
Equivalence in CHR
Tools for Proofs

Frank Raiser | August 2010 | CHR Summer School, Belgium

Page 2 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Table of Contents

Equivalence of CHR States
Motivation
Axiomatic Definition
Decision Criterion

Operational Semantics of CHR
Motivation
Equivalence-based Operational Semantics

Merging CHR States
Motivation
Merge Operator
State Splitting

Page 3 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Equivalence of CHR States – Motivation

Important question:
Given two states, are they equivalent?

Page 4 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Equivalence of CHR States – Motivation

Important question:
Given two states, are they equivalent?

Why is this question important?
I CHR is non-deterministic: when applying different

rules to a state, we would like to know if resulting
states are equivalent confluence

I Input same state into different programs, we would like
to check if the resulting states are equivalent

I Program equivalence
I Common in proofs involving source-to-source

transformations
I . . .

Page 5 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

State Equivalence Examples

Definition (State)
A state is a tuple of the form 〈G;B;V〉 with G a multiset of
CHR constraints, B a conjunction of built-ins, and V the set
of global variables.

Page 6 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

State Equivalence Examples

Definition (State)
A state is a tuple of the form 〈G;B;V〉 with G a multiset of
CHR constraints, B a conjunction of built-ins, and V the set
of global variables.

Example
〈c(X);>; {X}〉 ≡? 〈c(X);>; {X}〉
〈c(X);>; {X}〉 ≡? 〈c(Y);>; {Y}〉
〈c(X);>; ∅〉 ≡? 〈c(Y);>; ∅〉
〈c(X); X = 0; {X}〉 ≡? 〈c(0); X = 0; {X}〉
〈∅; X ≥ 0 ∧ X ≤ 0; {X}〉 ≡? 〈∅; X = 0; {X}〉
〈∅; X = 1 ∧ X = 2; {X}〉 ≡? 〈∅; Y = 1 ∧ Y = 2; {Y}〉

Page 7 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

State Equivalence Examples

Definition (State)
A state is a tuple of the form 〈G;B;V〉 with G a multiset of
CHR constraints, B a conjunction of built-ins, and V the set
of global variables.

Example
〈c(X);>; {X}〉 ≡ 〈c(X);>; {X}〉
〈c(X);>; {X}〉 ≡? 〈c(Y);>; {Y}〉
〈c(X);>; ∅〉 ≡? 〈c(Y);>; ∅〉
〈c(X); X = 0; {X}〉 ≡? 〈c(0); X = 0; {X}〉
〈∅; X ≥ 0 ∧ X ≤ 0; {X}〉 ≡? 〈∅; X = 0; {X}〉
〈∅; X = 1 ∧ X = 2; {X}〉 ≡? 〈∅; Y = 1 ∧ Y = 2; {Y}〉

Page 8 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

State Equivalence Examples

Definition (State)
A state is a tuple of the form 〈G;B;V〉 with G a multiset of
CHR constraints, B a conjunction of built-ins, and V the set
of global variables.

Example
〈c(X);>; {X}〉 ≡ 〈c(X);>; {X}〉
〈c(X);>; {X}〉 6≡ 〈c(Y);>; {Y}〉
〈c(X);>; ∅〉 ≡? 〈c(Y);>; ∅〉
〈c(X); X = 0; {X}〉 ≡? 〈c(0); X = 0; {X}〉
〈∅; X ≥ 0 ∧ X ≤ 0; {X}〉 ≡? 〈∅; X = 0; {X}〉
〈∅; X = 1 ∧ X = 2; {X}〉 ≡? 〈∅; Y = 1 ∧ Y = 2; {Y}〉

Page 9 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

State Equivalence Examples

Definition (State)
A state is a tuple of the form 〈G;B;V〉 with G a multiset of
CHR constraints, B a conjunction of built-ins, and V the set
of global variables.

Example
〈c(X);>; {X}〉 ≡ 〈c(X);>; {X}〉
〈c(X);>; {X}〉 6≡ 〈c(Y);>; {Y}〉
〈c(X);>; ∅〉 ≡ 〈c(Y);>; ∅〉
〈c(X); X = 0; {X}〉 ≡? 〈c(0); X = 0; {X}〉
〈∅; X ≥ 0 ∧ X ≤ 0; {X}〉 ≡? 〈∅; X = 0; {X}〉
〈∅; X = 1 ∧ X = 2; {X}〉 ≡? 〈∅; Y = 1 ∧ Y = 2; {Y}〉

Page 10 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

State Equivalence Examples

Definition (State)
A state is a tuple of the form 〈G;B;V〉 with G a multiset of
CHR constraints, B a conjunction of built-ins, and V the set
of global variables.

Example
〈c(X);>; {X}〉 ≡ 〈c(X);>; {X}〉
〈c(X);>; {X}〉 6≡ 〈c(Y);>; {Y}〉
〈c(X);>; ∅〉 ≡ 〈c(Y);>; ∅〉
〈c(X); X = 0; {X}〉 ≡ 〈c(0); X = 0; {X}〉
〈∅; X ≥ 0 ∧ X ≤ 0; {X}〉 ≡? 〈∅; X = 0; {X}〉
〈∅; X = 1 ∧ X = 2; {X}〉 ≡? 〈∅; Y = 1 ∧ Y = 2; {Y}〉

Page 11 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

State Equivalence Examples

Definition (State)
A state is a tuple of the form 〈G;B;V〉 with G a multiset of
CHR constraints, B a conjunction of built-ins, and V the set
of global variables.

Example
〈c(X);>; {X}〉 ≡ 〈c(X);>; {X}〉
〈c(X);>; {X}〉 6≡ 〈c(Y);>; {Y}〉
〈c(X);>; ∅〉 ≡ 〈c(Y);>; ∅〉
〈c(X); X = 0; {X}〉 ≡ 〈c(0); X = 0; {X}〉
〈∅; X ≥ 0 ∧ X ≤ 0; {X}〉 ≡ 〈∅; X = 0; {X}〉
〈∅; X = 1 ∧ X = 2; {X}〉 ≡? 〈∅; Y = 1 ∧ Y = 2; {Y}〉

Page 12 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

State Equivalence Examples

Definition (State)
A state is a tuple of the form 〈G;B;V〉 with G a multiset of
CHR constraints, B a conjunction of built-ins, and V the set
of global variables.

Example
〈c(X);>; {X}〉 ≡ 〈c(X);>; {X}〉
〈c(X);>; {X}〉 6≡ 〈c(Y);>; {Y}〉
〈c(X);>; ∅〉 ≡ 〈c(Y);>; ∅〉
〈c(X); X = 0; {X}〉 ≡ 〈c(0); X = 0; {X}〉
〈∅; X ≥ 0 ∧ X ≤ 0; {X}〉 ≡ 〈∅; X = 0; {X}〉
〈∅; X = 1 ∧ X = 2; {X}〉 ≡ 〈∅; Y = 1 ∧ Y = 2; {Y}〉

Page 13 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

An Axiomatic Definition
or: what does it mean to be the “same”?

Definition (State Equivalence)
Equivalence between CHR states is the smallest
equivalence relation ≡ over CHR states satisfying:

1. (Substitution) 〈G; X .
= t ∧B;V〉 ≡ 〈G [X/t] ; X .

= t ∧B;V〉
2. (Built-ins Equivalence) If CT |= ∃s̄.B↔ ∃s̄′.B′ where

s̄, s̄′ are the strictly local variables of B,B′, respectively,
then 〈G;B;V〉 ≡ 〈G;B′;V〉

3. (Non-Occurring Globals) If X is a variable that does not
occur in G or B then 〈G;B; {X} ∪ V〉 ≡ 〈G;B;V〉

4. (Failed States) 〈G;⊥;V〉 ≡ 〈G′;⊥;V〉

Page 14 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

An Axiomatic Definition – Example

Example (Equivalence Proof)
〈c(1),d(X); X = 2; {X}〉 ≡ 〈c(Y),d(2); Y = 1 ∧ X = 2; {X}〉

Page 15 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

An Axiomatic Definition – Example

Example (Equivalence Proof)
〈c(1),d(X); X = 2; {X}〉 ≡ 〈c(Y),d(2); Y = 1 ∧ X = 2; {X}〉

〈c(1),d(X); X = 2; {X}〉
≡CT 〈c(1),d(X); Y = 1 ∧ X = 2; {X}〉
≡Sub 〈c(Y),d(X); Y = 1 ∧ X = 2; {X}〉
≡Sub 〈c(Y),d(2); Y = 1 ∧ X = 2; {X}〉

Page 16 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Decision Criterion
or: how to tell if two states differ?

Theorem (Criterion for ≡)
Let σ = 〈G;B;V〉, σ′ = 〈G′;B′;V〉 be CHR states with local
variables ȳ , ȳ ′ that have been renamed apart.

σ ≡ σ′

if and only if

CT |=
∀(B→ ∃ȳ ′.((G = G′) ∧ B′))

∧
∀(B′ → ∃ȳ .((G = G′) ∧ B))

I Simplifies negative proofs and allows automatic proof

Page 17 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Decision Criterion – Example

Example (Non-Equivalence Proof)

〈c(X); X = 1; {X}〉 6≡ 〈c(2);>; {X}〉

Page 18 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Decision Criterion – Example

Example (Non-Equivalence Proof)

〈c(X); X = 1; {X}〉 6≡ 〈c(2);>; {X}〉

I No local variables
I ∀X .(X = 1→ ((c(X) = c(2)) ∧ >)

I Simplified: ∀X .X = 1→ X = 2
I Clearly: CT 6|= ∀X .X = 1→ X = 2

Page 19 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Summary: State Equivalence

Take Home Messages
I Axiomatic Definition of State Equivalence
I Decidable Criterion available
I Implementation available for automation

Page 20 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Operational Semantics – Motivation

Within a proof one may have to show that a rule
application leads from one state to another. This
should be quick and easy, right?

Page 21 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Operational Semantics – Motivation

Within a proof one may have to show that a rule
application leads from one state to another. This
should be quick and easy, right?

Example (Derivation Proof)

gcd(N)\gcd(M)⇔ M ≥ N ∧ N > 0 | gcd(L),L = M%N

Given the above rule, prove that it allows rewriting gcd(6)
and gcd(3) into gcd(3) and gcd(0).

Page 22 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Operational Semantics – Motivation

A formal proof is complicated and lengthy
Using the theoretical operational semantics ωt :

〈gcd(6), gcd(3); ∅;>; ∅〉∅0
→Intro 〈gcd(3); gcd(6)#0;>; ∅〉∅1
→Intro 〈∅; gcd(6)#0, gcd(3)#1;>; ∅〉∅2
→gcd 〈gcd(L), L = M%N; gcd(3)#1; gcd(6) = gcd(M) ∧ gcd(3) = gcd(N) ∧ M ≥ N ∧ N > 0; ∅〉∅2
→Intro 〈L = M%N; gcd(3)#1, gcd(L)#2; gcd(6) = gcd(M) ∧ gcd(3) = gcd(N) ∧ M ≥ N ∧ N > 0; ∅〉∅3
→Solve 〈∅; gcd(3)#1, gcd(L)#2; L = 0; ∅〉∅3

this includes proving that:

CT |= ∃N, M.(gcd(6) = gcd(M) ∧ gcd(3) = gcd(N) ∧ M ≥ N ∧ N > 0)
CT |= ∀((gcd(6) = gcd(M) ∧ gcd(3) = gcd(N) ∧ M ≥ N ∧ N > 0 ∧ L = M#N)↔ L = 0)

Page 23 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Equivalence-based Operational Semantics
or: how to make things simple

Definition (Equivalence-based Operational Semantics)

r @ H1\H2 ⇔ G | Bc ,Bb

〈H1] H2]G; G ∧ B;V〉�r 〈H1] Bc]G; G ∧ Bb ∧ B;V〉

σ′ ≡ σ σ�r τ τ ≡ τ ′

σ′�r τ ′

I Supports simplification, propagation, and simpagation
rules (via H1 = ∅ and H2 = ∅)

Page 24 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Equivalence-based Operational Semantics

Advantages
I Every inference rule corresponds to a CHR rule

application
I No additional conditions need to be proven
I Equivalent states are exchangeable anytime

during derivation
I Built-in store can be simplified anytime
I In proofs we are free to select the most suitable

state from all equivalent states for each derivation
step

I Compatible with abstract operational semantics of
CHR

Page 25 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Derivation Proof

Example (gcd Derivation Revisited)

gcd(N)\gcd(M)⇔ M ≥ N ∧ N > 0 | gcd(L),L = M%N

〈gcd(6), gcd(3);>; ∅〉
≡ 〈gcd(M), gcd(N);M ≥ N ∧ N > 0 ∧M = 6 ∧ N = 3; ∅〉
� 〈gcd(L), gcd(N);M ≥ N ∧ N > 0 ∧M = 6 ∧ N = 3 ∧ L = M%N; ∅〉
≡ 〈gcd(0), gcd(3);>; ∅〉

Page 26 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

More Abstract Formulation
or: how one rule captures the essence of CHR

Operational Semantics based on Equivalence Classes

r @ H1\H2 ⇔ G | Bc ,Bb

[〈H1] H2]G; G ∧ B;V〉]�r [〈H1] Bc]G; G ∧ Bb ∧ B;V〉]

Page 27 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Operational Semantics based on Equivalence Classes

Advantages
I In program analysis, we have no more explicit

state equivalence test
I Instead, check that results are exactly the same

(equivalence class)
I In a proof, if the current state is applicable to

r @ H1\H2 ⇔ G | Bc ,Bb, you know the state is

[〈H1] H2]G; G ∧ B;V〉]

for some G,B, and V.
I Equivalent to the less abstract formulation (= all

advantages from before)

Page 28 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Summary: Equivalence-based Operational Semantics

Take Home Messages
I Every inference rule corresponds to a CHR rule

application
I You can “w.l.o.g.” consider the most suitable

state representation at any point

Page 29 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Merging and Splitting – Motivation

I Monotonicity is a big strength of CHR
I Given any derivation σ�∗ τ , the same rules are

applicable if you “add” additional constraints to σ.
I The added constraints then occur unchanged in

the resulting state.
I Can we formalize this?
I If so, we can “subtract” (by duality) unnecessary

constraints to make states simpler

Page 30 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Merge Operator
or: how to extend a state

Definition (Merge Operator �)

Let σ1 = 〈G1;B1;V1〉 and σ2 = 〈G2;B2;V2〉 such that local
variables of one state are disjunct from all variables in the
other state.

σ1 �V σ2 ::= 〈G1]G2;B1 ∧ B2; (V1 ∪ V2) \ V〉

[σ1] �V [σ2] ::= [σ1 �V σ2].

For V = ∅, we write σ1 � σ2 and [σ1] � [σ2], respectively.

Page 31 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Merge Operator

Example
I Equality holds in both directions: merge or split

[〈c(X);>; {X}〉] �{X} [〈∅; X = 1; {X}〉] = [〈c(X); X = 1; ∅〉]

I Pay attention to global variables
[〈c(X);>; ∅〉] � [〈∅; X = 1; ∅〉] = [〈c(X); Y = 1; ∅〉]

I For �V, the V variables act as a temporary bridge
between the two states.

Page 32 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Merge Operator

Example (gcd)

gcd(N)\gcd(M)⇔ M ≥ N ∧ N > 0 | gcd(L),L = M%N

State splitting: remove everything not required for rule
application

[〈gcd(6),gcd(3);>; ∅〉]
≡ [〈gcd(M),gcd(N); M ≥ N ∧ N > 0 ∧M = 6 ∧ N = 3; ∅〉]
= [〈gcd(M),gcd(N); M ≥ N ∧ N > 0; {N,M}〉]
�{N,M}[〈∅; M = 6 ∧ N = 3; {N,M}〉]

Page 33 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Monotonicity and State Splitting
or: how to switch between larger and smaller derivations

Lemma (Monotonicity)
If [σ]� [τ] then [σ] �V [σ′]� [τ] �V [σ′] for all V.

I For any given derivation, you can extend start and
result state

I For any derivation, you can subtract from the start
state and consider the remaining derivation

Page 34 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Monotonicity and State Splitting
or: how to switch between larger and smaller derivations

Lemma (State Splitting with �V)
Let the state [σ] be applicable to a rule
r = (H1\H2 ⇔ G | Bc ,Bb) with V being the variables
occurring in H1 and H2. Then

∃[δ].[σ] = [〈H1] H2; G;V〉] �V [δ].

I Eliminates everything from current state that is
not required for rule application

I Facilitates macro-step proofs
I A macro-step is a terminating derivation starting

from a rule state like [〈H1] H2; G;V〉]
I Every finite derivation has a finite number of

macro-steps (induction proofs)

Page 35 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

State Splitting – Example

Example (gcd State Splitting (cont.))

[〈gcd(6), gcd(3);>; ∅〉]
= [〈gcd(M), gcd(N);M ≥ N ∧ N > 0; {N,M}〉]

�{N,M}[〈∅;M = 6 ∧ N = 3; {N,M}〉]
� [〈gcd(N), gcd(L);M ≥ N ∧ N > 0 ∧ L = M%N; {N,M}〉]

�{N,M}[〈∅;M = 6 ∧ N = 3; {N,M}〉]
= [〈gcd(N), gcd(L);M ≥ N ∧ N > 0 ∧ L = M%N ∧M = 6 ∧ N = 3; ∅〉]
= [〈gcd(3), gcd(0);>; ∅〉]

Page 36 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

State Splitting in Semantics

Definition (Operational Semantics with State Splitting)

Apply:
r @ H1\H2 ⇔ G | Bc ,Bb V = vars(H1,H2)

[〈H1] H2; G;V〉]�r [〈H1] Bc ; G ∧ Bb;V〉]

Extend:
[σ]�r [τ]

[σ] �V [δ]�r [τ] �V [δ]

I Apply: minimal description of requirements and
consequences of rule application

I Extend: arbitrary extensions possible (for any V)

Page 37 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Algebraic Properties of �
or: how to make further use of �

Lemma
(Σ/≡, �) is a commutative monoid (for V = ∅).

Commutative monoid:
I Totality
I Associativity

I Commutativity
I Identity element

I commutative monoid implies algebraic preordering
I [σ]C [τ] if ∃[δ].[τ] = [σ] � [δ]
I in fact, C is a partial order (antisymmetric)

Page 38 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Summary: Merging and Splitting

Take Home Messages
I Merge operator � formalizes monotonicity
I State splitting extracts state components not

required for rule application

Page 39 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Overall Summary: Presented Tools

Take Home Messages
I State equivalence

I Axiomatic definition, decidable criterion,
implementation available

I Operational Semantics
I Equivalence-based op.sem.
I Rewriting of equivalence classes

I Merge Operator
I Formalizes monotonicity

Page 40 Frank Raiser, Equivalence in CHR | CHR Summer School | August 2010

Available Literature

I Frank Raiser, Hariolf Betz, Thom Frühwirth,
Equivalence of CHR States Revisited, CHR 2009

I axiomatic state equivalence, decidable criterion, new formulations of
operational semantics

I Hariolf Betz, Frank Raiser, Thom Frühwirth, A Complete
and Terminating Execution Model for Constraint
Handling Rules, ICLP 2010

I extension for propagation rules based on persistent constraints
I full version available as technical report 1/2010 at Ulm University

I Frank Raiser, Graph Transformation Systems in
Constraint Handling Rules: Improved Methods for
Program Analysis, PhD thesis, Ulm University

I available soon (hopefully)
I covers everything in this talk

(all images used in this presentation are available under LGPL from Wikimedia Commons)

	Equivalence of CHR States
	Motivation
	Axiomatic Definition
	Decision Criterion

	Operational Semantics of CHR
	Motivation
	Equivalence-based Operational Semantics

	Merging CHR States
	Motivation
	Merge Operator
	State Splitting

