Abduction and language

processing with CHR

Henning Christiansen, professor of Computer Science at Roskilde University, Denmark

CHR Summer School — September 2010

My background

PhD in Computer Science: syntax and semantics of programming languages, 1988

Later interest in logic programming, as specification+implementation language and an object
of study by itself

Leading to NLP (natural language processing) and automated reasoning, in particular with
Constraint Handling Rules

* with applications in teaching, from hardcore CS students to linguists
Recent interests include also

* probabilistic-logic models for bioinformatics

* formal linguistics, in particular language evolution

Various: Organizer of several conferences and workshops, coordinator for international
student exchanges (Erasmus), a past as Head of CS Section and Study Director

Our principles

* Constraint store as a knowledge base

* CHR rules as “business logic” or “integrity constraints” = rules about
knowledge

* Prolog or additional CHR rules as “driver algorithm”

A motivating example . . .

A motivation example (1:3)

Consider the following Prolog program:

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

What is it supposed to mean?
Let’s try it:

| ?- happy(henning).

! Existence error in user:rich/1

! procedure user:rich/1 does not exist
! goal: wuser:rich(henning)

Another way of saying no :(

The problem: Prolog’s closed world assumption

A motivation example (2:3)

Let’s try with a little help from CHR:

:- use_module(library(chr)).
:- chr constraint rich/1, professor/1l, has/2.

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

Intuition: Make certain predicates “open world”.
Let’s try it:

| ?- happy(henning).
rich(henning) ? ;
professor (henning),

has (henning,nice students) ? ;
no

Looks more like it, but still not perfect . ..

A motivation example (3:3)

Adding a bit of “universal knowledge” in terms of a CHR rule:

:- use _module(library(chr)).

:— chr_constraint rich/1, professor/1l, has/2.
professor(X), rich(X) ==> fail.

happy(X):- rich(X).

happy(X):- professor(X), has(X,nice_students).

Let’s try it:

| ?- happy(henning), professor(henning).
professor (henning),

has(henning,nice students) ? ;
no

Thus:

* CHR constraints represent concrete facts about a given world.
* CHR rules represent universal knowledge valid in any world.

Historical background

* 1998: 1 found out that CHR existed and used it to implement a powerful automatic reasoning
system [Christiansen, 1998]

1999: Visiting LMU, Munich, 1999, cooperating with Slim Abdennadher on CHRY for
abduction [Abdennadher, Christiansen, 2000]

Around 2000: developing CHR Grammars [Christiansen, TPLP 2005]

2002: Visiting Verénica Dahl in Canada; replacing CHRY by Prolog+CHR for abductive
reasoning = Hyprolog, [Christiansen, Dahl, ICLP 2005]

* 2002 and onwards: different applications
Since 2005 or before: applied the principle in teaching Al
2006-2008: Probabilistic abduction [Christiansen, 2008]

See these and other references in the reference list.
7

Overview of this course

* Abductive Reasoning with CHR
* Definition, implementation in CHR, applications, esp. for diagnosis
* Language Analysis 1: With DCGs (= Prolog) plus CHR

* Language Analysis 2: CHR Grammars

oo
Q

Probabilistic Abductive Reasoning with CHR
* Each branch of computation represented as a CHR constraint

* Allows for best-first computations

A few remarks before we start

* All example programs available on the website (TBA)
* Tested in SICStus 4; should be compatible with SWI
* No theorems (find them in the references), just programming :)

* Please feel free to ask questions, to disagree even.

Part 1

Abductive reasoning

with CHR

10

Abduction????

A term due to C.S.Pierce (1839-1914); the trilogy:

+ Deduction

Reason “forward” in a sound way from what we know already; finding its logic
consequences; i.e., nothing really new

* Induction
Creating rules from example, so we can use these rules in new situations
* Abduction

* Figure out which currently unknown facts that can explain an observation; unsound
from logical point of view ;-)
11

Abduction with CHR

You've seen it already!

:— use module(library(chr)).

:- chr_constraint rich/1, professor/1l, has/2.
prof(X), rich(X) ==> fail.

happy(X):- rich(X).

happy(X):- professor(X), has(X,nice_students).

| ?- happy(henning), professor(henning).
professor (henning),

has (henning,nice_ students) ? ;
no

In logic programming terms:

Figure out which facts should be added to the program to make a the

given goal succeed
12

Tracdhitional defimition of Abductive
L.ogic Programming (ALP)

* An abductive logic program consist of
* A number of predicates, some of which are called abducibles, Abd
* Ausual logic program, P, in which abducibles do not occur in the head of rules

* A set of integrity constraints, IC, which are formulas that must always be true

* An abductive answer to a query Q is a set of abducible atoms Ans such
that

* PUAns =Q and P U Ans =IC

* (It is also possible to include an answer substitution, but we ignore that)

13

Translating ALP into Prolog+CHR

wabducible predicates =l CHR constrainis

Let us inspect our sample program:

:— use module(llbrar chr

happy (X):
happy (X) : - professor(X),

has(X,nice_students).

14

Compare with “traditional” ALP

+ Usually defined by difficult algorithms and implemented with
complicated meta-interpreters; see references to work by Kowalski,
Kakas & al, Decker, ...

* Our approach employs existing technology

* in the most efficient way
* with no meta-level overhead

* and we can use all of Prolog and CHR (libraries, all sorts of dirty tricks)
* To my knowledge, far the most efficient implementation of ALP

* The cost? Only very limited use of negation (you can read about that)

15

Applications of abduction

Separate
topic;

* Language interpretation

* Diagnosis h

* Planning

Not

* View update in databases
considered;

16

Diagnosis in Prolog+CHR

* Consider a complex system

* we can only see it from the outside, i.e., observe symptoms
* we have a model about how the system works inside

* we have an idea of possible diagnoses, that can explain the symptoms
* Examples: a patient, a computer system, a car, . . .

* The problem: Given observed symptoms, suggest diagnoses

% Our example: Fault finding in logical circuits

17

A model of logical circuits in Prolog

Sum halfadder (A, B, Carry, Sum):-
B and(A, B, Carry),

xXor (A, B, Sum).

Carry

Carry in

Sam Sum

fulladder(Carryin, A, B,
Carryout, Sum):-
xor (A, B, X),
and(A, B, Y),
and(X, Carryin, Z),
Carry out xor (Carryin, X, Sum),
or(Y, Zz, Carryout).

18

Adapt for diagnosis with CHR

Each logical gate is given an identifier, so we can distinguish:

fulladder(Carryin, A, B,

Carryout, Sum):-

xor(Al B, X, gl)l
and(Al B, Y, g2)l
and(X, Carryin, 2, g3),
xor (Carryin, X, Sum, g4),
or(Y, z, Carryout, g5).

A gate may be perfect or defect (ok or ko) for specific inputs

:-

chr constraint state/3.

'and(A,B,X,Id):-

disturb(0,1).
disturb(1,0).

and(A,B,X),

state(Id,A+B,0k).
and(A,B,X,Id):-

and(A,B,Z), disturb(z,X),

state(Id,A+B,ko).

or(A,B,X,Id):- . . .

—

Diagnosis may be based on

different assumptions

1.

Periodic faults, i.e.,
sometimes a gate
works and sometimes
it doesn’t

Consistent faults, i.e.,
if something is wrong,
it is always wrong

Consistent faults with
correct-behavior-
produced-in-correct-
way

20

Diagnosis may be based on

different assumptions

1. Periodic faults, i.e.,
sometimes a gate
works and sometimes
it doesn’t

‘%% No CHR rules needed -j

Let’s try it:

| ?- fulladder(0,1,1,1,0),
fulladder(0,1,0,0,1),
fulladder(0,0,1,0,1),
fulladder(1,0,1,1,1),
fulladder(1,1,1,0,0),
fulladder(0,0,0,0,1).

A total of 262144 solutions

Diagnosis may be based on

different assumptions

2. Consistent faults, i.e.,
if something is wrong,
it is always wrong

state(Id,Input,S1l) \ state(Id,Input,S2) <=> Sl=SZ.'

Let’s try it:

| ?- fulladder(o0,1,1,1,0),
fulladder(0,1,0,0,1),
fulladder(0,0,1,0,1),
fulladder(1,0,1,1,1),
fulladder(1,1,1,0,0),
fulladder(0,0,0,0,1).

A total of 72 solutions

Diagnosis may be based on

different assumptions

‘state(Id,A,Sl) \ state(Id,A,S2) <=> S1=S2. .

Let’s try it:

| ?- fulladder(0,1,1,1,0),
fulladder(0,1,0,0,1),
fulladder(0,0,1,0,1), !,
fulladder(1,0,1,1,1),
fulladder(1,1,1,0,0),
fulladder(0,0,0,0,1).

state(gl,0+0,ko),
o o +
3. Consistent faults with state(g3,0+1,ko),
; state(g4,1+0,ko),
correct-behavior- state(g4,1+1,ko),
produced-in-correct- state(g5,1+1,ko), ... (restisok) ?

way

Only 1 solution!!

Diagnosis may be based on

different assumptions: Summary

* Formulated in CHR with constraints for ok /not-ok for components

* Three alternative assumptions

1. periodic faults
2. consistent faults
3. consistent faults with correct-behaviour-produced-in-correct way

* In practice, try 3, if it does not work, try 2 — and if that gives too many
solutions, try to obtain more observations (i.e., test the device...)

* Problem for practical applications, say medical diagnosis, is the lack
of priority between different diagnoses

24

Planning as Abduction

+ Problem: Given a number of tasks + restrictions on the order in which
they can be done.

* Solution: An assignment of a time point to each task so the
restrictions are obeyed.

= In our terms

* Abducibles (CHR constraints): Assignment of a time point to a task
* Integrity constraints (CHR rules): The restrictions

* The goal (= desired observation): “The work has been done.”

25

Planning as Abduction, example

CHR rules:

mount (PO, Time0), mount(P1l,Timel) ==>
supports (P0,Pl), Time0 > Timel
| fail.

Architect’s drawing:

gable

mount (P, Time0), mount(P,Timel) ==>
Time0 \= Timel
| fail.

Prolog facts:
part(gable).
part(cl).

supports(soil, f0).
supports (£f0,£f1).

| fO | Driver algorithm in Prolog: next slide

soil ‘

CHR rules:

mount (P0,Time0), mount(Pl,Timel) ==>
supports(P0,Pl), TimeO > Timel
| fail.

mount (P,Time0), mount(P,Timel) ==>
Time0 \= Timel
| fail.

Prolog facts:
part(gable).
part(cl).

supports(soil, £0).
supports (£0,£f1).

no

Driver algorithm in Prolog:
built:- mount(soil,0), build(1l).
build(6):- !.
build(Time):-
part(P),
mount (P, Time),

Timel is Time+1,
build(Timel).

| ?- build.

mount (gable,5),
mount(c2,4),
mount(cl, 3),
mount (£f1,2),
mount (£0,1),
mount (so0il,0) ? ;

mount (gable,5),
mount(cl,4),
mount(c2,3),
mount (£f1,2),
mount (£0,1),
mount (soil,0) ? ;

Wanna see an animation
of the first solution?

7

gable

no

| ?- build.
mount (gable,5),
mount(c2,4),
mount(cl, 3),
mount (£f1,2),
mount (£0,1),
mount(soil,0) ?

mount (gable,5),
mount(cl,4),
mount(c2,3),
mount (£f1,2),
mount (£0,1),
mount (soil,0) ? ;

28

More on planning

* With the same technique, we can extend with

* Duration, e.g., it takes 8 hours to mount a column
* Resources, e.g., to mount a column, we need 1 crane and 12 workers

¢ Restrictions+= At any time, the resources in use must not exceed the
maximum available (say, 2 cranes and 30 workers)

¢ Your exercise (voluntary!): Extend the example and implement the
scheme above

* Your next exercise (difficult & voluntary): Extend your program so it tries
to find a solution that minimizes the no. of unoccupied workers — or,
alternatively, the solution that finishes the building as early as possible.

29

End of Part 1

30

Part 11

l.anguage analysis

with Prolog and CHR

Sill

Overall principles [

* My favourite metaphor: “Interpretationas AOANCTTON

* Jerry R. Hobbs, Mark E. Stickel, Douglas E. Appelt, Paul A. Martin: Interpretation as
Abduction. Artif. Intell. 63(1-2): 69-142 (1993)

* Also Charniac, McDermott (1985), Gabbay & al (1997), Christiansen (2003)

* We use Prolog’s Definite Clause Grammars (DCGs) extended with
CHR

* Resulting method:

* Integrates semantic and pragmatic analysis (in contrast to tradition methods)

* A great experimental tool for students and researcher in linguistics; easy to approach
and “advanced” analyses can be specified in very short time.

82

A short historical note

* Basic idea comes from CHR Grammars (Christiansen, 2001-2005), that
we will look at later in the course

* Idea of using DCGs emerged through joint work with Verénica Dahl,
2002 and onwards....

* Lead to the Hyprolog system (Christiansen, Dahl, ICLP, 2005)
- adds a thing layer of syntactic sugar upon Prolog+CHR that supports abduction

* and so-called assumptions, which another kind of tool (related to abduction,
though), coming from Verénica Dahl’s earlier work.

* Here we show things expressed directly in Prolog(DCG)+CHR

33

Overview

+ Recall Definite Clause Grammars

* Adding semantics/pragmatics: Using CHR as knowledge base as we
have seen already

* Examples

* Hyprolog and Assumptions
* Basicidea
* Examples

* Briefly about implementation techniques
* A realistic application: Mapping Use Cases to UML (sketch)

34

s(S0,83):- np(sS0,S1,N), v(sl,s2,N), v(S2,S3).

Definite €la

v([sees|S0],S0,sing).

* Syntactic sugar on top o

s --> np(N), v(N), np(_)-.

Prolog
s --> np(N), is(N),
System adds difference np(N) --> n(N).
lists “behind the curtain” .
v(sing)--> [sees].
v(plur)--> [see].
* In Prolog from its very is(sing)--> [is].
beginning is(plus)--> [are].
n(sing) --> [peter].
* Very popular for teaching, n(sing) --> [mary].
prototyping, and some n(sing) --> [jane].
realistic applications n(sing) --> [the,chr,summer,school].
n(sing) --> [hennings,course].
* Easy to add features and n(sing) --> [vacation].
“constraints” n(plur) --> n(sing), [and], n(_).

35

Adding semantics/pragmatics

Traditionally:
* “Semantics” = context-independent (lambda) terms
* “Pragmatics” = relating “Semantics” to context, e.g., mapping variables to

(identifiers of) “real worlds”

* The present approach blurs this distinction, which suits much better
my intuition about how humans process language

* You may see this in the examples

36

A DGC with CHR for

sem/pragm

First version: Only noting facts

:- chr constraint at/2, see/2.

{at(vacation,X)}.

np (peter) --> [peter]. at(Chr_sumTe
np(mary) --> [mary]. see(peter, ja
np(jane) --> [jane]. see(peter,ma

at (hennings_

:- phrase(story,

story --> []1 ; s, ['.'], story. [peter,sees,mary,'.l,
peter,sees, jane, '."',
s --> np(X), [sees], np(Y), peter,is,at,the,
{see(X,Y)}. chr, summer, school,'."',
s --> np(x), (is,at], np(E), mary, is, at, hennings, course, '.",
{at(E,X)}. jane,is,on,vacation,'.']).
s --> np(X), [is,on,vacation], at(vacation, jane),

course,mary),
r_school,peter),
ne),

ry) ?

np(chr summer school)
--> [the,chr,summer,school].

np(hennings_course)
--> [hennings,course].

np(vacation) --> [vacation].

87

2nd version: Adding world knowledge

:- chr_constraint at/2, in/2, see/2, skypes/2.

at(chr_summer_school,X) ==> in(leuven,X).

in(Locl,X) \ in(Loc2,X) <=> Locl=Loc2.

at (hennings_course,X) ==> at(chr_summer_school,X).
at(vacation,X) ==> in(Loc,X), diff(Loc,leuven).

see(X,Y) ==> true |
(in(L,X), in(L,Y)
; in(Lx,X), in(Ly,Y), diff(Lx,Ly), skypes(X,Y

4

diff(...) <=> . % Homemade version of dif/1 for nicer outpu

% Grammar rules: Exactly the same as before

| :- phrase(story,

[peter,sees,mary,'."',
peter,sees, jane,'."',
peter,is,at,the,

chr, summer, school,'."',

mary,is,at,hennings,course,
jane,is,on,vacation,'."']).

at(vacation, jane),
at(chr_summer_ school,mary),
at (hennings_course,mary),
at(chr_summer_ school,peter),
in(_A,jane),
in(leuven,mary),
in(leuven,peter),

see(peter, jane),
see(peter,mary),

skypes (peter, jane),

diff(leuven, A) ?

38

HYPROLOG and Assumptions

* Assumptions developed by [Dahl & al., 1997; Christiansen, Dahl, 2004, ...]

+ Similar to abduction but with explicit creation and application + simplistic scoping

* Can be implemented in CHR more or less the same way as abduction; you may also
take this as a lesson in implementing knowledge handling with CHR

* Included in the HYPROLOG system

+A Assert linear assumption A for subsequent proof steps.
Linear means “can be used once”.

*A Assert intuitionistic assumption A for subsequent proof steps.
Intuitionistic means “can be used any number of times”.

-A Expectation: consume/apply existing intuitionistic assumption in the state which
unifies with A.

=+A, =*A, =-A | Timeless versions of the above, meaning that order of assertion of assumptions and

their application or consumption can be arbitrary.

39

Example of Assumptions in DCG

Semantic-pragmatic analysis with pronoun resolution/ HYPROLOG syntax

assumptions acting/l1.
abducibles fact/1.

sentence --> np(A,_), verb(V), np(B,_),

{fact(Aa,v,B)}.
sentences --> [] ; sentence(Sl),sentences(S2).

np(X,Gender) --> name(X,Gender),
{*acting(X,Gender)}.
name (peter,masc) --> [peter].

np(X,Gender) --> {-acting(X,Gender)},

pronoun(Gender) .
pronoun(fem) --> [her].

verb(like) --> [likes].

“Peter likes Mary. She likes him”

*acting(peter,masc)
*acting(mary, fem)
-acting (X, fem)
leads to X=mary
-acting (X, masc)
leads to X=peter

fact(peter,like,mary)
fact (mary,

like,peter)

40

Implementing Assumptions

for DCGs in CHR

Example: Linear assumptions and expectations
* We want to be able to backtrack through alternative matches

* Incompatible (at first glance) with CHR’s philosophy

:- chr constraint (-)/1, (+)/1, assump list/1.
+A, assump list(L) <=> assump_ list([A|L]).
+A <=> assump_list([A]).

-E, assump_list(L) <=> member(A,L,LRest), assump_ list(LRest), A=E.

This is just one way on implementing Assumptions;

it is more efficient to maintain one assump_list per Assumption symbol
41

What 1s HYPROLOG, btw.?

* A system that adds a thin layer of syntactic sugar on top of Prolog+CHR

* Special syntax for declaring abducibles (as you have seen)
* Utilities and options for abductive reasoning (not shown here)

* Assumptions implemented as you have just seen

* Implementation principles interesting if you want to do such things ...

* Using same facilities as DCGs and CHR: term_expansion
* Operator declarations in Prolog are fine and useful, but we need also:

* When reading in a term from a Prolog source file, the system checks if there is a
term_expansion clause that matches that term ...

Example, next slide

42

(A small parenthesis on Prolog
programming)

* Implementing a “where” notation in Prolog which really surprises me
that they did not put in from the beginning; included in HYPROLOG
and CHR Grammars :)

Instead of Implementation

p(X):- r(X,Y), z(Y¥,4), a(X,17). :t— op(1200,yfx, where).

we would like to write term_expansion((Rule where Replace), Result):-

Replace -> term expansion(Rule, Result)
p(X):- Test, q(X, LastArg) ; write('Error in "where" part'),
abort.
where Test = (r(X,Y), z(Y,4))
LastArg = 17. . . .
(Recursive call to term_expansion important)

“

43

A realistic example: Extracting

UML diagrams from Use Cases

* Based on 4 week project work with two students [Christiansen, Have,
Tveitane, 2007 a+b]

* Only a brief sketch; here using full power of CHR without caring
about formal details ;-)

* Use cases?? In the OOA /OOP tradition, small stories about the world
which the system to be developed will fit it.

* According to OOA principles, UML diagrams describing classes and
their property, etc., are produced manually from use cases...

* But why not do it automatically, when we have a tool such as Prolog
+CHR which is perfectly suited for semantic/pragmatic analysis

44

Fxample of mput and output

From uses cases:

* The professor teaches. A
student reads, writes
projects and takes exams.
Henning is a professor. He
has an office. The
university has five study
lines. Students and
professors are persons.

... extract info and produce

office study_line
t- f
student
professor university

- property: study_line[5]

+ : read(): void

+ : take(exam) : void + : teach(): void
+ : write(project) : void
/write \take \ /

project exam person

45

Examples of CHR rules for
knowledge extraction (1:2)

Merging cardinalities, e.g.:

property(man, dog:1)
property(man, dog:5)

| |

property(man, dog:(1..5))

property(man, dog:(0..2))
property(man, dog:(1..n))

i

property(man, dog:(0..n))

property(C,P:N), property(C,P:M) <=>
count(N), count(M), N=<M
| property(C,P:(N..M)).

property(C,P:(N1..M1)),property(C,P:(N2..M2)) <=>
min(Nl1,N2,N), max(M1l,M2,M),
property(C,P: (N..M)).

(NB: “n” is a special symbol meaning “many”)

46

Fxamples of CHR rules for

knowledge extraction (2:2)

Pronoun resolution, e.g.,

Jack and_John are teachers. Jack teaches music. John teaches computer science. Mary is a
studen has many students.

Our heuristics: Take most recent referent that matches gender and when no ambiguity
arises; in case of ambiguity, we call it an error

sentence_no(Now), referent(No,G,Id,T) \ expect referent(No,G,X) <=>
T < Now, thereis no other relevant referent with Timestamp > T

if there is another relevant referent with Timestamp = T then
X = errorcode(ambiguous)

else
X = Id.

47

Summary: Language analysis with

DGC+CHR

* Natural and straightforward integration of semantic/pragmatic analysis
with parsing

* 10° times easier for this purpose than any other, known tools
* DCGs (i.e., Prolog) provide parsing plus auxiliary predicates
* CHR constraint store as knowledge base; CHR rules for world knowledge

* We showed
* Direct use of DCG+Prolog
* HYPROLOG which provided syntactic sugar, Assumptions and various auxiliaries
* Arealistic example with pronoun resolution and semantic reasoning

48

End of part 11

Part 111

CHR Grammars

CHR Grammars, background

* Around 2000, I noticed that it was easy to write bottom-op parsers with CHR

* Experiments showed that there was much more power in this principles than
expected:

* very flexible context-dependent rules, gaps, parallel matching, ...
* interesting treatment of ambiguity

* having parsing to depend on “semantics”, and a lot of other stuff

2002: CHR Grammar system released; only SICStus 3; beta versions for SICStus
4 and SWI exist; will be released soon (especially if you write to me ;-)

* Main publication 2005 [JLP]

* Applications: The full power of CHR Grammars still needs to be discovered
51

CHR Grammars, overview

* Bottom-up parsing with CHR, our principle
* A grammar notation and its translation into CHR

* What we can do in CHR Grammars, derived from the translation into
CHR

* We have squeezed as much power as possible out of CHR without caring whether it
is useful (our preferred design methodology ;-)

* Example: a biological application

52

Bottom-up parsing with CHR

Encode the string as a set of constraints with word boundaries

“Peter likes Mary”

:j' en(0,1,peter),token(1l,2,1likes), token(2,3,mar :

A bottom-parser that checks word / phrase bound

:- chr constraint np/2, verb/2,
sentence/2, token/3.

token(NO,N1,peter) ==> np(NO,N1).
token(NO,N1,mary) ==> np(NO,N1).
token(NO,N1,likes) ==> verb(NO,N1).

np(NO,N1), verb(N1,N2), np(N2,N3)
==> sentence(NO,N3).

?2-

np(0,1),
verb(1,2),
np(2,3),
sentence(0,3),
token(0,1,peter),
token(1l,2,1likes),
token(2,3,mary) ?

58)

A grammar notation upon CHR

Why write this?

When we would like to write this:

:- chr_constraint np/2, verb/2,
sentence/2, token/3.

token(NO,N1,peter) ==> np(NO,N1).

token(NO,N1,mary) ==> np(NO,N1).
token(NO,N1,likes) ==> verb(NO,N1l).
np(NO,N1), verb(N1,N2), np(N2,N3)

==> sentence(NO,N3).

?- token(0,1,peter),
token(1l,2,1likes),
token(2,3,mary).

[peter]
[mary]
[likes]

:- grammar_ symbol np/0, verb/O0,

sentence/0.
t:> np.
::> np.
::> verb.

np, verb, np ::> sentence.

end_of CHRG_source.

?- parse([peter,likes,mary]).

The CHR compiler

compile-on-load using term expansion

54

Inherent handling of ambiguity

abcl(0,3) abc2(0,3)
a(O/ }{ c\(23)

| 2 Parse([a,b,C])' / \ / \

token(0,1,a) token(1,2,b) token(2,3,c)

* Le,, all possible parses are run “in parallel”
* You can limit this by, e.g., simplification rules;
* in the example, you would end up with {abc1(0,3),c(2,3)}
* Thus the semantics very procedural! (good or bad?) o

What else can we put in? (1:5)

* 11> translates into ==>
* <:> translates into <=>
* Order independent syntax for simpagations
ta, b, lc <:> ac.
translated into

b(N1,N2) \ a(NO,N1), c(N2,N3) <=> ac(NO,N3).

56

What else can we put in? (2:5)

Gaps in the head
FEfRtpis a7 sl s biliopi = bilapbilios
* translated into

a(NO,N1),b(N2,N3) ::>
N2-N1 >= 7, N2-N1 =< 10
| ab(NO,N3).

* This may be relevant for biologic applications such as RNA folding

57

What else can we put in? (3:5)

Left and right context

* left-context -\ core-to-be-reduced /- right-context : :> ...
* For example

Gl e C 2t =\ E 3T AR =, e Sl e
* translated into

cl(,N1), c2(N2,N3), c3(N3,N4), c4(N4,N5),
c5(N6,)

<=> N1=<N2, N5=<N6 | c34(N3,N5).

58

What else can we put in? (4:5)

Parallel matching

“ one-reading-of-the-text $$ another-reading-of-the-text : :> ...

* For example: a $$ b <:> c.

* translates into: a(NO,N1), a(NO,N1) <=> c(NO,N1).
* And: a, 5...12 $$ b, c <:> d

* translates into:
a(NO,N1), b(NO,N11), c(N11,N2)
<=> N1-N2 >= 5, N1-N2 =< 12 | d(NO,N2)

“ Applications? I forgot why I included it, but it is smart, isn’t it?

59

What else can we put in? (3:5)

* Assumptions as we have seen
* Further equipment for abduction (see paper on CHRG)
* All sorts of utilities and options (see online User’s Guide)

* Extra-grammatical constraints in the head and body of rules (...)

60

Fxample: Simplification and
context for disambiguation

An abstract and highly-ambigueus grammar:

e, [t], e

e, [*], e

e, ["1, e

['"('1, e, [')'] <:> e.

[N] <:> integer(N) | e.

Here we used LR(1) items as right context to disambiguate...

just one special case of what we can do

61

Fxample: Context used for
tagger-like rules

Classify np’s according to position of the verb

name(A) /- verb(_) <:> subject(A).
verb(_) -\ name(A) <:> object(A).

name(4), [and], subject(B) <:> subject(A+B).

object(A), [and], name(B) <:> object(A+B).

subject (martha) subject (peter) object(paul)
name (martha) verb(likes) [and] name(peter) verb(hates) name(paul)

Martha likes and Peter hates Paul

A little voluntary exercise

Write the remaining rules for a grammar that may parse the entire phrase given in
the previous slide.

to make certain terminal symbols into nonterminals such as name (mary)
to make certain terminal symbols into nonterminals verb (1likes)
to parse complete sentences, i.e., that include explicit object.

to parse incomplete sentences that has implicit object, given by another sentence after
/land// .

Next, add at attribute to each sentence of the form fact (subject, verb, object) and
modify your grammar so that it generates the correct “meaning” for each sentence,
also the incomplete ones.

For example, the first incomplete sentence in the previous example should generate
the “meaning” fact (martha,like,paul).

Extend the grammar with whatever you find interesting.
63

Biological example

* RNA folding — to be developed over summer

64

Summary of CHRGs

* A powerful language specification language
* A powerful language processing system

* Exemplifies how you can use CHR to implement fairly advanced,
knowledge-based systems

* A compile-on-load implementation technique, you can use for other
purposes

* The power of CHRGs has not been explored fully; biological
applications are under consideration

65

End of part 111

66

Part 1V

Probabilistic abduction
with best-first search

67

Probabilistic Abduction with CHR

Our approach

* Use constraint store to hold a bunch of processes; CHR rules perform derivation steps
Each such process holds its “own constraint store”
This principle can be used for other purposes!!!

Recall abduction: To figure out which facts that are missing in order to have a given goal to
succeed; integrity constraints to avoid nonsense

This presentation
Shows the propositional case only and by example, but ...

* See [Christiansen, 2008 - LNCS 5388] for all details with variables and non-ground abducibles.

No system available, but you can copy-paste from the paper

68

Towards probabilistic abduction:
(1:4) Processes as CHR constraints

This is a Prolog program: This is its translation into an all-solutions CHR version:
p:- g. :— chr_constraint process/1.

pi- . process([p|More]) <=>

q:- S-. process([g|More]),

d- process([r|More]).

S.

process([q|More]) <=>
process([s|More]),
process (More) .

process([s|More]) <=> process(More).

Trying it:

| ?- process([p])-
process([r])
process([1])
process([1])
no

= a failed branch (i.e., could not continue)

=~ successful branches

69

Towards probabilistic abduction:

2:4) Adding abducibles

This is its translation into an all-solutions CHR version:

This is an abductive logic :— chr constraint process/2.
program:

process([p|More],Abd) <=>
abducible(a). process([a,q|More],Abd),
abducible(b). process([r|More],Abd).

a?du01ble(c). process([g|More],Abd) <=>
o arq- process([b,s|More],Abd),
- process([c|More],Abd).

r.
:- b,s.
c

process([s|More],Abd) <=> process(More,Abd).

©n Q Q T 'o

process ([A|More] ,Abd) <=>
abducible(ad),

Trying it:

(member (A,Abd) -> process (More,Abd)
; process(More, [A|Abd])).

| ?- process([pl,[])-
process([r],[]),
process([],[c,a])
process([],[b,a])
no

~ a failed branch (i.e., could not continue)

=~ successful branches
70

Towards probabilistic abduction:

(3:4) Adding integrity constraints

This is an abductive logic
program:

abducible(a).

This is its translation into an all-solutions CHR version:

:- chr_constraint process/2.

abducible(b). process([p|More],Abd) <=>
abducible(c). as before
p:- as before process ([A|More],Abd) <=>

abducible(A), \+ violate([A|Abd])
:- a,c. |

(member (A,Abd) -> process(More,Abd)

; process(More, [A|Abd])).

Trying it: violate (Abd) : - member (a,Abd), member(c,Abd).

| ?- process([p],[])-
process([r],[])7
process([c],[a]),
process([],[b,a])
no

~ failed branches (i.e., could not continue)

=~ a successful branch

il

Towards probabilistic abduction:

(4:4) Finally, probabilities

This is a probabilistic
abductive logic program:

abducible(a, 0.2).

This is its translation into an all-solutions CHR version:

:- chr_constraint process/3.

abducible(b, 0.7). process([p|More],Abd,Prob) <=>
abducible(c, 0.9). process([a,q|More],Abd,Prob),
p:- asbefore process([r|More],Abd,Prob) .
- a,c. |process([A|More],Abd,Prob) <=>

abducible(A,P), \+ violate([A|Abd])

Trying it: (member (A,Abd) -> process(More,Abd,Prob)
5 ; Probl is Prob*P,
| 2- process(lpl,[1,1)- process (More, [A|Abd],Probl)).

process([r],[]1,1)

process([c],[a],0. violate(Abd):- member(a,Abd), member(c,Abd).
process([]1,[b,a],0.14) " " .
no I ~ failed branches (i.e., could not continue)

=~ a successful branch
72

Extending with best-first search

* Add a little bit of control encoding

* only a process (G, Abd, P) with a highest P can be expanded

* when the first process ([]1,Abd, P) is encountered, Abd and P are printed and the
user asked if he/she wants more solution

* Advantages

* more efficient: executes until first and guaranteed best solution is found

* can work even with programs that would otherwise loop

* Find details in the paper [Christiansen, 2008 - LNCS 5388]

73

Fixample: Diagnosis with

probabilities

A power supply network:

£

=)
S

A w1 (1) w2 (72
6\}/

w3 @ w4 'Q.-

w7

abducible(up(_), 0.9).
abducible(down(_), 0.1).

:— up(X),down(X).

link(wl, pp, nl). ...
haspower (pp) :— up(pp) -

w5 w haspower (N2): -
link(W,N1,N2), up(W), haspower(N1l).
() Ala Alm
. . hasnopower (pp) :- down(pp) .
" . hasnopower (N2):- link(W, ,N2), down(W).
hasnopower (N2) : -
Q.- ﬁ.- edge(_,N1,N2), hasnopower(N1l).
Trying it:

?- haspower (v5), nohaspower(vl).
to be tested and included later

74

A voluntary project work

* Write a compile-on-load implementation of probabilistic logic
programs using term expansion.

* If you decide to do this, write to me!!

75

{ Non-ground abducibles?

| ?- happy(peter).

married(peter,X), blond(X), rich(X).
Probability = 0.2689

modeling tools 101 systems to be

diagnose
Sato & al [2001, ...]
Compariso Our approach Poole [1993,200 ’
2 pp [| PRISM
™ Non-ground
abducibles yes no yes
Integrity
constraints yes 1o no
Other Very powerful machine learning
features techniques and lots of facilities

To be done:
an efficient priority queue for selecting currently best
express and utilize that, e.g., down(X),up(X) are each other’s negation, e.g.,

[down(wl), down(w2)] + [down(wl), up(w2)] = [down(w2)]
76

End of part IV

o7

Summary of the course

* CHR is for more than numbers, inequalities and stuff like that

* CHRis a powerful knowledge representation & manipulation language

* T have showed methods for abductive reasoning and language processing,
that are

executed directly by the underlying CHR and Prolog systems

« thus efficient for the right kind of problems
* Thave intended that, after this course and a bit of reading, you can
use the methods as described directly

invent your own ways to work with knowledge and experiment with in Prolog+CHR
78

The End

