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Equivalence of CHR States – Motivation

Important question:
Given two states, are they equivalent?
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Equivalence of CHR States – Motivation

Important question:
Given two states, are they equivalent?

Why is this question important?
I CHR is non-deterministic: when applying different

rules to a state, we would like to know if resulting
states are equivalent confluence

I Input same state into different programs, we would like
to check if the resulting states are equivalent

I  Program equivalence
I Common in proofs involving source-to-source

transformations
I . . .
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State Equivalence Examples

Definition (State)
A state is a tuple of the form 〈G;B;V〉 with G a multiset of
CHR constraints, B a conjunction of built-ins, and V the set
of global variables.
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State Equivalence Examples

Definition (State)
A state is a tuple of the form 〈G;B;V〉 with G a multiset of
CHR constraints, B a conjunction of built-ins, and V the set
of global variables.

Example
〈c(X );>; {X}〉 ≡? 〈c(X );>; {X}〉
〈c(X );>; {X}〉 ≡? 〈c(Y );>; {Y}〉
〈c(X );>; ∅〉 ≡? 〈c(Y );>; ∅〉
〈c(X ); X = 0; {X}〉 ≡? 〈c(0); X = 0; {X}〉
〈∅; X ≥ 0 ∧ X ≤ 0; {X}〉 ≡? 〈∅; X = 0; {X}〉
〈∅; X = 1 ∧ X = 2; {X}〉 ≡? 〈∅; Y = 1 ∧ Y = 2; {Y}〉
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An Axiomatic Definition
or: what does it mean to be the “same”?

Definition (State Equivalence)
Equivalence between CHR states is the smallest
equivalence relation ≡ over CHR states satisfying:

1. (Substitution) 〈G; X .
= t ∧B;V〉 ≡ 〈G [X/t ] ; X .

= t ∧B;V〉
2. (Built-ins Equivalence) If CT |= ∃s̄.B↔ ∃s̄′.B′ where

s̄, s̄′ are the strictly local variables of B,B′, respectively,
then 〈G;B;V〉 ≡ 〈G;B′;V〉

3. (Non-Occurring Globals) If X is a variable that does not
occur in G or B then 〈G;B; {X} ∪ V〉 ≡ 〈G;B;V〉

4. (Failed States) 〈G;⊥;V〉 ≡ 〈G′;⊥;V〉
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An Axiomatic Definition – Example

Example (Equivalence Proof)
〈c(1),d(X ); X = 2; {X}〉 ≡ 〈c(Y ),d(2); Y = 1 ∧ X = 2; {X}〉
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An Axiomatic Definition – Example

Example (Equivalence Proof)
〈c(1),d(X ); X = 2; {X}〉 ≡ 〈c(Y ),d(2); Y = 1 ∧ X = 2; {X}〉

〈c(1),d(X ); X = 2; {X}〉
≡CT 〈c(1),d(X ); Y = 1 ∧ X = 2; {X}〉
≡Sub 〈c(Y ),d(X ); Y = 1 ∧ X = 2; {X}〉
≡Sub 〈c(Y ),d(2); Y = 1 ∧ X = 2; {X}〉
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Decision Criterion
or: how to tell if two states differ?

Theorem (Criterion for ≡)
Let σ = 〈G;B;V〉, σ′ = 〈G′;B′;V〉 be CHR states with local
variables ȳ , ȳ ′ that have been renamed apart.

σ ≡ σ′

if and only if

CT |=
∀(B→ ∃ȳ ′.((G = G′) ∧ B′))

∧
∀(B′ → ∃ȳ .((G = G′) ∧ B))

I Simplifies negative proofs and allows automatic proof
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Decision Criterion – Example

Example (Non-Equivalence Proof)

〈c(X ); X = 1; {X}〉 6≡ 〈c(2);>; {X}〉



Page 18 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Decision Criterion – Example

Example (Non-Equivalence Proof)

〈c(X ); X = 1; {X}〉 6≡ 〈c(2);>; {X}〉

I No local variables
I ∀X .(X = 1→ ((c(X ) = c(2)) ∧ >)

I Simplified: ∀X .X = 1→ X = 2
I Clearly: CT 6|= ∀X .X = 1→ X = 2



Page 19 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Summary: State Equivalence

Take Home Messages
I Axiomatic Definition of State Equivalence
I Decidable Criterion available
I Implementation available for automation
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Operational Semantics – Motivation

Within a proof one may have to show that a rule
application leads from one state to another. This
should be quick and easy, right?
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Operational Semantics – Motivation

Within a proof one may have to show that a rule
application leads from one state to another. This
should be quick and easy, right?

Example (Derivation Proof)

gcd(N)\gcd(M)⇔ M ≥ N ∧ N > 0 | gcd(L),L = M%N

Given the above rule, prove that it allows rewriting gcd(6)
and gcd(3) into gcd(3) and gcd(0).



Page 22 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Operational Semantics – Motivation

A formal proof is complicated and lengthy
Using the theoretical operational semantics ωt :

〈gcd(6), gcd(3); ∅;>; ∅〉∅0
→Intro 〈gcd(3); gcd(6)#0;>; ∅〉∅1
→Intro 〈∅; gcd(6)#0, gcd(3)#1;>; ∅〉∅2
→gcd 〈gcd(L), L = M%N; gcd(3)#1; gcd(6) = gcd(M) ∧ gcd(3) = gcd(N) ∧ M ≥ N ∧ N > 0; ∅〉∅2
→Intro 〈L = M%N; gcd(3)#1, gcd(L)#2; gcd(6) = gcd(M) ∧ gcd(3) = gcd(N) ∧ M ≥ N ∧ N > 0; ∅〉∅3
→Solve 〈∅; gcd(3)#1, gcd(L)#2; L = 0; ∅〉∅3

this includes proving that:

CT |= ∃N, M.(gcd(6) = gcd(M) ∧ gcd(3) = gcd(N) ∧ M ≥ N ∧ N > 0)
CT |= ∀((gcd(6) = gcd(M) ∧ gcd(3) = gcd(N) ∧ M ≥ N ∧ N > 0 ∧ L = M#N)↔ L = 0)
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Equivalence-based Operational Semantics
or: how to make things simple

Definition (Equivalence-based Operational Semantics)

r @ H1\H2 ⇔ G | Bc ,Bb

〈H1 ] H2 ]G; G ∧ B;V〉�r 〈H1 ] Bc ]G; G ∧ Bb ∧ B;V〉

σ′ ≡ σ σ�r τ τ ≡ τ ′

σ′�r τ ′

I Supports simplification, propagation, and simpagation
rules (via H1 = ∅ and H2 = ∅)



Page 24 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Equivalence-based Operational Semantics

Advantages
I Every inference rule corresponds to a CHR rule

application
I No additional conditions need to be proven
I Equivalent states are exchangeable anytime

during derivation
I Built-in store can be simplified anytime
I In proofs we are free to select the most suitable

state from all equivalent states for each derivation
step

I Compatible with abstract operational semantics of
CHR



Page 25 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Derivation Proof

Example (gcd Derivation Revisited)

gcd(N)\gcd(M)⇔ M ≥ N ∧ N > 0 | gcd(L),L = M%N

〈gcd(6), gcd(3);>; ∅〉
≡ 〈gcd(M), gcd(N);M ≥ N ∧ N > 0 ∧M = 6 ∧ N = 3; ∅〉
� 〈gcd(L), gcd(N);M ≥ N ∧ N > 0 ∧M = 6 ∧ N = 3 ∧ L = M%N; ∅〉
≡ 〈gcd(0), gcd(3);>; ∅〉
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More Abstract Formulation
or: how one rule captures the essence of CHR

Operational Semantics based on Equivalence Classes

r @ H1\H2 ⇔ G | Bc ,Bb

[〈H1 ] H2 ]G; G ∧ B;V〉]�r [〈H1 ] Bc ]G; G ∧ Bb ∧ B;V〉]
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Operational Semantics based on Equivalence Classes

Advantages
I In program analysis, we have no more explicit

state equivalence test
I Instead, check that results are exactly the same

(equivalence class)
I In a proof, if the current state is applicable to

r @ H1\H2 ⇔ G | Bc ,Bb, you know the state is

[〈H1 ] H2 ]G; G ∧ B;V〉]

for some G,B, and V.
I Equivalent to the less abstract formulation (= all

advantages from before)
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Summary: Equivalence-based Operational Semantics

Take Home Messages
I Every inference rule corresponds to a CHR rule

application
I You can “w.l.o.g.” consider the most suitable

state representation at any point



Page 29 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Merging and Splitting – Motivation

I Monotonicity is a big strength of CHR
I Given any derivation σ�∗ τ , the same rules are

applicable if you “add” additional constraints to σ.
I The added constraints then occur unchanged in

the resulting state.
I Can we formalize this?
I If so, we can “subtract” (by duality) unnecessary

constraints to make states simpler
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Merge Operator
or: how to extend a state

Definition (Merge Operator �)

Let σ1 = 〈G1;B1;V1〉 and σ2 = 〈G2;B2;V2〉 such that local
variables of one state are disjunct from all variables in the
other state.

σ1 �V σ2 ::= 〈G1 ]G2;B1 ∧ B2; (V1 ∪ V2) \ V〉

[σ1] �V [σ2] ::= [σ1 �V σ2].

For V = ∅, we write σ1 � σ2 and [σ1] � [σ2], respectively.
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Merge Operator

Example
I Equality holds in both directions: merge or split

[〈c(X );>; {X}〉] �{X} [〈∅; X = 1; {X}〉] = [〈c(X ); X = 1; ∅〉]

I Pay attention to global variables
[〈c(X );>; ∅〉] � [〈∅; X = 1; ∅〉] = [〈c(X ); Y = 1; ∅〉]

I For �V, the V variables act as a temporary bridge
between the two states.
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Merge Operator

Example (gcd)

gcd(N)\gcd(M)⇔ M ≥ N ∧ N > 0 | gcd(L),L = M%N

State splitting: remove everything not required for rule
application

[〈gcd(6),gcd(3);>; ∅〉]
≡ [〈gcd(M),gcd(N); M ≥ N ∧ N > 0 ∧M = 6 ∧ N = 3; ∅〉]
= [〈gcd(M),gcd(N); M ≥ N ∧ N > 0; {N,M}〉]
�{N,M}[〈∅; M = 6 ∧ N = 3; {N,M}〉]



Page 33 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Monotonicity and State Splitting
or: how to switch between larger and smaller derivations

Lemma (Monotonicity)
If [σ]� [τ ] then [σ] �V [σ′]� [τ ] �V [σ′] for all V.

I For any given derivation, you can extend start and
result state

I For any derivation, you can subtract from the start
state and consider the remaining derivation
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Monotonicity and State Splitting
or: how to switch between larger and smaller derivations

Lemma (State Splitting with �V)
Let the state [σ] be applicable to a rule
r = (H1\H2 ⇔ G | Bc ,Bb) with V being the variables
occurring in H1 and H2. Then

∃[δ].[σ] = [〈H1 ] H2; G;V〉] �V [δ].

I Eliminates everything from current state that is
not required for rule application

I Facilitates macro-step proofs
I A macro-step is a terminating derivation starting

from a rule state like [〈H1 ] H2; G;V〉]
I Every finite derivation has a finite number of

macro-steps (induction proofs)
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State Splitting – Example

Example (gcd State Splitting (cont.))

[〈gcd(6), gcd(3);>; ∅〉]
= [〈gcd(M), gcd(N);M ≥ N ∧ N > 0; {N,M}〉]

�{N,M}[〈∅;M = 6 ∧ N = 3; {N,M}〉]
� [〈gcd(N), gcd(L);M ≥ N ∧ N > 0 ∧ L = M%N; {N,M}〉]

�{N,M}[〈∅;M = 6 ∧ N = 3; {N,M}〉]
= [〈gcd(N), gcd(L);M ≥ N ∧ N > 0 ∧ L = M%N ∧M = 6 ∧ N = 3; ∅〉]
= [〈gcd(3), gcd(0);>; ∅〉]
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State Splitting in Semantics

Definition (Operational Semantics with State Splitting)

Apply:
r @ H1\H2 ⇔ G | Bc ,Bb V = vars(H1,H2)

[〈H1 ] H2; G;V〉]�r [〈H1 ] Bc ; G ∧ Bb;V〉]

Extend:
[σ]�r [τ ]

[σ] �V [δ]�r [τ ] �V [δ]

I Apply: minimal description of requirements and
consequences of rule application

I Extend: arbitrary extensions possible (for any V)
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Algebraic Properties of �
or: how to make further use of �

Lemma
(Σ/≡, �) is a commutative monoid (for V = ∅).

Commutative monoid:
I Totality
I Associativity

I Commutativity
I Identity element

I commutative monoid implies algebraic preordering
I [σ]C [τ ] if ∃[δ].[τ ] = [σ] � [δ]
I in fact, C is a partial order (antisymmetric)
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Summary: Merging and Splitting

Take Home Messages
I Merge operator � formalizes monotonicity
I State splitting extracts state components not

required for rule application
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Overall Summary: Presented Tools

Take Home Messages
I State equivalence

I Axiomatic definition, decidable criterion,
implementation available

I Operational Semantics
I Equivalence-based op.sem.
I Rewriting of equivalence classes

I Merge Operator
I Formalizes monotonicity
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Available Literature

I Frank Raiser, Hariolf Betz, Thom Frühwirth,
Equivalence of CHR States Revisited, CHR 2009

I axiomatic state equivalence, decidable criterion, new formulations of
operational semantics

I Hariolf Betz, Frank Raiser, Thom Frühwirth, A Complete
and Terminating Execution Model for Constraint
Handling Rules, ICLP 2010

I extension for propagation rules based on persistent constraints
I full version available as technical report 1/2010 at Ulm University

I Frank Raiser, Graph Transformation Systems in
Constraint Handling Rules: Improved Methods for
Program Analysis, PhD thesis, Ulm University

I available soon (hopefully)
I covers everything in this talk

(all images used in this presentation are available under LGPL from Wikimedia Commons)
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