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“B. Charlton v F Beckenbauer”, David Marsh

1966 World Cup Final, England - W. Germany

| 4
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Trajectories and Tactics

® Understanding player movements is a precondition
for analysing game strategy (i.e., tactics)
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Player Trajectory Data

© Cameras capture positions of players and ball*
* Referee also tracked and recorded but data usually kept private
® X,Y,(z) coordinates
® >24 frames p second
© Manually denoised (corners, mass confrontations,...)

® Players annotated

® Perfect data for analysing movements, coordination,
tactics, etc.
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Ball touches of Franck Ribery

(FCB vs BMG;, season 2013/14)
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Shots leading to Goals

(season 2009/10 - 2013/14)
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Goalmouth Coordinates
(penalties)
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® Hm... still, what does it tell us?
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Use Cases

® Analyse opponent tactics

® Detect strengths/weaknesses in strategy
® Automatic game plans

© Serious games / training

® Player scouting

® Improved media coverage

@ o o o
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ldentifying Patterns

® Pattern = “interesting” event

© E.g.,A plays |-2 with B and crosses to C

Ulf Brefeld
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Why is it difficult?

® >3 million positions per game
® Every player generates = |35000 positions per game

© There are = 135000% different candidate patterns*

" lgnoring the fact that patterns are of different lengths

® This is considerably larger than the number of atoms
in our galaxy™*

™ Dark and exotic matter already included

® Explicit enumeration infeasible

® What similarity measure to use! N
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ldentifying Patterns

® Pattern = “interesting” event

® E.g.,A playsl ® frequent JSSGS to C

® rare (anomalies/
outliers)

® predefined (e.g.,
match plan,
training)
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Representation

® Position = player coordinates on the pitch
© A game of soccer = positional data stream
® Player trajectory = sequence of consecutive positions

® Positions represented by angles wrt reference vector
Vref (translation, rotation, scale invariant)

| - |
. 1 U; Uref >
@':Slgn V;. U COS
i = sign(vi vref) | <H’vi\| o)

Vlachos et al. (KDD, 2004)
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Dynamic Time Warping
Rabiner & Juang (1993)
® Movements should be independent of player speed
® Dynamic time warping compensates phase shifts
® Distance measure dist : RxR — R

© DTWV for sequences s and q defined recursively

g((b?@) —
g(s,0) =dist(0,q) =

9(87<QQ7---7Qm>)
9(s,q) = dist(s1,q1) +min § g((s2,...,5m),q)
,qm))

g({s2,...,8m), {(q2, ...
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Approximate DTW

© Approximate DTW by lower bounds f(s,q) < ¢(s, q)
® Focus on characteristic values
® Kim et al. (ICDE, 2001)
® first, last, greatest, smallest value
© Keogh (VLDB, 2002)
® minimum/maximum values of subseauences

© Complexity in O(|s|)
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Locality Sensitive Hashing

Athitsos et al. (2008), Gionis et al., (1999)

e Distance-based hash functionh: D = R

dist(s, s1)? + dist(s1,82)% — dist(s, s2)*

h 8) =
782( ) 2dist(s1,82)
si and s> randomly use Kim et al. (ICDE, 2001)

drawn from database as distance function

e Bucket determined by p!1%2)(s) = {1 hay s (8) € [t 2]

S1.8S .
1,52 0: otherwise

® Set of admissible intervals

T(s1,82) = { [t1,12] = Pro(hi!32(s)) = 0) = Pro(hl! 52 (s)) = 1)}
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Computing Similarities

® Remainder needs test for identity
© Use outcomes of
® Dynamic time warping
© Approximate DTW
® Locality sensitive hashing (buckets)

® ... together with similarity threshold

Ulf Brefeld Knowledge Mining & Assessment Group
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Episode Discovery

® Apriori-based algorithms
© Approach based on Achar et al. (2012)
® Distributed implementation scheme (Hadoop)
® Two phases
© Candidate generation (Mapper)

® Counting (Reducer)
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Empirical Evaluation

® DEBS Grand Challenge
http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails

© 8 vs. 8 soccer game recorded by Fraunhofer IIS
® In total 33 sensors

© | sensor per shoe (200Hz)

© | sensor in the ball (2000Hz)

© |5,000 positions per second (3 dimensional)

Ulf Brefeld Knowledge Mining & Assessment Group
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Representation

® Further preprocessing:
® Discarding positions outside of the pitch
® Removing half-time effect of changing sides
® Averaging player positions over 100ms

® Trajectory windows of size |0
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Evaluation

® Given:a query trajectory
® Task: Find near-duplicates
® (i.e.,, N=1000 most similar trajectories)
® Focus on |5k consecutive positions of one player

® (for baseline comparisons)

Ulf Brefeld Knowledge Mining & Assessment Group
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Run-time
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® Exact computation infeasible
® Dynamic time warping very effective

© LSH adds only little
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LSH Accuracy
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® On average LSH performs very accurate

® However, worst cases clearly inappropriate
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Exemplary Retrieval

Query 1st 2nd 3rd
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Exemplary Pattern

© Ball is played towards
opponent goal (black)

>

® Trajectories in pattern \p:7:33.2
visualised by thick lines (dot £
indicates beginning) E
\P:1;32.4 g
© Players 1,2,3,6 and 7 move Jo— ®
in direction of ball
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ldentifying Patterns

® Pattern = “interesting” event

© E.g.,A plays |-2 with B and crosses to C
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ldentifying Patterns
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Patterns / Events

® Individual level
® Group level

® Team level

Ulf Brefeld Knowledge Mining & Assessment Group
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Patterns / Events

® |ndividual level

® 4 defence players

® Group level

- game Initiations

® Team level

Ulf Brefeld

® 4 offence players
— scoring opportunities
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Spatio-temporal Convolution Kernels

1 L | |
k(P,Q) = > koa(ts) k(e ys)
‘P‘ ‘(2‘ (t,xs)EP,(s,y=)EQ

© Tailored similarity measure for multi-trajectory

scenarios

® Separate data from algorithm, eg., works with every
kernel machine (SVMs, kPCA, kernel kMeans, etc.)

© But: Complexity O(N?L?)
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Approximate STCKs

® Efficient approximation of exact kernel
© ldea: Use cheap temporal kernel as filter

© Evaluate spatial kernel by percental approximation
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Empirical Results

® VIS.TRACK data, Bundesliga season 2011/12
® Two teams (5 games each)
® Cluster analysis w k-medoids
® Game initiations (start: goal keeper has ball)

® Scoring opportunities (end: ball in dangerous
zone)
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Game Initiations

® Team A known for

® Transporting the ball with few but rehearsed
to the opposing half

© Many ball contacts, integrated
© Team B’s strategy
® Focused on increasingly

® on average

Ulf Brefeld Knowledge Mining & Assessment Group
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Game Initiations

Bundesliga Team A
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Game Initiations

Bundesliga Team A
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Game Initiations

Bundesliga Team A

many players

/ short passes
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Scoring Opportunities

© Team A:
© Aimed at in the opposing
half, i.e., , faster ball transport in

the zone of danger
® Team B:

® , took their time in
of the opponent and only then played in
the zone of danger to achieve a goal
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Scoring Opportunities

Bundesliga Team A Bundesliga Team B
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Scoring Opportunities

Bundesliga Team A Bundesliga Team B
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Scoring Opportunities

Bundesliga Team A Bundesliga Team B
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DMKD Special Issue on
Sports Analytics

(together with Albrecht Zimmermann)

® Goal is to publish special issue in 2016
® Cfp end of September 2015

® Submission deadline end of December 2015

® |nquiries:
Data Mining and
, , Anowedge Discovery
© albrecht.zimmermann(@insa-lyon.fr oy

© brefeld@cs.tu-darmstadt.de
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Wrap-Up: Trajectory Data

® Analysing trajectories of players it the key to
analysing coordination in team sports

® Potential use cases go far beyond heat maps
® Inherent complexity renders tasks challenging
© Adapt existing large-scale algorithms to data

® Exploit prior knowledge
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Mapper: Candidate Generation

® Combine existing episodes that differ only in a
single position — D
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Reducer: Counting

® FSA for every possible realisation of a known episode
® An additional FSA will always remain in initial state

® Similar to Laxman et al. (2005)

B \ Eplsode to FSA
C start —| 9, ABC’ ABC
y.
A
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Pruned Irajectories

Kim Keough LSH total

1000 0% 0% 11,42% | 11,42%

5000 0,28% 34% 16,33% | 50,61%

nof. trajetories

10000 9,79% | 41,51% 17,8% | 60,1%

15000 17,5% | 46,25% | 11,82% | 75,57%

® Effectiveness of DBH depends only on data

© Approximations effective for constant N
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Similarity Threshold
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® Number of generated/frequent episodes depends
highly on similarity threshold
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