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http://www.ruhrnachrichten.de/storage/pic/mdhl/artikelbilder/sport/4081417_1_Bayern1.jpg?version=1387208424

On average 43,502 attendees per game
13.31m attendees per season

German Bundesliga

http://www.ruhrnachrichten.de/storage/pic/mdhl/artikelbilder/sport/4081417_1_Bayern1.jpg?version=1387208424
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Monetary Aspects

6

http://www.statista.com/topics/1774/bundesliga/

Revenue of European soccer market €19.90bn

Revenue of German Bundesliga €2,172.59m

German Bundesliga total value of player assets €413.77m

FC Bayern Munich brand value €794.60m

FC Bayern Munich profit after tax €14.00m

http://www.statista.com/topics/1774/bundesliga/
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Traditional Sports Analytics

๏ Monetary aspects

๏ Statistics to serve information needs…

7
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Descriptive Statistics
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Distribution of Goals
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Yellow Cards
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Average Player Value
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๏ Yeah, interesting… but what does it tell us?

12
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“B. Charlton v F. Beckenbauer”, David Marsh

14

1966 World Cup Final, England - W. Germany
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Trajectories and Tactics

๏ Understanding player movements is a precondition 
for analysing game strategy (i.e., tactics)

15
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Player Trajectory Data

๏ Cameras capture positions of players and ball*

๏ x,y,(z) coordinates

๏ ≥24 frames p second

๏ Manually denoised (corners, mass confrontations,…)

๏ Players annotated

๏ Perfect data for analysing movements, coordination, 
tactics, etc. 

16

* Referee also tracked and recorded but data usually kept private
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Ball touches of Franck Ribery
(FCB vs BMG, season 2013/14)
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Shots leading to Goals
(season 2009/10 - 2013/14)
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Goalmouth Coordinates 
(penalties)
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๏ Hm… still, what does it tell us?

20
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Use Cases

๏ Analyse opponent tactics

๏ Detect strengths/weaknesses in strategy

๏ Automatic game plans

๏ Serious games / training

๏ Player scouting

๏ Improved media coverage

๏ … 

21
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Identifying Patterns

๏ Pattern = “interesting” event

๏ E.g., A plays 1-2 with B and crosses to C

22
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Why is it difficult?

๏ >3 million positions per game

๏ Every player generates ≈135000 positions per game

๏ There are ≈13500023 different candidate patterns* 

๏ This is considerably larger than the number of atoms 
in our galaxy** 

๏ Explicit enumeration infeasible

๏ What similarity measure to use?

23

* Ignoring the fact that patterns are of different lengths 

** Dark and exotic matter already included 
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Identifying Patterns

๏ Pattern = “interesting” event

๏ E.g., A plays 1-2 with B and crosses to C

24
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Identifying Patterns

๏ Pattern = “interesting” event

๏ E.g., A plays 1-2 with B and crosses to C
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Identifying Patterns

๏ Pattern = “interesting” event

๏ E.g., A plays 1-2 with B and crosses to C
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Representation

๏ Position = player coordinates on the pitch 

๏ A game of soccer = positional data stream

๏ Player trajectory = sequence of consecutive positions

๏ Positions represented by angles wrt reference vector 
vref (translation, rotation, scale invariant)

27

D is thus given by the union of all trajectories of length m of the two teams. For
simplicity, we omit the time index t and simply index elements of a trajectory
by their offset 1, . . . ,m in the remainder. The goal of this paper is to accurately
and efficiently compute similarities between trajectories in D. That is, given a
query trajectory q, we aim at finding the N most similar trajectories in D.

3.2 Representation

We aim to exploiting the symmetries of the pitch and use Angle/Arc-Length
(AAL) [11] transformations to guarantee translation, rotation, and scale invari-
ant representations of trajectories. The main idea of AAL is to represent a move-
ment p = hx1, . . . ,xmi in terms of distances and angles

p 7! ¯

p = h(↵1, kv1k), . . . , (↵m, kvmk)i, (1)

where vi = xi � xi�1. The difference vi is called the movement vector at time
i and the corresponding angle with respect to a reference vector vref = (1, 0)

>

is defined as

↵i = sign(vi,vref )
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where the sign function computes the direction (clockwise ore counterclock-
wise) of the movement with respect to the reference. In the remainder, we dis-
card the norms in Equation (1) and represent trajectories by their sequences of
angles, p 7! ˜

p = h↵1, . . . ,↵mi.

3.3 Dynamic Time Warping

In this section, we propose a distance measure for trajectories. The proposed
representation of the previous section fulfils the required invariance in terms
of translation, rotation and scaling [11]. However, some movements may start
slow and end fast, while others start fast and then slow down at the end. Thus,
we additionally need to compensate for phase shifts of trajectories. A remedy
comes from the area of speech recognition and is called dynamic time warping
(DTW) [9]. Given two sequences s = hs1, . . . , smi and q = hq1, . . . , qmi and
an element-wise distance function dist : R⇥R ! R (e.g., Euclidean distance),
we define the DTW function g recursively as follows

g(;, ;) = 0

g(s, ;) = dist(;, q) = 1

g(s, q) = dist(s1, q1) +min

8

<

:

g(s, hq2, . . . , qmi)
g(hs2, . . . , smi, q)
g(hs2, . . . , smi, hq2, . . . , qmi)

9

=

;

Vlachos et al. (KDD, 2004)
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Dynamic Time Warping 
Rabiner & Juang (1993)

๏ Movements should be independent of player speed

๏ Dynamic time warping compensates phase shifts

๏ Distance measure                       

๏ DTW for sequences s and q defined recursively
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Dynamic Time Warping 
Rabiner & Juang (1993)

๏ Movements should be independent of player speed

๏ Dynamic time warping compensates phase shifts

๏ Distance measure                       

๏ DTW for sequences s and q defined recursively
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D is thus given by the union of all trajectories of length m of the two teams. For
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O(|s||q|)
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Approximate DTW

๏ Approximate DTW by lower bounds 

๏ Focus on characteristic values

๏ Kim et al. (ICDE, 2001)

๏ first, last, greatest, smallest value

๏ Keogh (VLDB, 2002)

๏ minimum/maximum values of subsequences

๏ Complexity in O(|s|)

30

The time complexity of DTW is O(|s||q|) which is clearly intractable for com-
puting similarities of thousands of trajectories. However, recall that we aim at
finding the N best matches for a given query. This allows for pruning some
DTW computations using lower bounds f , i.e., f(s, q)  g(s, q), with an ap-
propriate function f that can be more efficiently computed than g [10]. We use
two different lower bound functions, fkim [6] and fkeogh [5], that are defined
as follows: fkim focuses on the first, last, greatest, and smallest values of two
sequences [6]

f

kim

(s, q) = max {|s1 � q1|, |sm � q

m

|, |max(s)�max(q)|, |min(s)�min(q)|}

and can be computed in O(m). However, the greatest (or smallest) entry in
the transformed paths is always close or identical to ⇡ (or �⇡) and can thus
be ignored. Consequentially, the time complexity reduces to O(1) [10]. The
second lower bound fkeogh [5] uses minimum `i and an maximum values ui for
subsequences of the query q given by

`i = min(qi�r, . . . , qi+r) and ui = max(qi�r, qi+r),

where r is a user defined threshold. Trivially, ui � qi � `i holds for all i and
the lower bound fkeogh is given by

fkeogh(q, s) =

v

u

u

t

m
X

i=1

ci with ci =

8

<

:

(si � ui)
2
: if si > ui

(si � `i)
2
: if si < `i

0 : otherwise

which can also be computed in O(m) (see [7] for details).
Algorithm 1 extends [10] to compute the N most similar trajectories for a

given query q. Lines 2–9 compute the DTW distances of the first N entries in
the database and store the entry with the highest distance to q. Lines 10–21 loop
over all subsequent trajectories in D by first applying the lower bound functions
fkim and fkeogh to efficiently filter irrelevant movements before using the exact
DTW distance for the remaining candidates. Every trajectory, realising a smaller
DTW distance than the current maximum, replaces its peer and the variables
maxdist and maxind are updated accordingly. Note that the complexity of
Algorithm 1 is linear in the number of trajectories in D. In the worst case, the
sequences are sorted in descending order by the DTW distance, which requires
to compute all DTW distances. In practice we however observe much lower
run-times.

An important factor is the tightness of the lower bound functions. The better
the approximation of the DTW the better the pruning. The parameter N plays
also a crucial part in the effectiveness of the algorithm. If we set N = 1 the
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Locality Sensitive Hashing 
Athitsos et al. (2008), Gionis et al., (1999)

๏ Distance-based hash function 

๏ Bucket determined by

๏ Set of admissible intervals

31

Algorithm 1 TOP N(N,q,D)
Input: number of near-neighbour movements N , query trajectory q, game D
Output: The N most similar trajectories to q in D
1: output = ? ^ maxdist = 0 ^ maxind = �1

2: for i = 1, . . . , N do
3: dist = g(q,D[i])

4: output[i] = D[i]

5: if dist > maxdist then
6: maxdist = dist

7: maxind = i

8: end if
9: end for

10: for i = N + 1, . . . , |D| do
11: if f

kim

(q,D[i]) < maxdist then
12: if f

keogh

(q,D[i]) < maxdist then
13: dist = g(q,D[i])

14: if dist < maxdist then
15: output[maxind] = D[i]

16: maxdist = max{g(q, output[j]) : 1  j  N}
17: maxind = arg max

1jN

g(q, output[j])

18: end if
19: end if
20: end if
21: end for

maximum value will drop faster towards the lowest value in the dataset. By
contrast, setting N = |D| requires to compute the DTW distances for all entries
in the database. Hence, in most cases, N ⌧ |D| is an appropriate choice to
reduce the overall computation time.

3.4 Locality Sensitive Hashing

To further improve the efficiency of our algorithm, we will use locality sensi-
tive hashing (LSH) [2] to remove a great deal of trajectories before process-
ing them with Algorithm 1. The idea of LSH is to hash similar objects to the
same bucket, so that all objects of a bucket are considered candidates for being
near-neighbours. An interesting equivalence class of LSH functions are distance
based hashes (DBH) [1] that can be applied together with arbitrary (e.g., non-
metric) distance measures.

To define a hash family for our purposes, we first need to define a function
h : D ! R that maps a trajectory s 2 D to the set of real numbers. Choosingtwo randomly drawn members s1, s2 2 D we define the function h as follows:

hs1,s2(s) =
dist(s, s1)

2
+ dist(s1, s2)

2 � dist(s, s2)
2

2 dist(s1, s2)
.

In the remainder, we will use the identity dist(s1, s2) = fkim(s1, s2) for sim-
plicity. To compute a discrete hash value for s we verify whether h(s) lies in a
certain interval [t1, t2],

h

[t1,t2]
s1,s2 (s) =

⇢

1 : hs1,s2(s) 2 [t1, t2]

0 : otherwise

Optimally, the interval boundaries t1 and t2 are chosen so that the probability
that a randomly drawn s 2 X lies with 50% chance within and with 50% chance
outside of the interval. The set T defines the set of admissible intervals,

T (s1, s2) =

n

[t1, t2] : PrD(h
[t1,t2]
s1,s2 (s)) = 0) = PrD(h

[t1,t2]
s1,s2 (s)) = 1)

o

.

Given h and T we can now define the DBH hash family that can be directly
integrated in standard LSH algorithms:

HDBH =

n

h

[t1,t2]
s1,s2 : s1, s2 2 R ^ [t1, t2] 2 T (s1, s2)

o

Using random draws from HDBH , we construct several hash functions by AND-
and OR-concatenation [2]. Given a query trajectory q 2 D, the retrieval process
first identities candidate objects that are hashed to the same bucket for at least
one of the hash functions and computes the exact distances of the remaining
candidates using Algorithm 1.

4 Evaluation

In this section, we evaluate our approach in terms of run-time, pruning effi-
ciency, and precision. For our experiments, we use positional data published
by the DEBS Grand Challenge in 20131. There are eight players in each team,
where every player is equipped with two sensors, one for each shoe. We aver-
age these two values to obtain only a single measurement for every player at a
time. Discarding additional data that is not useful in our context leaves us with
a stream of

(sensor/player id, timestamp, player coordinates)

1 http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
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(sensor/player id, timestamp, player coordinates)

1 http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails

two randomly drawn members s1, s2 2 D we define the function h as follows:

hs1,s2(s) =
dist(s, s1)

2
+ dist(s1, s2)

2 � dist(s, s2)
2

2 dist(s1, s2)
.

In the remainder, we will use the identity dist(s1, s2) = fkim(s1, s2) for sim-
plicity. To compute a discrete hash value for s we verify whether h(s) lies in a
certain interval [t1, t2],

h

[t1,t2]
s1,s2 (s) =

⇢

1 : hs1,s2(s) 2 [t1, t2]

0 : otherwise

Optimally, the interval boundaries t1 and t2 are chosen so that the probability
that a randomly drawn s 2 X lies with 50% chance within and with 50% chance
outside of the interval. The set T defines the set of admissible intervals,

T (s1, s2) =

n

[t1, t2] : PrD(h
[t1,t2]
s1,s2 (s)) = 0) = PrD(h

[t1,t2]
s1,s2 (s)) = 1)

o

.

Given h and T we can now define the DBH hash family that can be directly
integrated in standard LSH algorithms:

HDBH =

n

h

[t1,t2]
s1,s2 : s1, s2 2 R ^ [t1, t2] 2 T (s1, s2)

o

Using random draws from HDBH , we construct several hash functions by AND-
and OR-concatenation [2]. Given a query trajectory q 2 D, the retrieval process
first identities candidate objects that are hashed to the same bucket for at least
one of the hash functions and computes the exact distances of the remaining
candidates using Algorithm 1.

4 Evaluation

In this section, we evaluate our approach in terms of run-time, pruning effi-
ciency, and precision. For our experiments, we use positional data published
by the DEBS Grand Challenge in 20131. There are eight players in each team,
where every player is equipped with two sensors, one for each shoe. We aver-
age these two values to obtain only a single measurement for every player at a
time. Discarding additional data that is not useful in our context leaves us with
a stream of

(sensor/player id, timestamp, player coordinates)

1 http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
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Computing Similarities

๏ Remainder needs test for identity

๏ Use outcomes of

๏ Dynamic time warping 

๏ Approximate DTW

๏ Locality sensitive hashing (buckets)

๏ … together with similarity threshold
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Episode Discovery

๏ Apriori-based algorithms

๏ Approach based on Achar et al. (2012)

๏ Distributed implementation scheme (Hadoop)

๏ Two phases

๏ Candidate generation (Mapper)

๏ Counting (Reducer)

33
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Empirical Evaluation

๏ DEBS Grand Challenge

๏ 8 vs. 8 soccer game recorded by Fraunhofer IIS

๏ In total 33 sensors

๏ 1 sensor per shoe (200Hz) 

๏ 1 sensor in the ball (2000Hz)

๏ 15,000 positions per second (3 dimensional)

34
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Representation
๏ Further preprocessing:

๏ Discarding positions outside of the pitch

๏ Removing half-time effect of changing sides

๏ Averaging player positions over 100ms

๏ Trajectory windows of size 10

35
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Evaluation

๏ Given: a query trajectory

๏ Task: Find near-duplicates

๏ (i.e., N=1000 most similar trajectories)

๏ Focus on 15k consecutive positions of one player

๏ (for baseline comparisons)
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Run-time

๏ Exact computation infeasible

๏ Dynamic time warping very effective

๏ LSH adds only little
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LSH Accuracy

๏ On average LSH performs very accurate

๏ However, worst cases clearly inappropriate
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Exemplary Retrieval
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Exemplary Pattern

๏ Ball is played towards 
opponent goal (black)

๏ Trajectories in pattern 
visualised by thick lines (dot 
indicates beginning)

๏ Players 1,2,3,6 and 7 move 
in direction of ball

40
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Identifying Patterns

๏ Pattern = “interesting” event

๏ E.g., A plays 1-2 with B and crosses to C

41
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Identifying Patterns

๏ Pattern = “interesting” event

๏ E.g., A plays 1-2 with B and crosses to C

42

A

B
C

๏ frequent
๏ rare (anomalies/

outliers)
๏ predefined (e.g., 

match plan, 
training)

๏ …
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Identifying Patterns

๏ Pattern = “interesting” event

๏ E.g., A plays 1-2 with B and crosses to C

43

A

B
C

๏ frequent
๏ rare (anomalies/

outliers)
๏ predefined (e.g., 

match plan, 
training)

๏ …



Ulf Brefeld                                     Knowledge Mining & Assessment Group

Patterns / Events

๏ Individual level

๏ Group level

๏ Team level

44



Ulf Brefeld                                     Knowledge Mining & Assessment Group

Patterns / Events

๏ Individual level

๏ Group level

๏ Team level

45

๏ 4 defence players            
⇾ game initiations

๏ 4 offence players            
⇾ scoring opportunities

24 Konstantin Knauf et al.

Game Initiation Scoring Opportunity

Fig. 8 Exemplary game initiation (left) and scoring opportunity (right). The figure shows
the trajectory of the ball (white), the four players of interest (red) and their centroid (bold
orange).

adjusted Rand index is low in the majority of the cases indicating low consis-
tency between the methods. On the other hand, we have a high consistency
between GW/PPK and DTW/PPK for two settings demonstrating that our
method is capable of dealing with speed and length differences in a similar
way as dynamic time warping. This is also partially due to the use of the
same kernel in both methods, once as spatial kernel and once as local distance
measure.
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Fig. 9 Adjusted Rand index between the different clustering methods (red = 1, blue = 0)

Figure 10 shows average Silhouette measures of the four similarity-based
methods on the four datasets. Our method (GW/PPK) achieves the highest
score on all datasets indicating higher cluster separation and/or compactness.
The object-wise STCKs provides the poorest results on average, indicating
that permutations are relevant in this application and that the distribution-
based representation of the probability product kernel is more successful in
capturing the relevant player movements. Dynamic time warping performs
second best on average in line with the previous results on the artificial datasets
and the higher consistency with our method (see Figure 9). Also, in terms of k-
nearest-neighbour consistency, the two distribution-based methods GW/PPK
and DTW/PPK perfom best, as depicted in Figure 11. Cluster quality is
generally higher for game initiations compared to scoring opportunities, which
results in in better interpretable clusters for these settings (see Figure 12).
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Spatio-temporal Convolution Kernels

๏ Tailored similarity measure for multi-trajectory 
scenarios

๏ Separate data from algorithm, eg., works with every 
kernel machine (SVMs, kPCA, kernel kMeans, etc.)

๏ But: Complexity 

46

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015

O(N2L2)

length of trajectories
number of trajectories

cheap temporal kernel
expensive spatial kernel
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Approximate STCKs

๏ Efficient approximation of exact kernel

๏ Idea: Use cheap temporal kernel as filter

๏ Evaluate spatial kernel by percental approximation

47

tim
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length of trajectories

approximate kernel

exact kernel

baselines

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015
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Empirical Results

๏ VIS.TRACK data, Bundesliga season 2011/12

๏ Two teams (5 games each)

๏ Cluster analysis w k-medoids

๏ Game initiations (start: goal keeper has ball)

๏ Scoring opportunities (end: ball in dangerous 
zone)

48
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Game Initiation Scoring Opportunity

Fig. 8 Exemplary game initiation (left) and scoring opportunity (right). The figure shows
the trajectory of the ball (white), the four players of interest (red) and their centroid (bold
orange).

adjusted Rand index is low in the majority of the cases indicating low consis-
tency between the methods. On the other hand, we have a high consistency
between GW/PPK and DTW/PPK for two settings demonstrating that our
method is capable of dealing with speed and length differences in a similar
way as dynamic time warping. This is also partially due to the use of the
same kernel in both methods, once as spatial kernel and once as local distance
measure.
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Figure 10 shows average Silhouette measures of the four similarity-based
methods on the four datasets. Our method (GW/PPK) achieves the highest
score on all datasets indicating higher cluster separation and/or compactness.
The object-wise STCKs provides the poorest results on average, indicating
that permutations are relevant in this application and that the distribution-
based representation of the probability product kernel is more successful in
capturing the relevant player movements. Dynamic time warping performs
second best on average in line with the previous results on the artificial datasets
and the higher consistency with our method (see Figure 9). Also, in terms of k-
nearest-neighbour consistency, the two distribution-based methods GW/PPK
and DTW/PPK perfom best, as depicted in Figure 11. Cluster quality is
generally higher for game initiations compared to scoring opportunities, which
results in in better interpretable clusters for these settings (see Figure 12).
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Figure 10 shows average Silhouette measures of the four similarity-based
methods on the four datasets. Our method (GW/PPK) achieves the highest
score on all datasets indicating higher cluster separation and/or compactness.
The object-wise STCKs provides the poorest results on average, indicating
that permutations are relevant in this application and that the distribution-
based representation of the probability product kernel is more successful in
capturing the relevant player movements. Dynamic time warping performs
second best on average in line with the previous results on the artificial datasets
and the higher consistency with our method (see Figure 9). Also, in terms of k-
nearest-neighbour consistency, the two distribution-based methods GW/PPK
and DTW/PPK perfom best, as depicted in Figure 11. Cluster quality is
generally higher for game initiations compared to scoring opportunities, which
results in in better interpretable clusters for these settings (see Figure 12).

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015
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median trajectories of ball 

Example

distribution of 
lengths of trajectories

colours encode clusters

optimal number of 
clusters determined 
by multiple criteria

length
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Game Initiations

๏ Team A known for 

๏ Transporting the ball with few but rehearsed 
short game initiations to the opposing half

๏ Many ball contacts, different players integrated 

๏ Team B’s strategy

๏ Focused on increasingly long and straight balls

๏ Few players involved on average

50
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Game Initiations

51

Bundesliga Team A Bundesliga Team B

length length

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015



Ulf Brefeld                                     Knowledge Mining & Assessment Group

Game Initiations

52

Bundesliga Team A Bundesliga Team B

length length

many players
short passes

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015
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Game Initiations

53

Bundesliga Team A Bundesliga Team B

length length

many players
short passes

short trajectories, 
long straight balls

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015
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Scoring Opportunities

๏ Team A:

๏ Aimed at quickly scoring a goal in the opposing 
half, i.e., few ball contacts, faster ball transport in 
the zone of danger

๏ Team B:

๏ Many ball contacts, took their time in waiting for 
a mistake of the opponent and only then played in 
the zone of danger to achieve a goal
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Scoring Opportunities

55

Bundesliga Team A Bundesliga Team B

length length

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015
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Scoring Opportunities

56

Bundesliga Team A Bundesliga Team B

length length

short trajectories, 
few ball contacts

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015
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Scoring Opportunities

57

Bundesliga Team A Bundesliga Team B

length length

short trajectories, 
few ball contacts

 longer trajectories, 
waiting for mistakes

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015
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DMKD Special Issue on
 Sports Analytics

58

๏ Goal is to publish special issue in 2016

๏ Cfp end of September 2015

๏ Submission deadline end of December 2015

๏ Inquiries: 

๏ albrecht.zimmermann@insa-lyon.fr

๏ brefeld@cs.tu-darmstadt.de

(together with Albrecht Zimmermann)

mailto:albrecht.zimmermann@insa-lyon.fr
mailto:brefeld@cs.tu-darmstadt.de
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Wrap-Up: Trajectory Data

๏ Analysing trajectories of players it the key to 
analysing coordination in team sports

๏ Potential use cases go far beyond heat maps

๏ Inherent complexity renders tasks challenging

๏ Adapt existing large-scale algorithms to data

๏ Exploit prior knowledge 
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Mapper: Candidate Generation

๏ Combine existing episodes that differ only in a 
single position
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Reducer: Counting

๏ FSA for every possible realisation of a known episode

๏ An additional FSA will always remain in initial state

๏ Similar to Laxman et al. (2005)
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Pruned Trajectories

๏ Effectiveness of DBH depends only on data

๏ Approximations effective for constant N

62

Kim Keough LSH total

1000 0% 0% 11,42% 11,42%

5000 0,28% 34% 16,33% 50,61%

10000 9,79% 41,51% 17,8% 60,1%

15000 17,5% 46,25% 11,82% 75,57%
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Similarity Threshold

๏ Number of generated/frequent episodes depends 
highly on similarity threshold

63


