Data Mining meets Football

Ulf Brefeld

Knowledge Mining & Assessment TU Darmstadt / DIPF <u>brefeld@cs.tu-darmstadt.de</u>

Data Mining meets Football

Ulf Brefeld

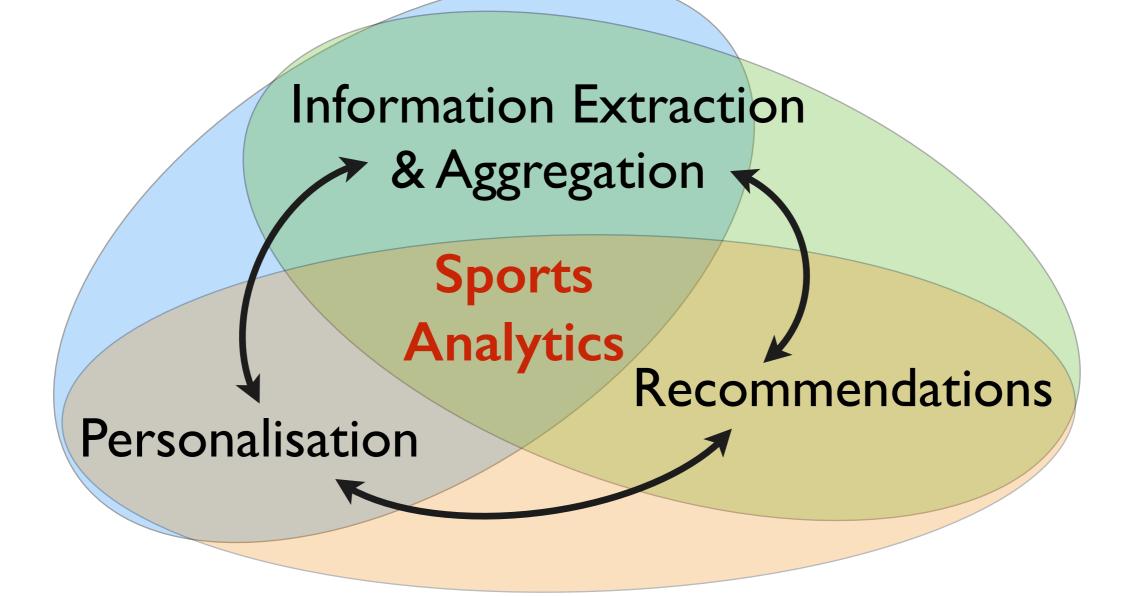
Machine Learning Group Leuphana University of Lüneburg

Machine Learning / Data Mining

Personalisation

Recommendations

Machine Learning / Data Mining



German Bundesliga

On average 43,502 attendees per game 13.31m attendees per season

http://www.ruhrnachrichten.de/storage/pic/mdhl/artikelbilder/sport/4081417_1_Bayern1.jpg?version=1387208424

Monetary Aspects http://www.statista.com/topics/1774/bundesliga/

Revenue of European soccer market	€19.90bn
Revenue of German Bundesliga	€2,172.59m
German Bundesliga total value of player assets	€413.77m
FC Bayern Munich brand value	€794.60m
FC Bayern Munich profit after tax	€14.00m

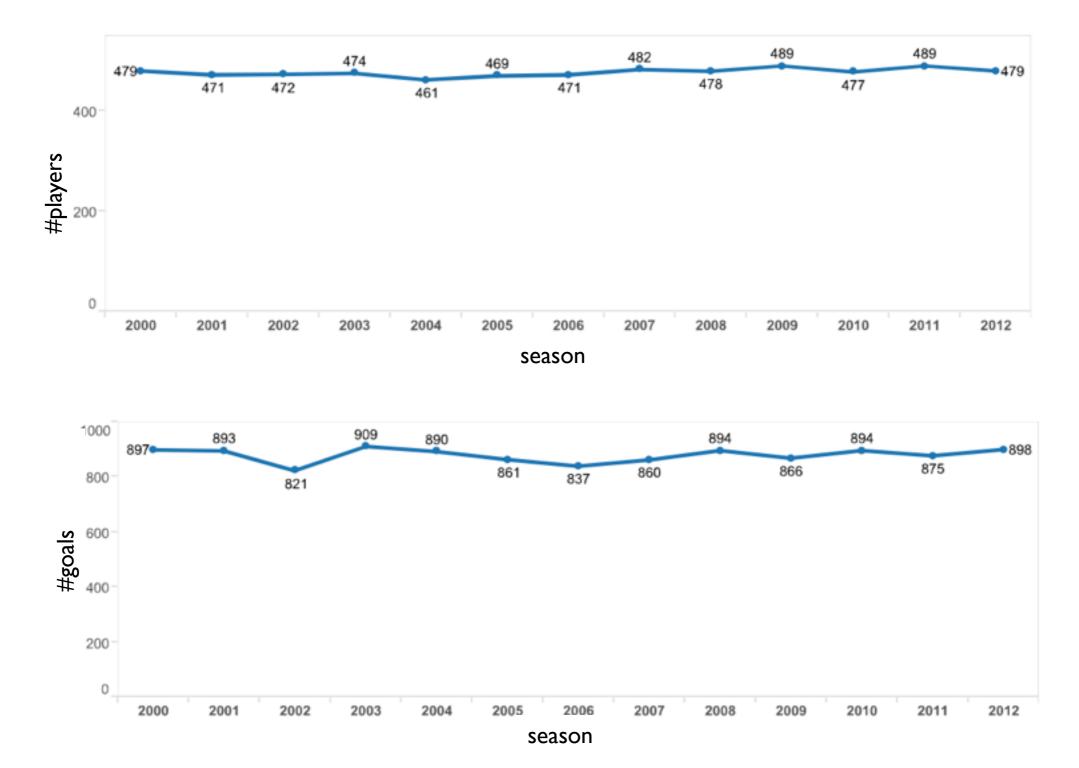
Traditional Sports Analytics

Monetary aspects

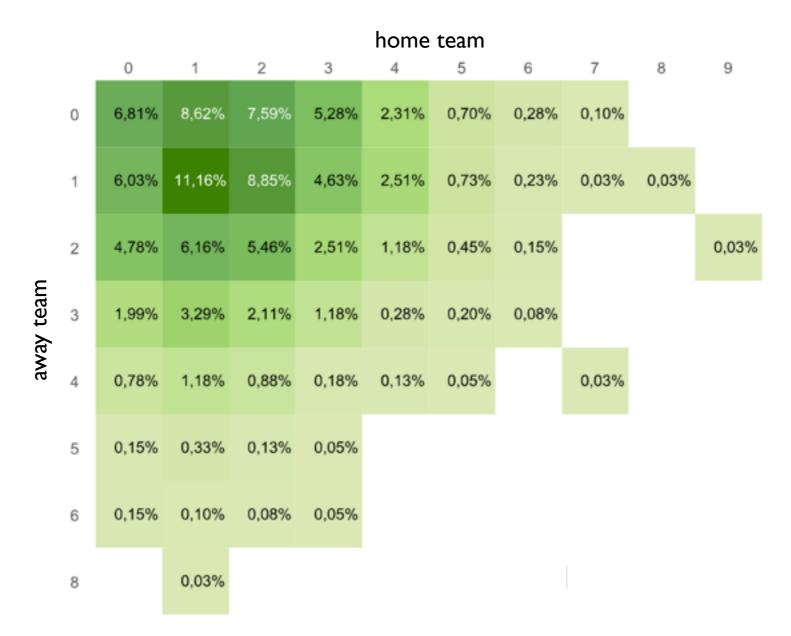
Freitag	, 19.12.				
20:30	FSV Mainz 05	Bayern München	13	6,5	1,22
Samsta	g, 20.12.				
15:30	Bayer Leverkusen	Eintracht Frankfurt	1,5	4,4	6,5
15:30	FC Augsburg	Borussia M'gladbach	2,3	3,4	3,1
15:30	Schalke 04	Hamburger SV	1,9	3,6	4,0
15:30	VfB Stuttgart	SC Paderborn	1,85	3,7	4,1
15:30	Werder Bremen	Borussia Dortmund	6,5	4,3	1,5
18:30	VfL Wolfsburg	1.FC Köln	1,5	4,3	6,5
Sonnta	g. 21.12.				
15:30	Hertha BSC	1899 Hoffenheim	2,5	3,4	2,8
17:30	SC Freiburg	Hannover 96	2,35	3,4	3,0

• Statistics to serve information needs...

Descriptive Statistics

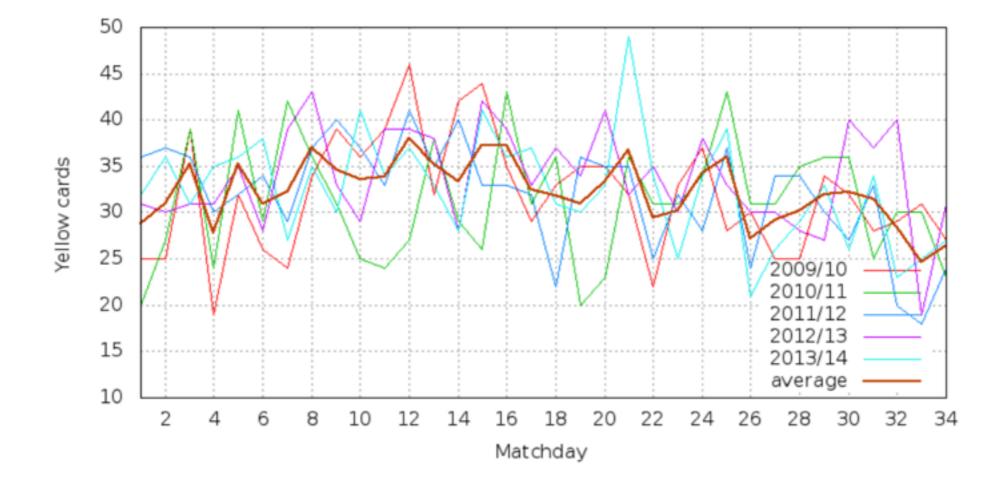


Distribution of Goals

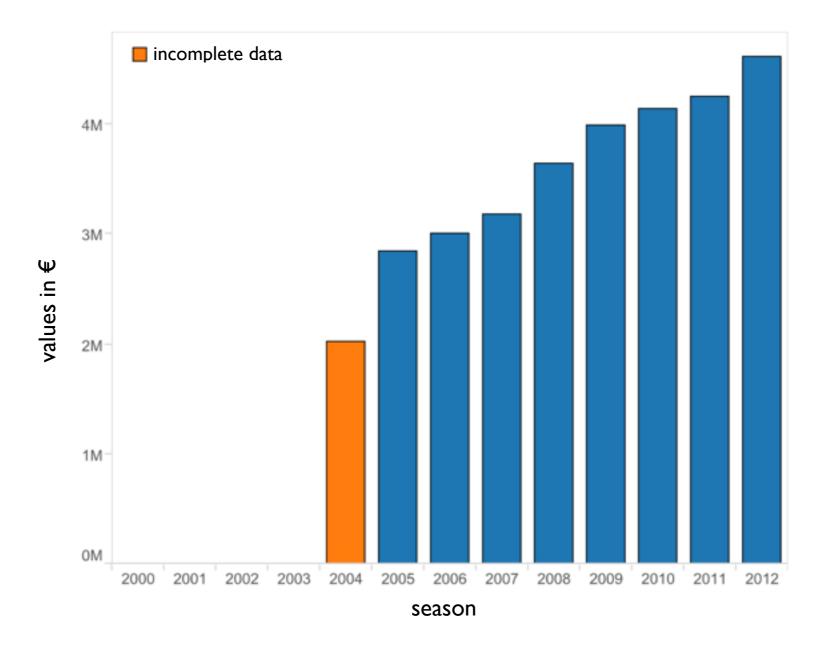


Knowledge Mining & Assessment Group

Yellow Cards



Average Player Value



Knowledge Mining & Assessment Group

• Yeah, interesting... but what does it tell us?

"B. Charlton v F. Beckenbauer", David Marsh 1966 World Cup Final, England - W. Germany

Trajectories and Tactics

 Understanding player movements is a precondition for analysing game strategy (i.e., tactics)

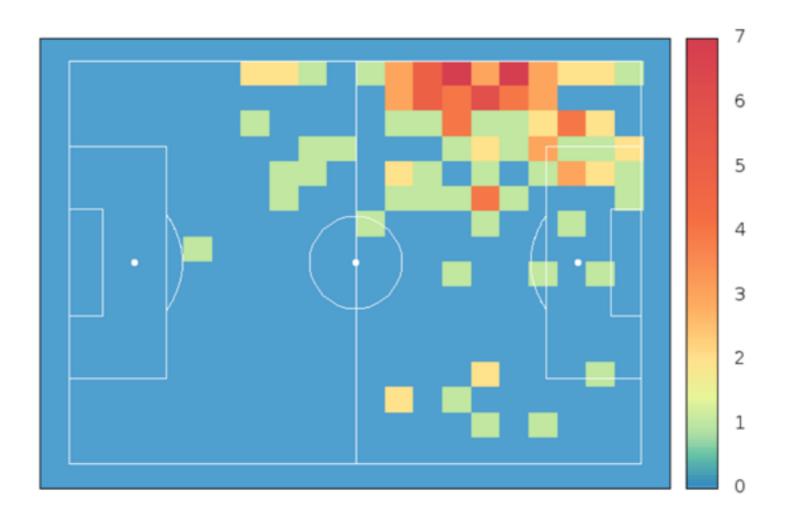
Player Trajectory Data

- Cameras capture positions of players and ball*
 * Referee also tracked and recorded but data usually kept private
- x,y,(z) coordinates

 - Manually denoised (corners, mass confrontations,...)
 - Players annotated
- Perfect data for analysing movements, coordination, tactics, etc.

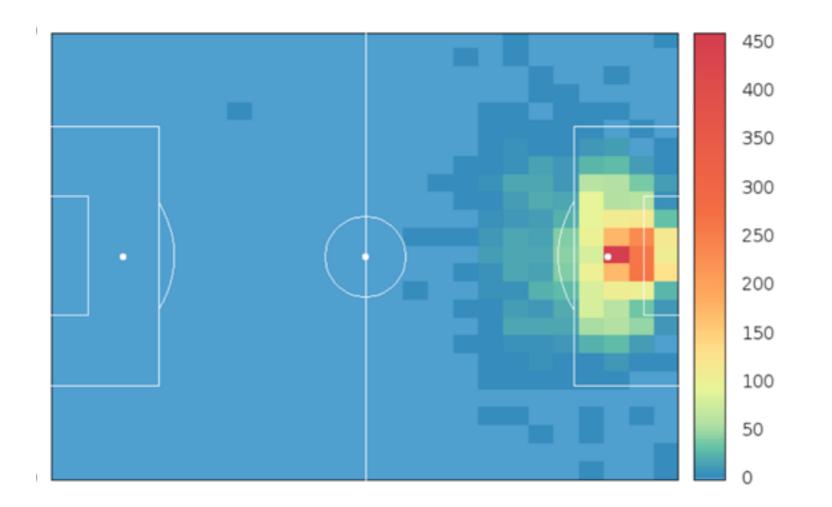
Ball touches of Franck Ribery

(FCB vs BMG, season 2013/14)

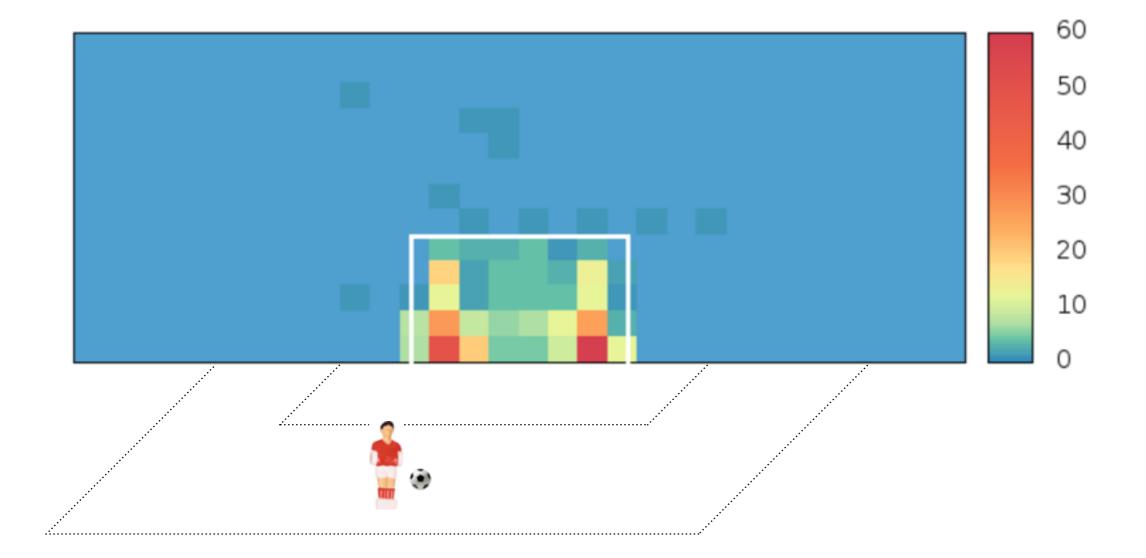


Shots leading to Goals

(season 2009/10 - 2013/14)



Goalmouth Coordinates (penalties)

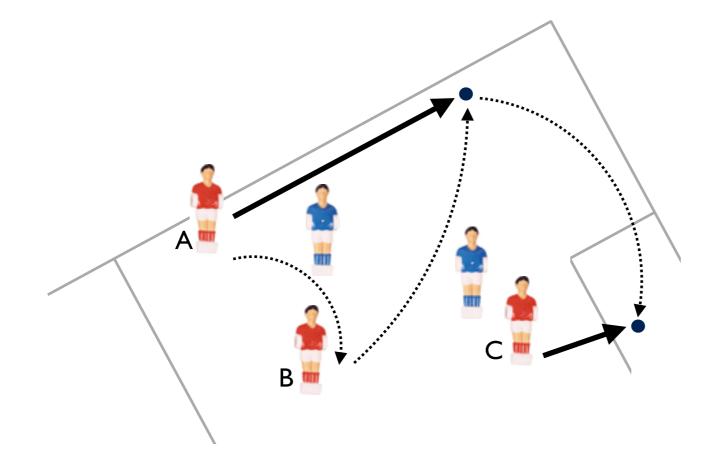


• Hm... still, what does it tell us?

Use Cases

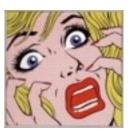
- Analyse opponent tactics
- Detect strengths/weaknesses in strategy
- Automatic game plans
- Serious games / training
- Player scouting
- Improved media coverage
- •

- Pattern = "interesting" event
- E.g., A plays I-2 with B and crosses to C

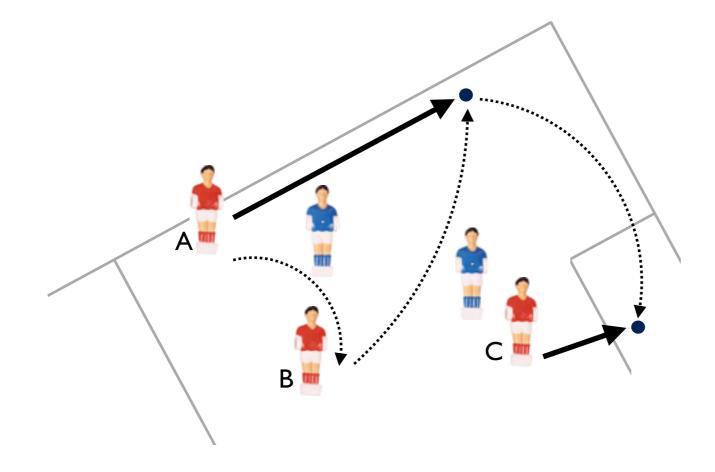


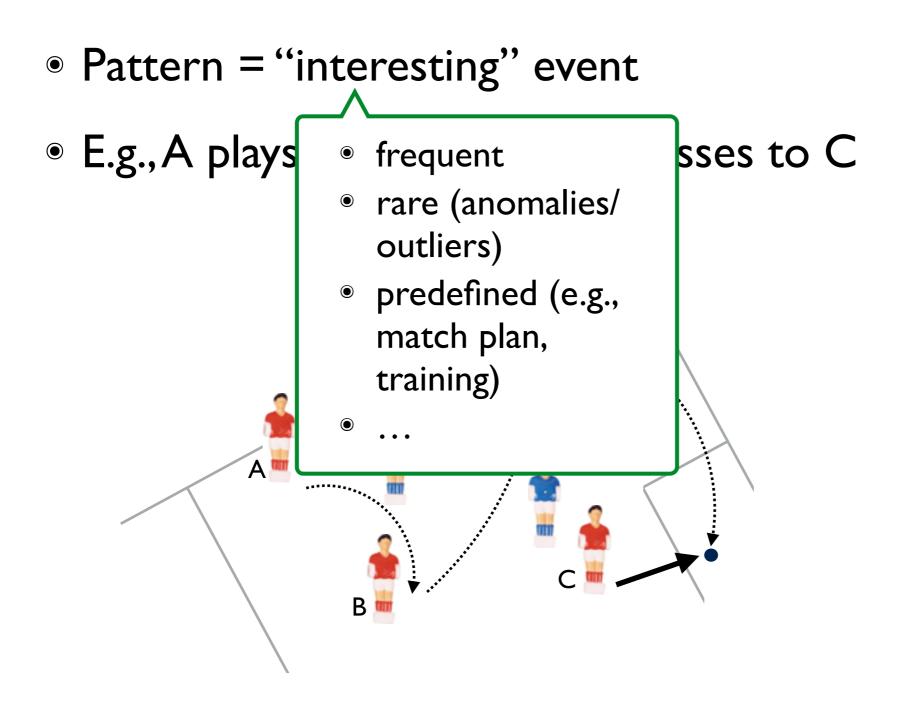
Why is it difficult?

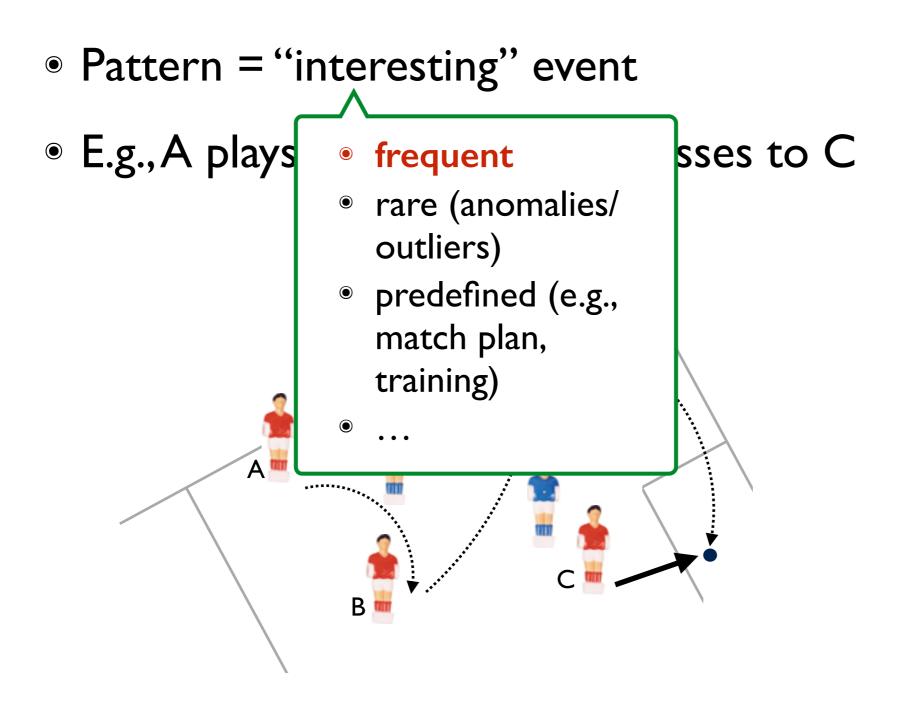
- >3 million positions per game
- Every player generates ≈ 135000 positions per game
- There are $\approx 135000^{23}$ different candidate patterns* ^{*} Ignoring the fact that patterns are of different lengths
- This is considerably larger than the number of atoms in our galaxy^{**}
 ** Dark and exotic matter already included
- Explicit enumeration infeasible
- What similarity measure to use?



- Pattern = "interesting" event
- E.g., A plays I-2 with B and crosses to C







Representation

- Position = player coordinates on the pitch
- A game of soccer = positional data stream
- Player trajectory = sequence of consecutive positions
- Positions represented by angles wrt reference vector v_{ref} (translation, rotation, scale invariant)

$$\alpha_{i} = sign(\boldsymbol{v}_{i}, \boldsymbol{v}_{ref}) \left[cos^{-1} \left(\frac{\boldsymbol{v}_{i}^{\top} \boldsymbol{v}_{ref}}{\|\boldsymbol{v}_{i}\| \|\boldsymbol{v}_{ref}\|} \right) \right]$$

Vlachos et al. (KDD, 2004)

Dynamic Time Warping

Rabiner & Juang (1993)

- Movements should be independent of player speed
- Dynamic time warping compensates phase shifts
- Distance measure $dist : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
- ${\ensuremath{\,\circ\,}}$ DTW for sequences s and q defined recursively

$$g(\emptyset, \emptyset) = 0$$

$$g(\mathbf{s}, \emptyset) = dist(\emptyset, \mathbf{q}) = \infty$$

$$g(\mathbf{s}, \mathbf{q}) = dist(s_1, q_1) + min \begin{cases} g(\mathbf{s}, \langle q_2, \dots, q_m \rangle) \\ g(\langle s_2, \dots, s_m \rangle, \mathbf{q}) \\ g(\langle s_2, \dots, s_m \rangle, \langle q_2, \dots, q_m \rangle) \end{cases}$$

Dynamic Time Warping

Rabiner & Juang (1993)

- Movements should be independent of player speed
- Dynamic time warping compensates phase shifts
- Distance measure $dist : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
- DTW for sequences s and q defined recursively

$$g(\emptyset, \emptyset) = 0$$

$$g(s, \emptyset) = dist(\emptyset, q) = \infty$$

$$g(s, q) = dist(s_1, q_1) + min \begin{cases} g(s, \langle q_2, \dots, q_m \rangle) \\ g(\langle s_2, \dots, s_m \rangle, q) \\ g(\langle s_2, \dots, s_m \rangle, \langle q_2, \dots, q_m \rangle) \end{cases}$$

Approximate DTW

- Approximate DTW by lower bounds $f(s, q) \leq g(s, q)$
- Focus on characteristic values
- Kim et al. (ICDE, 2001)
 - first, last, greatest, smallest value
- Keogh (VLDB, 2002)
 - minimum/maximum values of subsequences
- Complexity in O(|s|)

Locality Sensitive Hashing

Athitsos et al. (2008), Gionis et al., (1999)

• Distance-based hash function $h : \mathcal{D} \to \mathbb{R}$

 $h_{s_1,s_2}(s) = \frac{dist(s,s_1)^2 + dist(s_1,s_2)^2 - dist(s,s_2)^2}{2 dist(s_1,s_2)}$ s_1 and s_2 randomly drawn from database use Kim et al. (ICDE, 2001) as distance function

- Bucket determined by $h_{\boldsymbol{s}_1,\boldsymbol{s}_2}^{[t_1,t_2]}(\boldsymbol{s}) = \begin{cases} 1:h_{\boldsymbol{s}_1,\boldsymbol{s}_2}(\boldsymbol{s}) \in [t_1,t_2]\\ 0: \quad otherwise \end{cases}$
- Set of admissible intervals $\mathcal{T}(s_1, s_2) = \left\{ [t_1, t_2] : Pr_{\mathcal{D}}(h_{s_1, s_2}^{[t_1, t_2]}(s)) = 0) = Pr_{\mathcal{D}}(h_{s_1, s_2}^{[t_1, t_2]}(s)) = 1) \right\}$

Computing Similarities

- Remainder needs test for identity
- Use outcomes of
 - Dynamic time warping
 - Approximate DTW
 - Locality sensitive hashing (buckets)
- ... together with similarity threshold

Episode Discovery

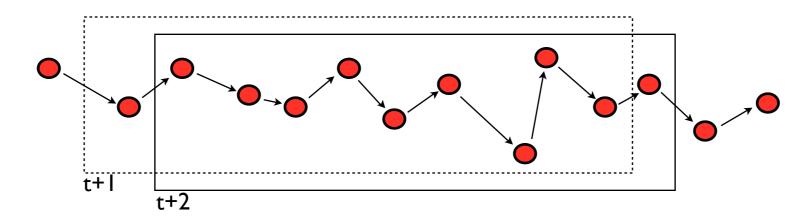
- Apriori-based algorithms
- Approach based on Achar et al. (2012)
- Distributed implementation scheme (Hadoop)
- Two phases
 - Candidate generation (Mapper)
 - Counting (Reducer)

Empirical Evaluation

- DEBS Grand Challenge
 http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
 - 8 vs. 8 soccer game recorded by Fraunhofer IIS
 - In total 33 sensors
 - I sensor per shoe (200Hz)
 - I sensor in the ball (2000Hz)
 - 15,000 positions per second (3 dimensional)

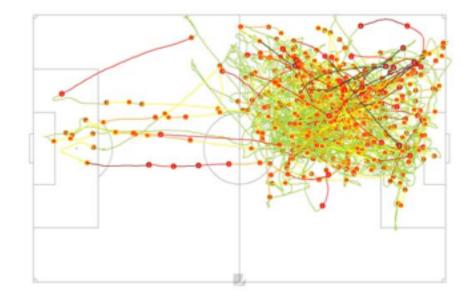
Representation

- Further preprocessing:
 - Discarding positions outside of the pitch
 - Removing half-time effect of changing sides
 - Averaging player positions over 100ms
- Trajectory windows of size 10

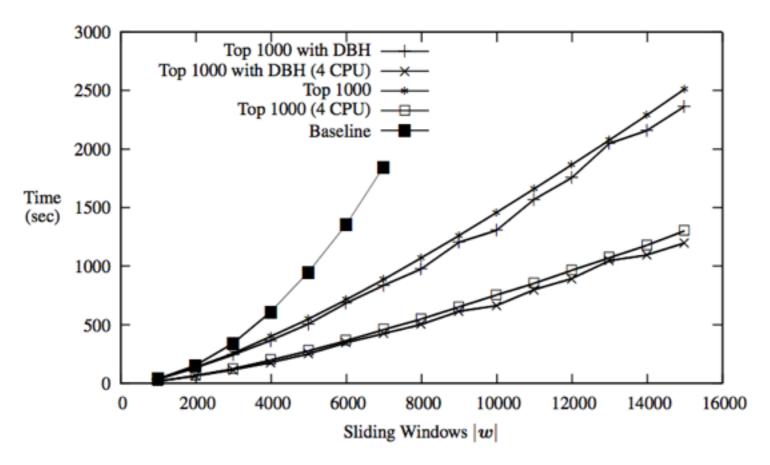


Evaluation

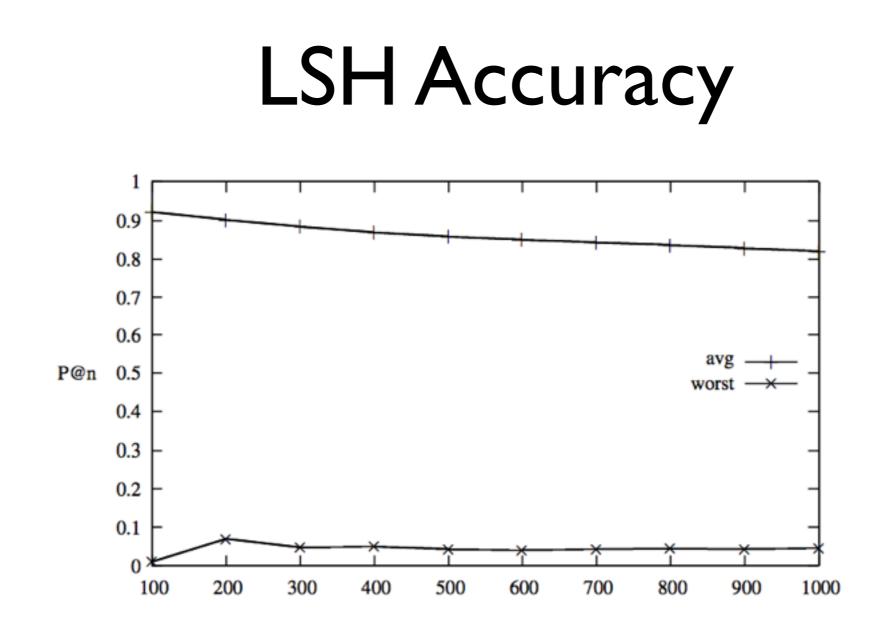
- Given: a query trajectory
- Task: Find near-duplicates
 - (i.e., N=1000 most similar trajectories)
- Focus on 15k consecutive positions of one player
 - (for baseline comparisons)



Run-time

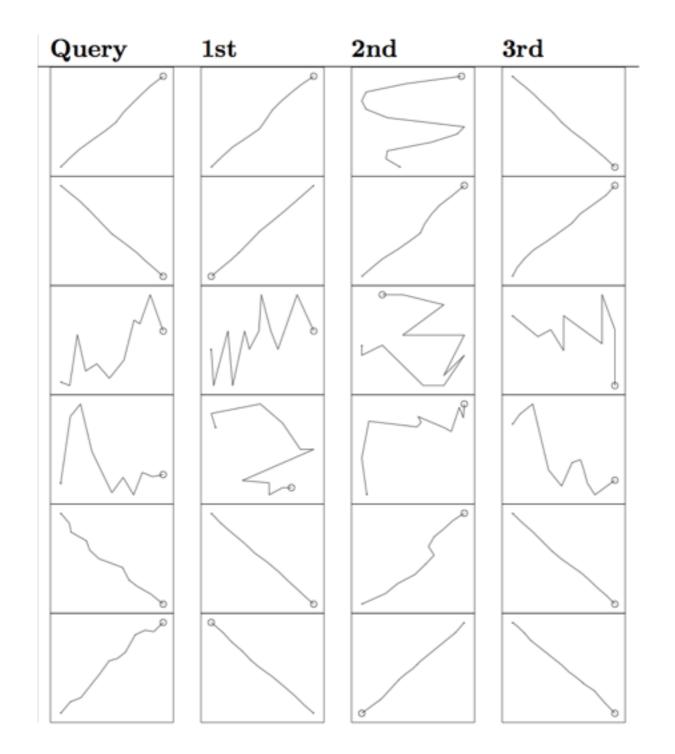


- Exact computation infeasible
- Dynamic time warping very effective
- LSH adds only little



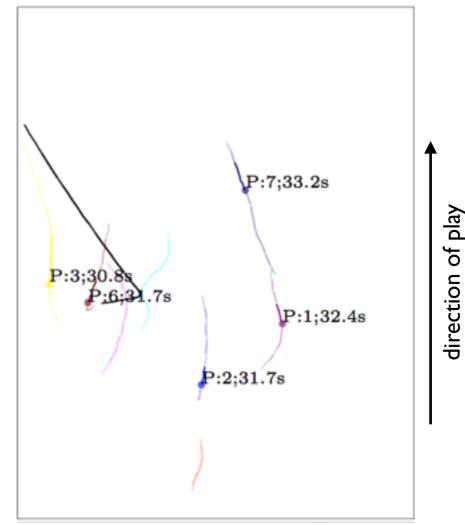
- On average LSH performs very accurate
- However, worst cases clearly inappropriate

Exemplary Retrieval



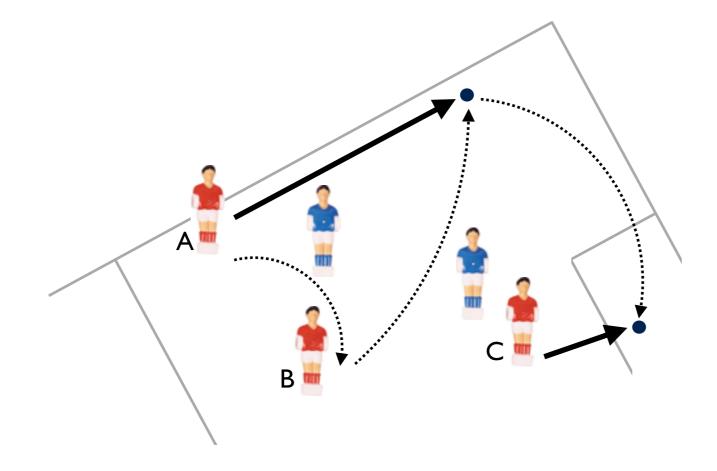
Exemplary Pattern

- Ball is played towards opponent goal (black)
- Trajectories in pattern visualised by thick lines (dot indicates beginning)
- Players 1,2,3,6 and 7 move in direction of ball

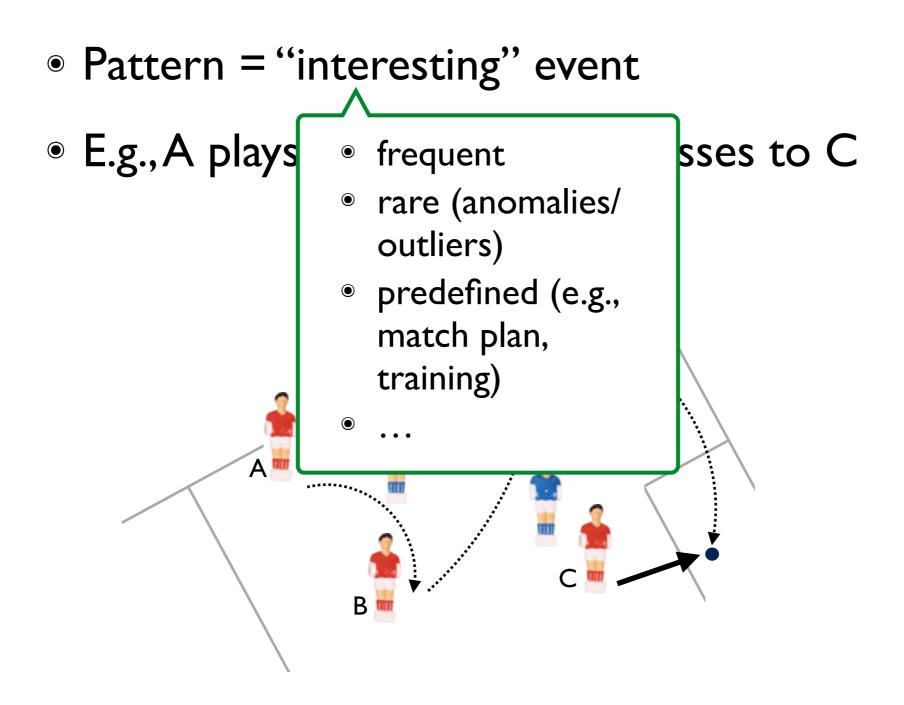


Identifying Patterns

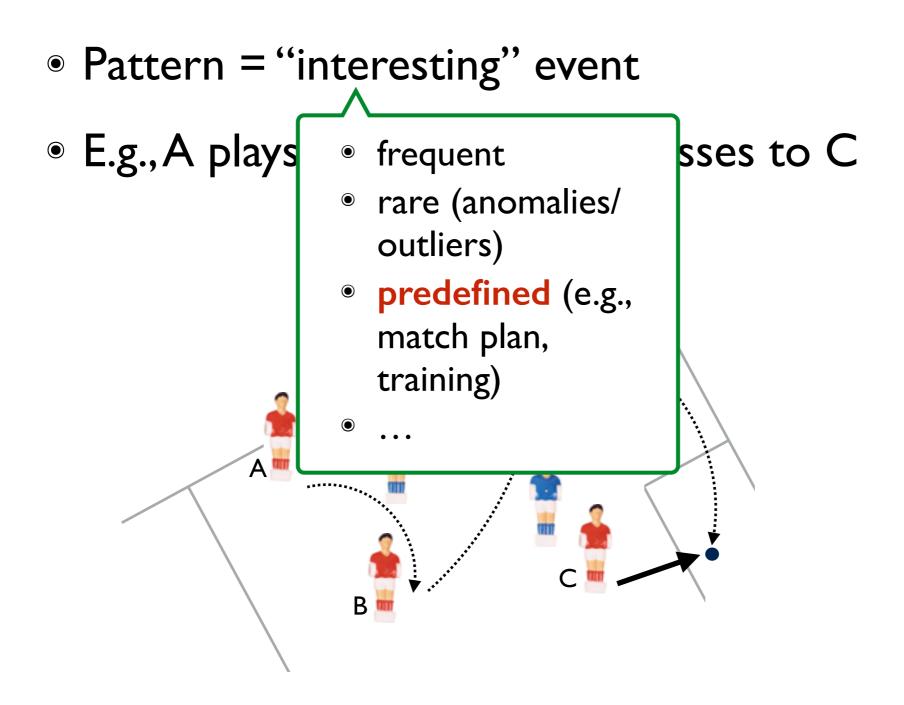
- Pattern = "interesting" event
- E.g., A plays I-2 with B and crosses to C



Identifying Patterns



Identifying Patterns

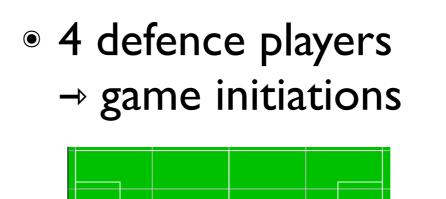


Patterns / Events

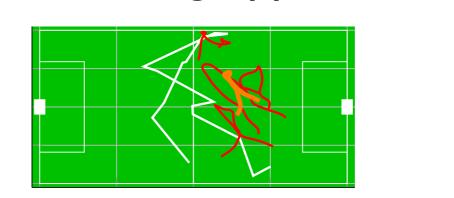
- Individual level
- Group level
- Team level

Patterns / Events

- Individual level
- Group level
- Team level



● 4 offence players
 → scoring opportunities



Spatio-temporal Convolution Kernels

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015

$$k(P,Q) = \frac{1}{|P||Q|} \sum_{\substack{(t,x_t) \in P, (s,y_s) \in Q \\ \text{cheap temporal kernel}}} k_{[0,1]}(t,s) \cdot k_{\mathcal{X}}(x_t,y_s),$$

- Tailored similarity measure for multi-trajectory scenarios
- Separate data from algorithm, eg., works with every kernel machine (SVMs, kPCA, kernel kMeans, etc.)

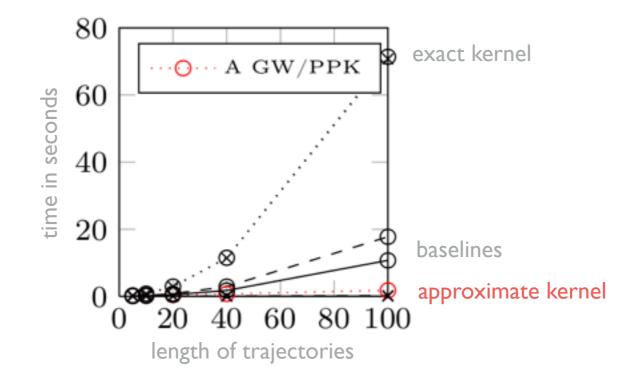
• But: Complexity
$$\mathcal{O}(N^2L^2)$$

Inumber of trajectories

Approximate STCKs

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015

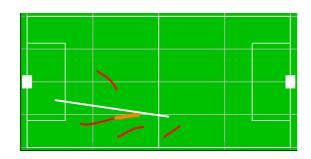
- Efficient approximation of exact kernel
- Idea: Use cheap temporal kernel as filter
- Evaluate spatial kernel by percental approximation

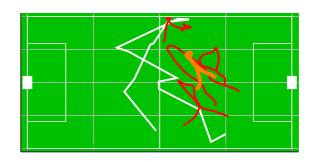


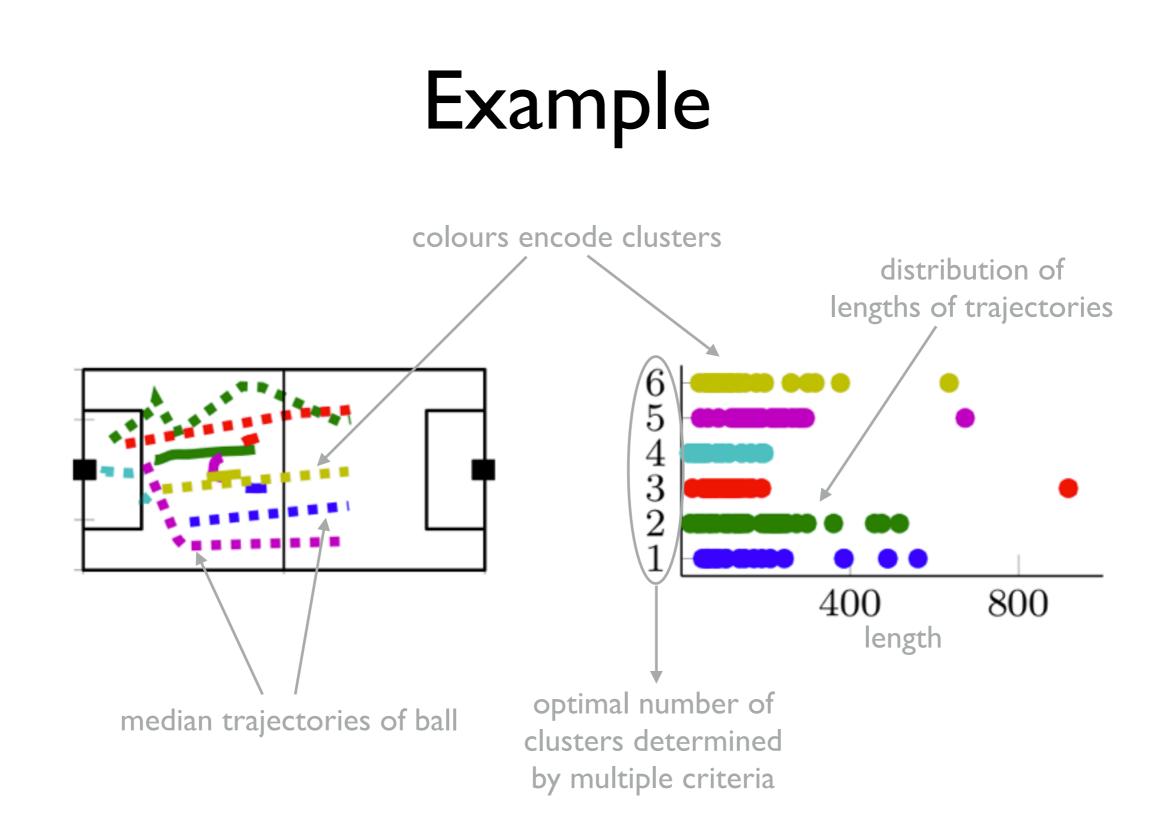
Empirical Results

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015

- VIS.TRACK data, Bundesliga season 2011/12
- Two teams (5 games each)
- Cluster analysis w k-medoids
 - Game initiations (start: goal keeper has ball)
 - Scoring opportunities (end: ball in dangerous zone)





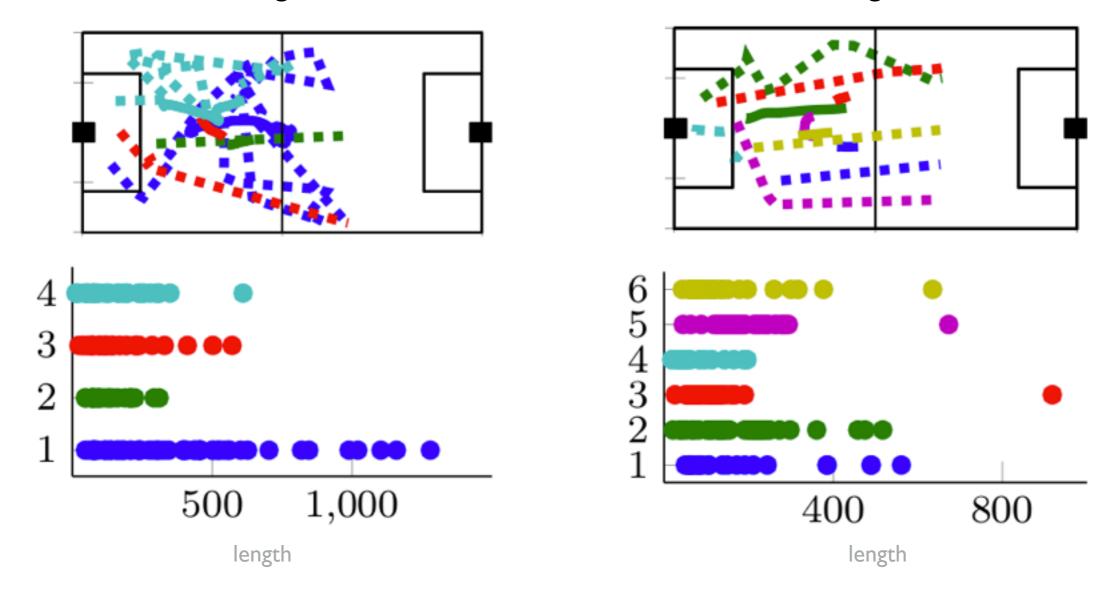


- Team A known for
 - Transporting the ball with few but rehearsed short game initiations to the opposing half
 - Many ball contacts, different players integrated
- Team B's strategy
 - Focused on increasingly long and straight balls
 - Few players involved on average

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015

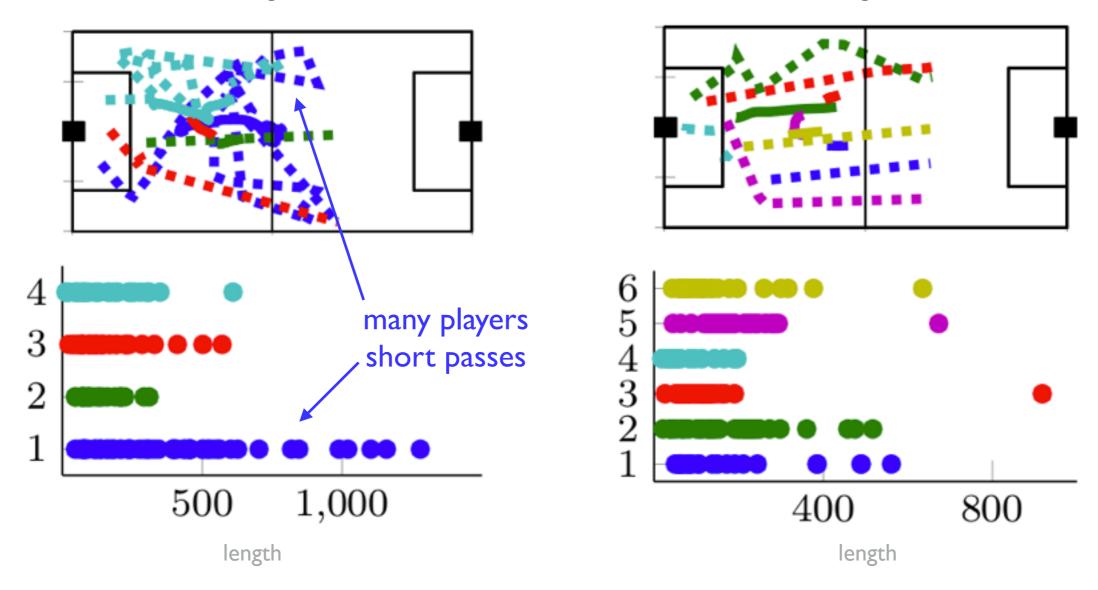
Bundesliga Team A

Bundesliga Team B



Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015

Bundesliga Team A



Bundesliga Team B

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015

$\frac{6}{5}$ 4short trajectories, many players long straight balls 3 short passes $\frac{4}{3}$ $\mathbf{2}$ 1 1 5001,000800 400

Bundesliga Team B

length

length

Ulf Brefeld

Bundesliga Team A

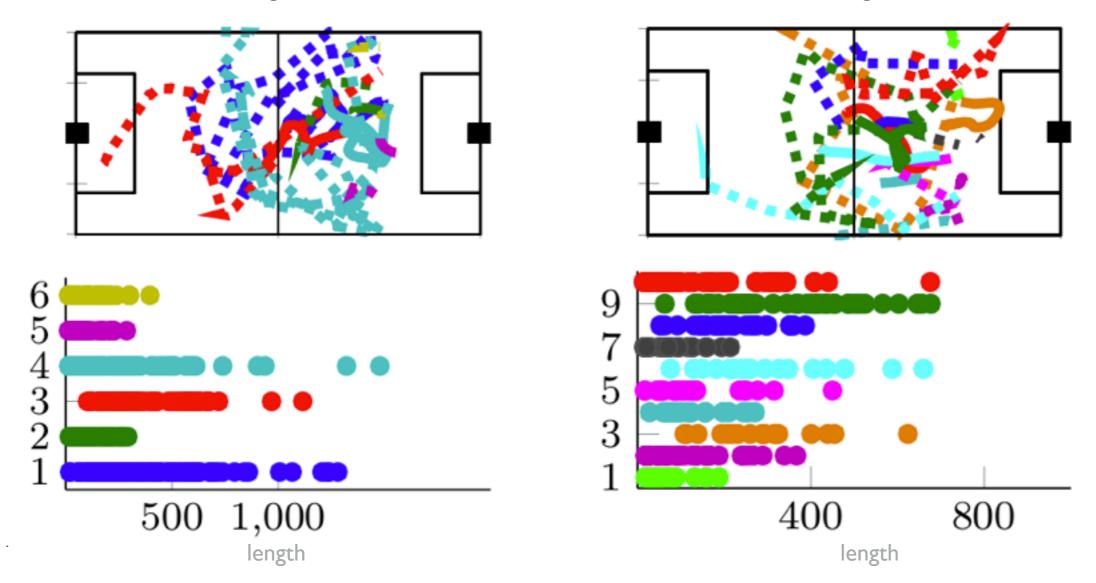
Knowledge Mining & Assessment Group

- Team A:
 - Aimed at quickly scoring a goal in the opposing half, i.e., few ball contacts, faster ball transport in the zone of danger
- Team B:
 - Many ball contacts, took their time in waiting for a mistake of the opponent and only then played in the zone of danger to achieve a goal

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015

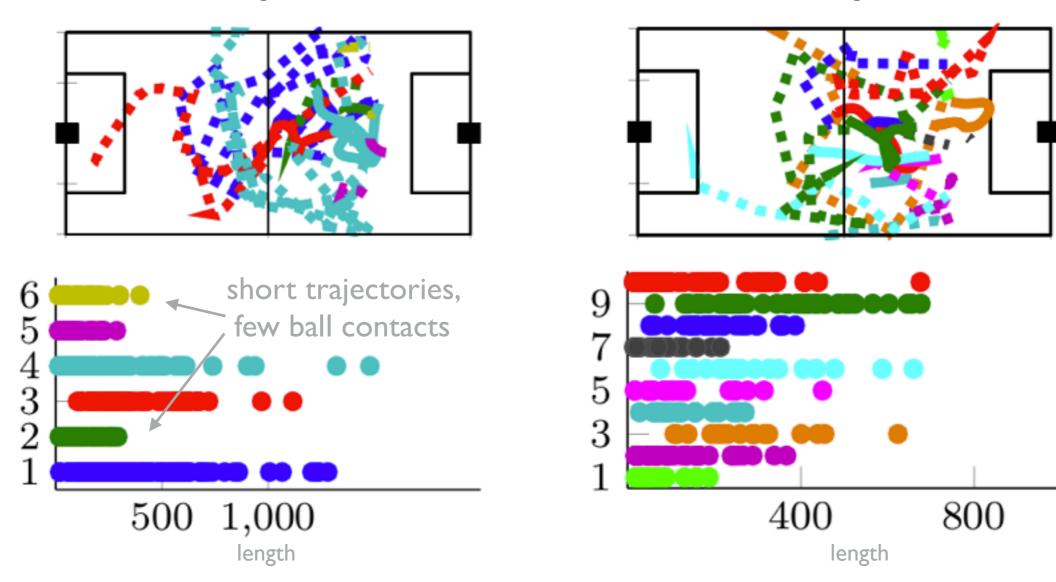
Bundesliga Team A

Bundesliga Team B



Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015

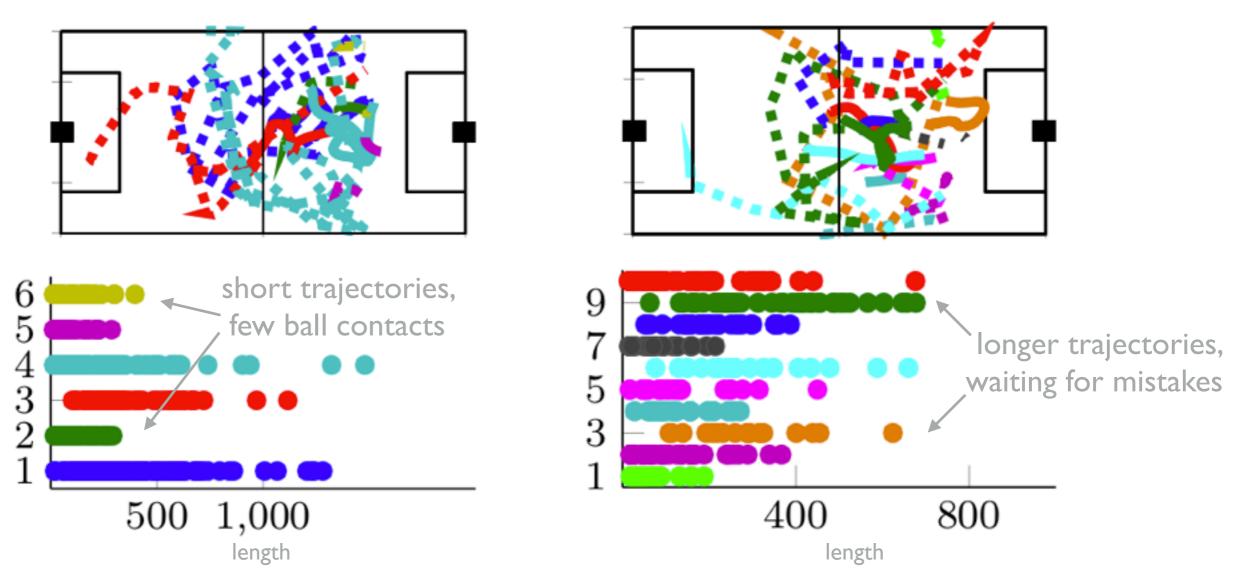
Bundesliga Team A



Bundesliga Team B

Knauf, Memmert & Brefeld, Spatio-temporal Convolution Kernels, Machine Learning Journal, 2015

Bundesliga Team A



Bundesliga Team B

Ulf Brefeld

Knowledge Mining & Assessment Group

DMKD Special Issue on Sports Analytics (together with Albrecht Zimmermann)

- Goal is to publish special issue in 2016
- Cfp end of September 2015
- Submission deadline end of December 2015
- Inquiries:
 - <u>albrecht.zimmermann@insa-lyon.fr</u>
 - <u>brefeld@cs.tu-darmstadt.de</u>

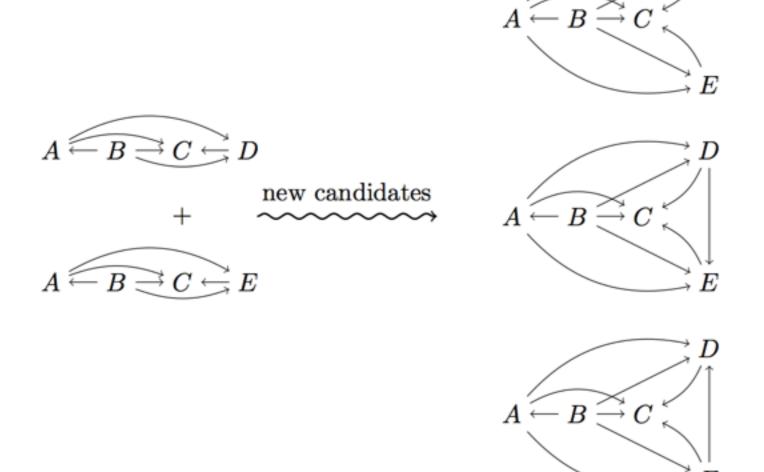


Wrap-Up:Trajectory Data

- Analysing trajectories of players it the key to analysing coordination in team sports
- Potential use cases go far beyond heat maps
- Inherent complexity renders tasks challenging
 - Adapt existing large-scale algorithms to data
 - Exploit prior knowledge

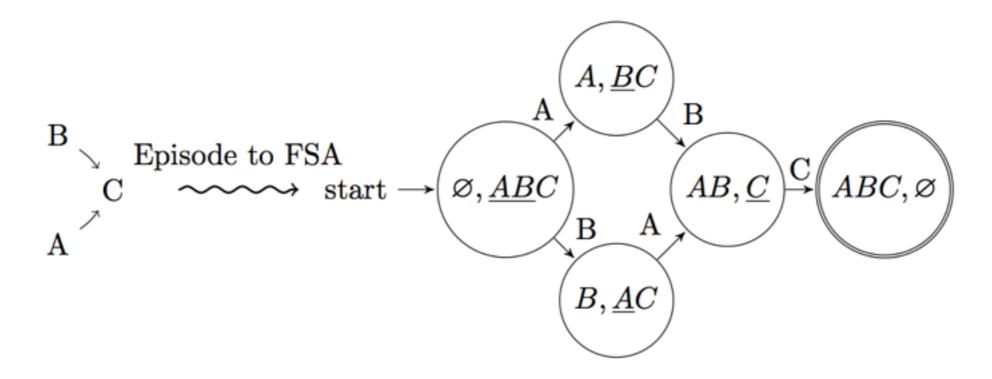
Mapper: Candidate Generation

Combine existing episodes that differ only in a single position



Reducer: Counting

- FSA for every possible realisation of a known episode
- An additional FSA will always remain in initial state
- Similar to Laxman et al. (2005)

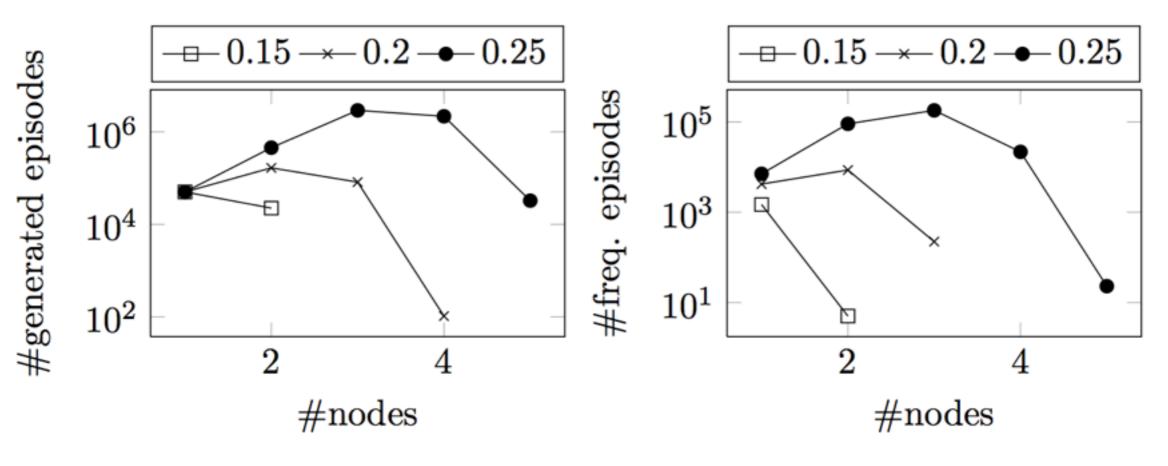


Pruned Trajectories

		Kim	Keough	LSH	total
nof. trajetories	1000	0%	0%	11,42%	11,42%
	5000	0,28%	34%	16,33%	5 0,6 1%
	10000	9,79%	41,51%	17,8%	60,1%
	15000	17,5%	46,25%	11,82%	75,57%

- Effectiveness of DBH depends only on data
- Approximations effective for constant N

Similarity Threshold



 Number of generated/frequent episodes depends highly on similarity threshold