
Finding Similar Movements in
Positional Data Streams

Jens Haase and Ulf Brefeld
Knowledge Mining & Assessment

brefeld@kma.informatik.tu-darmstadt.de

Prague, 27.9.2013

Monday, September 16, 13

mailto:brefeld@kma.informatik.tu-darmstadt.de
mailto:brefeld@kma.informatik.tu-darmstadt.de

Ulf Brefeld Knowledge Mining & Assessment Group 2

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

B. Charlton v F. Beckenbauer
David Marsh

3

1966 World Cup Final, England - W. Germany

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Player Briefing
(coach, before game)

4

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Analyses
(newspapers, next day)

5

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Youth Soccer: Tactics and Paths

6

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Tactics and Trajectories

๏ Understanding player movements precondition for
analyzing tactics

๏ Requires efficient computation of similar movements

๏ This talk: Efficient retrieval of near-duplicate
trajectories given a query movement

7

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Representation

๏ Position = player coordinates on the pitch

๏ A game of soccer = positional data stream

๏ Player trajectory = sequence of consecutive positions

๏ Positions represented by angles wrt reference vector
vref (translation, rotation, scale invariant)

8

D is thus given by the union of all trajectories of length m of the two teams. For
simplicity, we omit the time index t and simply index elements of a trajectory
by their offset 1, . . . ,m in the remainder. The goal of this paper is to accurately
and efficiently compute similarities between trajectories in D. That is, given a
query trajectory q, we aim at finding the N most similar trajectories in D.

3.2 Representation

We aim to exploiting the symmetries of the pitch and use Angle/Arc-Length
(AAL) [11] transformations to guarantee translation, rotation, and scale invari-
ant representations of trajectories. The main idea of AAL is to represent a move-
ment p = hx1, . . . ,xmi in terms of distances and angles

p 7! ¯

p = h(↵1, kv1k), . . . , (↵m, kvmk)i, (1)

where vi = xi � xi�1. The difference vi is called the movement vector at time
i and the corresponding angle with respect to a reference vector vref = (1, 0)

>

is defined as

↵i = sign(vi,vref)



cos

�1

✓

v

>
i vref

kvik kvrefk

◆�

,

where the sign function computes the direction (clockwise ore counterclock-
wise) of the movement with respect to the reference. In the remainder, we dis-
card the norms in Equation (1) and represent trajectories by their sequences of
angles, p 7! ˜

p = h↵1, . . . ,↵mi.

3.3 Dynamic Time Warping

In this section, we propose a distance measure for trajectories. The proposed
representation of the previous section fulfils the required invariance in terms
of translation, rotation and scaling [11]. However, some movements may start
slow and end fast, while others start fast and then slow down at the end. Thus,
we additionally need to compensate for phase shifts of trajectories. A remedy
comes from the area of speech recognition and is called dynamic time warping
(DTW) [9]. Given two sequences s = hs1, . . . , smi and q = hq1, . . . , qmi and
an element-wise distance function dist : R⇥R ! R (e.g., Euclidean distance),
we define the DTW function g recursively as follows

g(;, ;) = 0

g(s, ;) = dist(;, q) = 1

g(s, q) = dist(s1, q1) +min

8

<

:

g(s, hq2, . . . , qmi)
g(hs2, . . . , smi, q)
g(hs2, . . . , smi, hq2, . . . , qmi)

9

=

;

Vlachos et al. (KDD, 2004)

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Dynamic Time Warping

๏ Movements should be independent of player speed

๏ Dynamic time warping compensates phase shifts

๏ Distance measure

๏ DTW for sequences s and q defined recursively

9

D is thus given by the union of all trajectories of length m of the two teams. For
simplicity, we omit the time index t and simply index elements of a trajectory
by their offset 1, . . . ,m in the remainder. The goal of this paper is to accurately
and efficiently compute similarities between trajectories in D. That is, given a
query trajectory q, we aim at finding the N most similar trajectories in D.

3.2 Representation

We aim to exploiting the symmetries of the pitch and use Angle/Arc-Length
(AAL) [11] transformations to guarantee translation, rotation, and scale invari-
ant representations of trajectories. The main idea of AAL is to represent a move-
ment p = hx1, . . . ,xmi in terms of distances and angles

p 7! ¯

p = h(↵1, kv1k), . . . , (↵m, kvmk)i, (1)

where vi = xi � xi�1. The difference vi is called the movement vector at time
i and the corresponding angle with respect to a reference vector vref = (1, 0)

>

is defined as

↵i = sign(vi,vref)



cos

�1

✓

v

>
i vref

kvik kvrefk

◆�

,

where the sign function computes the direction (clockwise ore counterclock-
wise) of the movement with respect to the reference. In the remainder, we dis-
card the norms in Equation (1) and represent trajectories by their sequences of
angles, p 7! ˜

p = h↵1, . . . ,↵mi.

3.3 Dynamic Time Warping

In this section, we propose a distance measure for trajectories. The proposed
representation of the previous section fulfils the required invariance in terms
of translation, rotation and scaling [11]. However, some movements may start
slow and end fast, while others start fast and then slow down at the end. Thus,
we additionally need to compensate for phase shifts of trajectories. A remedy
comes from the area of speech recognition and is called dynamic time warping
(DTW) [9]. Given two sequences s = hs1, . . . , smi and q = hq1, . . . , qmi and
an element-wise distance function dist : R⇥R ! R (e.g., Euclidean distance),
we define the DTW function g recursively as follows

g(;, ;) = 0

g(s, ;) = dist(;, q) = 1

g(s, q) = dist(s1, q1) +min

8

<

:

g(s, hq2, . . . , qmi)
g(hs2, . . . , smi, q)
g(hs2, . . . , smi, hq2, . . . , qmi)

9

=

;

D is thus given by the union of all trajectories of length m of the two teams. For
simplicity, we omit the time index t and simply index elements of a trajectory
by their offset 1, . . . ,m in the remainder. The goal of this paper is to accurately
and efficiently compute similarities between trajectories in D. That is, given a
query trajectory q, we aim at finding the N most similar trajectories in D.

3.2 Representation

We aim to exploiting the symmetries of the pitch and use Angle/Arc-Length
(AAL) [11] transformations to guarantee translation, rotation, and scale invari-
ant representations of trajectories. The main idea of AAL is to represent a move-
ment p = hx1, . . . ,xmi in terms of distances and angles

p 7! ¯

p = h(↵1, kv1k), . . . , (↵m, kvmk)i, (1)

where vi = xi � xi�1. The difference vi is called the movement vector at time
i and the corresponding angle with respect to a reference vector vref = (1, 0)

>

is defined as

↵i = sign(vi,vref)



cos

�1

✓

v

>
i vref

kvik kvrefk

◆�

,

where the sign function computes the direction (clockwise ore counterclock-
wise) of the movement with respect to the reference. In the remainder, we dis-
card the norms in Equation (1) and represent trajectories by their sequences of
angles, p 7! ˜

p = h↵1, . . . ,↵mi.

3.3 Dynamic Time Warping

In this section, we propose a distance measure for trajectories. The proposed
representation of the previous section fulfils the required invariance in terms
of translation, rotation and scaling [11]. However, some movements may start
slow and end fast, while others start fast and then slow down at the end. Thus,
we additionally need to compensate for phase shifts of trajectories. A remedy
comes from the area of speech recognition and is called dynamic time warping
(DTW) [9]. Given two sequences s = hs1, . . . , smi and q = hq1, . . . , qmi and
an element-wise distance function dist : R⇥R ! R (e.g., Euclidean distance),
we define the DTW function g recursively as follows

g(;, ;) = 0

g(s, ;) = dist(;, q) = 1

g(s, q) = dist(s1, q1) +min

8

<

:

g(s, hq2, . . . , qmi)
g(hs2, . . . , smi, q)
g(hs2, . . . , smi, hq2, . . . , qmi)

9

=

;

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Dynamic Time Warping
Rabiner & Juang (1993)

๏ Movements should be independent of player speed

๏ Dynamic time warping compensates phase shifts

๏ Distance measure

๏ DTW for sequences s and q defined recursively

10

D is thus given by the union of all trajectories of length m of the two teams. For
simplicity, we omit the time index t and simply index elements of a trajectory
by their offset 1, . . . ,m in the remainder. The goal of this paper is to accurately
and efficiently compute similarities between trajectories in D. That is, given a
query trajectory q, we aim at finding the N most similar trajectories in D.

3.2 Representation

We aim to exploiting the symmetries of the pitch and use Angle/Arc-Length
(AAL) [11] transformations to guarantee translation, rotation, and scale invari-
ant representations of trajectories. The main idea of AAL is to represent a move-
ment p = hx1, . . . ,xmi in terms of distances and angles

p 7! ¯

p = h(↵1, kv1k), . . . , (↵m, kvmk)i, (1)

where vi = xi � xi�1. The difference vi is called the movement vector at time
i and the corresponding angle with respect to a reference vector vref = (1, 0)

>

is defined as

↵i = sign(vi,vref)



cos

�1

✓

v

>
i vref

kvik kvrefk

◆�

,

where the sign function computes the direction (clockwise ore counterclock-
wise) of the movement with respect to the reference. In the remainder, we dis-
card the norms in Equation (1) and represent trajectories by their sequences of
angles, p 7! ˜

p = h↵1, . . . ,↵mi.

3.3 Dynamic Time Warping

In this section, we propose a distance measure for trajectories. The proposed
representation of the previous section fulfils the required invariance in terms
of translation, rotation and scaling [11]. However, some movements may start
slow and end fast, while others start fast and then slow down at the end. Thus,
we additionally need to compensate for phase shifts of trajectories. A remedy
comes from the area of speech recognition and is called dynamic time warping
(DTW) [9]. Given two sequences s = hs1, . . . , smi and q = hq1, . . . , qmi and
an element-wise distance function dist : R⇥R ! R (e.g., Euclidean distance),
we define the DTW function g recursively as follows

g(;, ;) = 0

g(s, ;) = dist(;, q) = 1

g(s, q) = dist(s1, q1) +min

8

<

:

g(s, hq2, . . . , qmi)
g(hs2, . . . , smi, q)
g(hs2, . . . , smi, hq2, . . . , qmi)

9

=

;

D is thus given by the union of all trajectories of length m of the two teams. For
simplicity, we omit the time index t and simply index elements of a trajectory
by their offset 1, . . . ,m in the remainder. The goal of this paper is to accurately
and efficiently compute similarities between trajectories in D. That is, given a
query trajectory q, we aim at finding the N most similar trajectories in D.

3.2 Representation

We aim to exploiting the symmetries of the pitch and use Angle/Arc-Length
(AAL) [11] transformations to guarantee translation, rotation, and scale invari-
ant representations of trajectories. The main idea of AAL is to represent a move-
ment p = hx1, . . . ,xmi in terms of distances and angles

p 7! ¯

p = h(↵1, kv1k), . . . , (↵m, kvmk)i, (1)

where vi = xi � xi�1. The difference vi is called the movement vector at time
i and the corresponding angle with respect to a reference vector vref = (1, 0)

>

is defined as

↵i = sign(vi,vref)



cos

�1

✓

v

>
i vref

kvik kvrefk

◆�

,

where the sign function computes the direction (clockwise ore counterclock-
wise) of the movement with respect to the reference. In the remainder, we dis-
card the norms in Equation (1) and represent trajectories by their sequences of
angles, p 7! ˜

p = h↵1, . . . ,↵mi.

3.3 Dynamic Time Warping

In this section, we propose a distance measure for trajectories. The proposed
representation of the previous section fulfils the required invariance in terms
of translation, rotation and scaling [11]. However, some movements may start
slow and end fast, while others start fast and then slow down at the end. Thus,
we additionally need to compensate for phase shifts of trajectories. A remedy
comes from the area of speech recognition and is called dynamic time warping
(DTW) [9]. Given two sequences s = hs1, . . . , smi and q = hq1, . . . , qmi and
an element-wise distance function dist : R⇥R ! R (e.g., Euclidean distance),
we define the DTW function g recursively as follows

g(;, ;) = 0

g(s, ;) = dist(;, q) = 1

g(s, q) = dist(s1, q1) +min

8

<

:

g(s, hq2, . . . , qmi)
g(hs2, . . . , smi, q)
g(hs2, . . . , smi, hq2, . . . , qmi)

9

=

;

O(|s||q|)

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Approximate DTW

๏ Approximate DTW by lower bounds

๏ Focus on characteristic values

๏ Kim et al. (ICDE, 2001)

๏ first, last, greatest, smallest value

๏ Keogh (VLDB, 2002)

๏ minimum/maximum values of subsequences

๏ Complexity in O(|s|)

11

The time complexity of DTW is O(|s||q|) which is clearly intractable for com-
puting similarities of thousands of trajectories. However, recall that we aim at
finding the N best matches for a given query. This allows for pruning some
DTW computations using lower bounds f , i.e., f(s, q)  g(s, q), with an ap-
propriate function f that can be more efficiently computed than g [10]. We use
two different lower bound functions, fkim [6] and fkeogh [5], that are defined
as follows: fkim focuses on the first, last, greatest, and smallest values of two
sequences [6]

f

kim

(s, q) = max {|s1 � q1|, |sm � q

m

|, |max(s)�max(q)|, |min(s)�min(q)|}

and can be computed in O(m). However, the greatest (or smallest) entry in
the transformed paths is always close or identical to ⇡ (or �⇡) and can thus
be ignored. Consequentially, the time complexity reduces to O(1) [10]. The
second lower bound fkeogh [5] uses minimum `i and an maximum values ui for
subsequences of the query q given by

`i = min(qi�r, . . . , qi+r) and ui = max(qi�r, qi+r),

where r is a user defined threshold. Trivially, ui � qi � `i holds for all i and
the lower bound fkeogh is given by

fkeogh(q, s) =

v

u

u

t

m
X

i=1

ci with ci =

8

<

:

(si � ui)
2
: if si > ui

(si � `i)
2
: if si < `i

0 : otherwise

which can also be computed in O(m) (see [7] for details).
Algorithm 1 extends [10] to compute the N most similar trajectories for a

given query q. Lines 2–9 compute the DTW distances of the first N entries in
the database and store the entry with the highest distance to q. Lines 10–21 loop
over all subsequent trajectories in D by first applying the lower bound functions
fkim and fkeogh to efficiently filter irrelevant movements before using the exact
DTW distance for the remaining candidates. Every trajectory, realising a smaller
DTW distance than the current maximum, replaces its peer and the variables
maxdist and maxind are updated accordingly. Note that the complexity of
Algorithm 1 is linear in the number of trajectories in D. In the worst case, the
sequences are sorted in descending order by the DTW distance, which requires
to compute all DTW distances. In practice we however observe much lower
run-times.

An important factor is the tightness of the lower bound functions. The better
the approximation of the DTW the better the pruning. The parameter N plays
also a crucial part in the effectiveness of the algorithm. If we set N = 1 the

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Locality Sensitive Hashing
Athitsos et al. (2008), Gionis et al., (1999)

๏ Distance-based hash function

๏ Bucket determined by

๏ Set of admissible intervals

12

Algorithm 1 TOP N(N,q,D)
Input: number of near-neighbour movements N , query trajectory q, game D
Output: The N most similar trajectories to q in D
1: output = ? ^ maxdist = 0 ^ maxind = �1

2: for i = 1, . . . , N do
3: dist = g(q,D[i])

4: output[i] = D[i]

5: if dist > maxdist then
6: maxdist = dist

7: maxind = i

8: end if
9: end for

10: for i = N + 1, . . . , |D| do
11: if f

kim

(q,D[i]) < maxdist then
12: if f

keogh

(q,D[i]) < maxdist then
13: dist = g(q,D[i])

14: if dist < maxdist then
15: output[maxind] = D[i]

16: maxdist = max{g(q, output[j]) : 1  j  N}
17: maxind = arg max

1jN

g(q, output[j])

18: end if
19: end if
20: end if
21: end for

maximum value will drop faster towards the lowest value in the dataset. By
contrast, setting N = |D| requires to compute the DTW distances for all entries
in the database. Hence, in most cases, N ⌧ |D| is an appropriate choice to
reduce the overall computation time.

3.4 Locality Sensitive Hashing

To further improve the efficiency of our algorithm, we will use locality sensi-
tive hashing (LSH) [2] to remove a great deal of trajectories before process-
ing them with Algorithm 1. The idea of LSH is to hash similar objects to the
same bucket, so that all objects of a bucket are considered candidates for being
near-neighbours. An interesting equivalence class of LSH functions are distance
based hashes (DBH) [1] that can be applied together with arbitrary (e.g., non-
metric) distance measures.

To define a hash family for our purposes, we first need to define a function
h : D ! R that maps a trajectory s 2 D to the set of real numbers. Choosingtwo randomly drawn members s1, s2 2 D we define the function h as follows:

hs1,s2(s) =
dist(s, s1)

2
+ dist(s1, s2)

2 � dist(s, s2)
2

2 dist(s1, s2)
.

In the remainder, we will use the identity dist(s1, s2) = fkim(s1, s2) for sim-
plicity. To compute a discrete hash value for s we verify whether h(s) lies in a
certain interval [t1, t2],

h

[t1,t2]
s1,s2 (s) =

⇢

1 : hs1,s2(s) 2 [t1, t2]

0 : otherwise

Optimally, the interval boundaries t1 and t2 are chosen so that the probability
that a randomly drawn s 2 X lies with 50% chance within and with 50% chance
outside of the interval. The set T defines the set of admissible intervals,

T (s1, s2) =

n

[t1, t2] : PrD(h
[t1,t2]
s1,s2 (s)) = 0) = PrD(h

[t1,t2]
s1,s2 (s)) = 1)

o

.

Given h and T we can now define the DBH hash family that can be directly
integrated in standard LSH algorithms:

HDBH =

n

h

[t1,t2]
s1,s2 : s1, s2 2 R ^ [t1, t2] 2 T (s1, s2)

o

Using random draws from HDBH , we construct several hash functions by AND-
and OR-concatenation [2]. Given a query trajectory q 2 D, the retrieval process
first identities candidate objects that are hashed to the same bucket for at least
one of the hash functions and computes the exact distances of the remaining
candidates using Algorithm 1.

4 Evaluation

In this section, we evaluate our approach in terms of run-time, pruning effi-
ciency, and precision. For our experiments, we use positional data published
by the DEBS Grand Challenge in 20131. There are eight players in each team,
where every player is equipped with two sensors, one for each shoe. We aver-
age these two values to obtain only a single measurement for every player at a
time. Discarding additional data that is not useful in our context leaves us with
a stream of

(sensor/player id, timestamp, player coordinates)

1 http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails

use Kim et al. (ICDE, 2001)
as distance function

s1 and s2 randomly
drawn from database

two randomly drawn members s1, s2 2 D we define the function h as follows:

hs1,s2(s) =
dist(s, s1)

2
+ dist(s1, s2)

2 � dist(s, s2)
2

2 dist(s1, s2)
.

In the remainder, we will use the identity dist(s1, s2) = fkim(s1, s2) for sim-
plicity. To compute a discrete hash value for s we verify whether h(s) lies in a
certain interval [t1, t2],

h

[t1,t2]
s1,s2 (s) =

⇢

1 : hs1,s2(s) 2 [t1, t2]

0 : otherwise

Optimally, the interval boundaries t1 and t2 are chosen so that the probability
that a randomly drawn s 2 X lies with 50% chance within and with 50% chance
outside of the interval. The set T defines the set of admissible intervals,

T (s1, s2) =

n

[t1, t2] : PrD(h
[t1,t2]
s1,s2 (s)) = 0) = PrD(h

[t1,t2]
s1,s2 (s)) = 1)

o

.

Given h and T we can now define the DBH hash family that can be directly
integrated in standard LSH algorithms:

HDBH =

n

h

[t1,t2]
s1,s2 : s1, s2 2 R ^ [t1, t2] 2 T (s1, s2)

o

Using random draws from HDBH , we construct several hash functions by AND-
and OR-concatenation [2]. Given a query trajectory q 2 D, the retrieval process
first identities candidate objects that are hashed to the same bucket for at least
one of the hash functions and computes the exact distances of the remaining
candidates using Algorithm 1.

4 Evaluation

In this section, we evaluate our approach in terms of run-time, pruning effi-
ciency, and precision. For our experiments, we use positional data published
by the DEBS Grand Challenge in 20131. There are eight players in each team,
where every player is equipped with two sensors, one for each shoe. We aver-
age these two values to obtain only a single measurement for every player at a
time. Discarding additional data that is not useful in our context leaves us with
a stream of

(sensor/player id, timestamp, player coordinates)

1 http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails

two randomly drawn members s1, s2 2 D we define the function h as follows:

hs1,s2(s) =
dist(s, s1)

2
+ dist(s1, s2)

2 � dist(s, s2)
2

2 dist(s1, s2)
.

In the remainder, we will use the identity dist(s1, s2) = fkim(s1, s2) for sim-
plicity. To compute a discrete hash value for s we verify whether h(s) lies in a
certain interval [t1, t2],

h

[t1,t2]
s1,s2 (s) =

⇢

1 : hs1,s2(s) 2 [t1, t2]

0 : otherwise

Optimally, the interval boundaries t1 and t2 are chosen so that the probability
that a randomly drawn s 2 X lies with 50% chance within and with 50% chance
outside of the interval. The set T defines the set of admissible intervals,

T (s1, s2) =

n

[t1, t2] : PrD(h
[t1,t2]
s1,s2 (s)) = 0) = PrD(h

[t1,t2]
s1,s2 (s)) = 1)

o

.

Given h and T we can now define the DBH hash family that can be directly
integrated in standard LSH algorithms:

HDBH =

n

h

[t1,t2]
s1,s2 : s1, s2 2 R ^ [t1, t2] 2 T (s1, s2)

o

Using random draws from HDBH , we construct several hash functions by AND-
and OR-concatenation [2]. Given a query trajectory q 2 D, the retrieval process
first identities candidate objects that are hashed to the same bucket for at least
one of the hash functions and computes the exact distances of the remaining
candidates using Algorithm 1.

4 Evaluation

In this section, we evaluate our approach in terms of run-time, pruning effi-
ciency, and precision. For our experiments, we use positional data published
by the DEBS Grand Challenge in 20131. There are eight players in each team,
where every player is equipped with two sensors, one for each shoe. We aver-
age these two values to obtain only a single measurement for every player at a
time. Discarding additional data that is not useful in our context leaves us with
a stream of

(sensor/player id, timestamp, player coordinates)

1 http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Empirical Evaluation

๏ DEBS Grand Challenge

๏ 8 vs. 8 soccer game recorded by Fraunhofer IIS

๏ In total 33 sensors

๏ 1 sensor per shoe (200Hz)

๏ 1 sensor in the ball (2000Hz)

๏ 15,000 positions per second (3 dimensional)

13

http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails

Monday, September 16, 13

http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails

Ulf Brefeld Knowledge Mining & Assessment Group

Coordinates on the Pitch

๏ Coordinate system, origin (0,0) is at kick-off

๏ Discarding additional data, players are represented
by triplet:

14

(sensor/player id, timestamp, player coordinates)

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Representation
๏ Further preprocessing:

๏ Discarding positions outside of the pitch

๏ Removing half-time effect of changing sides

๏ Averaging player positions over 100ms

๏ Trajectory windows of size 10

15

t+1
t+2

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Evaluation

๏ Given: a query trajectory

๏ Task: Find near-duplicates

๏ (i.e., N=1000 most similar trajectories)

๏ Focus on 15k consecutive positions of one player

๏ (for baseline comparisons)

16

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Run-time

๏ Exact computation infeasible

๏ Dynamic time warping very effective

๏ DBH adds only little

17

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Pruned Trajectories

๏ Effectiveness of DBH depends only on data

๏ Kim and Keogh effective for constant N

18

Kim Keough DBH total

1000 0.00% 0% 11.42% 11.42%

5000 0.28% 34.00% 16.33% 50.61%

10000 9.79% 41.51% 17.80% 60.10%

15000 17.5% 46.25% 11.82% 75.57%

no
f.

tr
aj

et
or

ie
s

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

DBH Accuracy

๏ On average DBH performs very accurate

๏ However, worst cases clearly inappropriate

19

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Example

20

Query: Retrieved:

Monday, September 16, 13

Ulf Brefeld Knowledge Mining & Assessment Group

Conclusion

๏ Efficient computation of near duplicate movements
in positional data streams

๏ Dynamic time warping (DTW)

๏ Distance-based hashing (DBH)

๏ (Super-)linear complexity

๏ Accurate results

21

Monday, September 16, 13

