Finding Similar Movements in Positional Data Streams

Jens Haase and Ulf Brefeld

Knowledge Mining & Assessment brefeld@kma.informatik.tu-darmstadt.de

Ulf Brefeld

B. Charlton v F. Beckenbauer

David Marsh

1966 World Cup Final, England - W. Germany

Player Briefing

(coach, before game)

Analyses

(newspapers, next day)

Ulf Brefeld

Youth Soccer: Tactics and Paths

Tactics and Trajectories

- Understanding player movements precondition for analyzing tactics
- Requires efficient computation of similar movements
- This talk: Efficient retrieval of near-duplicate trajectories given a query movement

Representation

- Position = player coordinates on the pitch
- A game of soccer = positional data stream
- Player trajectory = sequence of consecutive positions
- Positions represented by angles wrt reference vector \mathbf{v}_{ref} (translation, rotation, scale invariant)

$$\alpha_i = sign(\mathbf{v}_i, \mathbf{v}_{ref}) \left[cos^{-1} \left(\frac{\mathbf{v}_i^\top \mathbf{v}_{ref}}{\|\mathbf{v}_i\| \|\mathbf{v}_{ref}\|} \right) \right]$$

Vlachos et al. (KDD, 2004)

Dynamic Time Warping

- Movements should be independent of player speed
- Dynamic time warping compensates phase shifts
- ullet Distance measure $dist: \mathbb{R} imes \mathbb{R} o \mathbb{R}$
- DTW for sequences s and q defined recursively

$$g(\emptyset, \emptyset) = 0$$

$$g(\mathbf{s}, \emptyset) = dist(\emptyset, \mathbf{q}) = \infty$$

$$g(\mathbf{s}, \mathbf{q}) = dist(s_1, q_1) + min \begin{cases} g(\mathbf{s}, \langle q_2, \dots, q_m \rangle) \\ g(\langle s_2, \dots, s_m \rangle, \mathbf{q}) \\ g(\langle s_2, \dots, s_m \rangle, \langle q_2, \dots, q_m \rangle) \end{cases}$$

Dynamic Time Warping

Rabiner & Juang (1993)

- Movements should be independent of player speed
- Dynamic time warping compensates phase shifts
- ullet Distance measure $dist: \mathbb{R} imes \mathbb{R}
 ightarrow \mathbb{R}$
- DTW for sequences s and q defined recursively

$$g(\emptyset, \emptyset) = 0$$

$$g(\mathbf{s}, \emptyset) = dist(\emptyset, \mathbf{q}) = \infty$$

$$g(\mathbf{s}, \mathbf{q}) = dist(s_1, q_1) + min \begin{cases} g(\mathbf{s}, \langle q_2, \dots, q_m \rangle) \\ g(\langle s_2, \dots, s_m \rangle, \mathbf{q}) \\ g(\langle s_2, \dots, s_m \rangle, \langle q_2, \dots, q_m \rangle) \end{cases}$$

Approximate DTW

- Approximate DTW by lower bounds $f(s, q) \le g(s, q)$
- Focus on characteristic values
- Kim et al. (ICDE, 2001)
 - first, last, greatest, smallest value
- Keogh (VLDB, 2002)
 - minimum/maximum values of subsequences
- Complexity in O(|s|)

Locality Sensitive Hashing

Athitsos et al. (2008), Gionis et al., (1999)

ullet Distance-based hash function $h:\mathcal{D} o\mathbb{R}$

$$h_{m{s}_1,m{s}_2}(m{s}) = rac{dist(m{s},m{s}_1)^2 + dist(m{s}_1,m{s}_2)^2 - dist(m{s},m{s}_2)^2}{2\,dist(m{s}_1,m{s}_2)}$$

s₁ and s₂ randomly drawn from database

use Kim et al. (ICDE, 2001) as distance function

- Bucket determined by $h_{s_1,s_2}^{[t_1,t_2]}(s) = \begin{cases} 1:h_{s_1,s_2}(s) \in [t_1,t_2] \\ 0: otherwise \end{cases}$
- Set of admissible intervals

$$\mathcal{T}(\boldsymbol{s}_1, \boldsymbol{s}_2) = \left\{ [t_1, t_2] : Pr_{\mathcal{D}}(h_{\boldsymbol{s}_1, \boldsymbol{s}_2}^{[t_1, t_2]}(\boldsymbol{s})) = 0) = Pr_{\mathcal{D}}(h_{\boldsymbol{s}_1, \boldsymbol{s}_2}^{[t_1, t_2]}(\boldsymbol{s})) = 1) \right\}$$

Empirical Evaluation

- DEBS Grand Challenge http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
 - 8 vs. 8 soccer game recorded by Fraunhofer IIS
 - In total 33 sensors
 - I sensor per shoe (200Hz)
 - I sensor in the ball (2000Hz)
 - 15,000 positions per second (3 dimensional)

Coordinates on the Pitch

- Coordinate system, origin (0,0) is at kick-off
- Discarding additional data, players are represented by triplet:

(sensor/player id, timestamp, player coordinates)

Representation

- Further preprocessing:
 - Discarding positions outside of the pitch
 - Removing half-time effect of changing sides
 - Averaging player positions over 100ms
- Trajectory windows of size 10

Evaluation

- Given: a query trajectory
- Task: Find near-duplicates
 - (i.e., N=1000 most similar trajectories)
- Focus on 15k consecutive positions of one player
 - (for baseline comparisons)

Run-time

- Exact computation infeasible
- Dynamic time warping very effective
- DBH adds only little

Pruned Trajectories

nof. trajetories		Kim	Keough	DBH	total
	1000	0.00%	0%	11.42%	11.42%
	5000	0.28%	34.00%	16.33%	50.61%
	10000	9.79%	41.51%	17.80%	60.10%
	15000	17.5%	46.25%	11.82%	75.57%

- Effectiveness of DBH depends only on data
- Kim and Keogh effective for constant N

DBH Accuracy

- On average DBH performs very accurate
- However, worst cases clearly inappropriate

Example

Conclusion

- Efficient computation of near duplicate movements in positional data streams
 - Dynamic time warping (DTW)
 - Distance-based hashing (DBH)
- (Super-)linear complexity
- Accurate results