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Introduction
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Learning and Reasoning

both needed

• System 1 - thinking fast - can do things like 2+2 = ? and 
recognise objects in image


• System 2 - thinking slow - can reason about solving complex 
problems - planning a complex task 


• alternative terms — data-driven vs knowledge-driven, symbolic 
vs subsymbolic, solvers and learners, neuro-symbolic… 


• A lot of work on integrating learning and reasoning, neural 
symbolic computation to integrate logic / symbols 
reasoning with neural networks  

•
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see also arguments 
by Marcus, Darwiche, Levesque, Tenenbaum, Geffner, 
Bengio, Le Cun, Kautz, …
see also AI Debates



Real-life problems involve two 
important aspects.
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Who can go first ? 

A. The red car

https://www.theorie-blokken.be/nl/gratis-proefexamen

B. The blue van
C. The white car

https://www.theorie-blokken.be/nl/gratis-proefexamen


Real-life problems involve two 
important aspects.
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Who can go first ? 

A. The red car

https://www.theorie-blokken.be/nl/gratis-proefexamen

B. The blue van
C. The white car

Reasoning
Sub-symbolic perception

https://www.theorie-blokken.be/nl/gratis-proefexamen


Thinking fast 
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NEURAL

MAIN PARADIGM in AI 
Focus on Learning



PROBABILITY

LOGIC

TWO MAIN PARADIGMS in AI

Their integration has been well studied in 
Probabilistic (Logic) Programming and Statistical Relational AI (StarAI)

Thinking slow = reasoning 
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Learning
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PROBABILITY

LOGIC NEURAL

How to integrate these three paradigms in AI ? 



A lot of ML
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PROBABILITY

Well studied  from a LEARNING perspective 
in Deep Learning

NEURAL



PROBABILITY

LOGIC

TWO MAIN PARADIGMS in AI

Their integration has been well studied in 
Probabilistic (Logic) Programming and Statistical Relational AI (StarAI)

Thinking slow = reasoning 
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State of the Art
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LOGIC

Being studied from a LEARNING perspective  
in Neuro Symbolic Computation

NEURAL



StarAI and NeSy share similar problems 
and thus similar solutions apply 

See also  
De Raedt, Dumancic, Marra, Manhaeve 

From Statistical Relational to Neuro-Symbolic Artificial Intelligence 
IJCAI 20

Key Message

LOGICLOGICLOGICNEURALLOGIC
PROBABI

LITYFROM TO

WARNING!
TALK MAY NOT COVER ALL of 

NESY
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Applications



Feedback in two directions

• Logic can help neural networks to use external knowledge:

• Better performance

• Less data


• Neural networks can help logic-based systems to explore 
combinatorial spaces more efficiently.
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Addition

Learn to add the sum of lists of MNIST images





Assume you do not know how to map MNIST images to 
numbers, but do know the rules of addition. Can you lean from 
these examples how to map MNIST to numbers ? 

                           +                 = ?
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PROBABI
LITY

LOGICLOGICLOGICNEURAL

35 962

example multi-addition predicate

DeepProbLog, Manhaeve et al, NeurIPS 2018 



Semantic Image Interpretation
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LOGICLOGICLOGICNEURAL

LTN, Serafini et al , NeSY@HLAI 2016




Visual Reasoning

NS-VQA, Yi et al , NeurIPS 201918

Adding a reasoning component on top of 
the perception can improve performance.



Visual Reasoning

Wang et al, IJCAI 201719

One can also add 
ontological knowledge. 



Program Induction from image 
and language

Goldman et al, ACL 2018
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Adding an intermediate 
symbolic representation 
helps generalization



The Seven Dimensions
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1.   Proof vs Model based

2.   Directed vs Undirected

3.   Type of Logic

4.   Symbols vs Subsymbols

5.   Parameter vs Structure Learning

6.   Semantics

7.   Logic vs Probability vs Neural



1. Proof vs Model based
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LOGIC
PROBABI

LITYLOGIC LOGICLOGICLOGICNEURAL



1. Proof vs Model based
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LOGIC



• Model- vs proof-based


• First order / relational vs propositional


• Grounding


• Differences important for both StarAI and NeSY
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1. Proof vs Model based
the logic dimension



Logic Programs
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burglary. 
hears_alarm_mary. 

earthquake. 
hears_alarm_john. 

alarm :– earthquake. 

alarm :– burglary. 

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john. 

Propositional logic program
as in the programming language Prolog

LOGIC

facts : 
burglary = true   



Logic Programs
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burglary. 
hears_alarm_mary. 

earthquake. 
hears_alarm_john. 

alarm :– earthquake. 

alarm :– burglary. 

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john. 

Propositional logic program
as in the programming language Prolog

LOGIC

rule:  
calls_mary =true IF alarm = true AND hears_alarm_mary = true 

 



Logic Programs
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burglary. 
hears_alarm_mary. 

earthquake. 
hears_alarm_john. 

alarm :– earthquake. 

alarm :– burglary. 

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john. 

Propositional logic program Two proofs (by refutation) 

:- calls_mary.

:- alarm, hears_alarm_mary.

:- earthquake, hears_alarm_mary.

 []  

:- hears_alarm_mary.

:- burglary, hears_alarm_mary).

:- hears_alarm_mary.

 []  

as in the programming language Prolog

A proof-theoretic view

LOGIC
backward chaining



Logic as constraints
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calls(mary) hears_alarm(mary) ∧ alarm←

calls(john)    hears_alarm(john) ∧ alarm←

alarm   earthquake v burglary←

Propositional logic Model / Possible World

{ burglary, 

hears_alarm(john), 

alarm, 

calls(john)}

as in SAT solvers

A model-theoretic view
LOGIC

the facts that are true 
in this model / possible world

IF AND

OR

SAT: Find a model / possible world that satisfies all the constraints 
SAT SOLVERS



Relational/First Order Logic
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LOGIC

burglary. 
hears_alarm(mary). 

earthquake. 
hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 
calls(X) :– alarm, hears_alarm(X). 

burglary. 
hears_alarm(mary). 

earthquake. 
hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 
calls(mary) :– alarm, hears_alarm(mary).
calls(john) :– alarm, hears_alarm(john). 

Introduce Variables and Domains 
The meaning of this is always the GROUNDED theory 

allows to exploit symmetries / templates …

Variable X 
Domain = {mary, john} Grounded Theory 

BOTH for model and proof-based appraoch



Logical Theory                   
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stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X). 
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).

stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(ann) :- stress(ann). 
smokes(bob) :- stress(bob). 
smokes(carl) :- stress(carl). 

smokes(ann) :- influences(ann,ann), smokes(ann).     
smokes(ann) :- influences(bob,ann), smokes(bob).   
smokes(ann) :- influences(carl,ann), smokes(carl). 

smokes(bob) :- influences(ann,bob), smokes(ann).     
smokes(bob) :- influences(bob,bob), smokes(bob).   
smokes(bob) :- influences(carl,bob), smokes(carl). 

smokes(carl) :- influences(ann,carl), smokes(ann).     
smokes(carl) :- influences(bob,carl), smokes(bob).   
smokes(carl) :- influences(carl,carl), smokes(carl). 

GROUNDING OUT

IF INTERESTED ONLY IN
CERTAIN QUERIES,

CLEVER TECHNIQUES EXIST
TO AVOID GROUNDING OUT 

COMPLETELY



Logical Reasoning:  
Model Theoretic
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stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X). 
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).

stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(ann) :- stress(ann).  
-> infer smokes(ann) 

smokes(bob) :- influences(ann,bob), smokes(ann) 
-> infer smokes(bob) 
 
smokes(carl) :- influences(bob,carl), smokes(bob).   
-> infer smokes(carl). 

    
   

FINDING A MODEL 

FINDING A MODEL
here — the least Herbrand model as in Prolog using the Tp Operator (forward reasoning) 



Logical Reasoning:  
Model Theoretic
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stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X). 
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).stress(ann). 

influences(ann,bob). 
influences(bob,carl). 

smokes(ann) <-> stress(ann) 
              v  influences(ann,ann), smokes(ann)     
              v influences(bob,ann), smokes(bob)   
              v influences(carl,ann), smokes(carl) 

smokes(bob) <-> stress(bob) 
              v influences(ann,bob), smokes(ann)     
             v influences(bob,bob), smokes(bob)   
             v influences(carl,bob), smokes(carl) 

smokes(carl) <-> stress(carl) 
              v influences(ann,carl), smokes(ann)     
              v influences(bob,carl), smokes(bob)   
              v influences(carl,carl), smokes(carl) 

    

Clark’s completion  AND call a SAT Solver  

Clark’s completion’s as a 
grounding is incorrect

for Prolog when there are cycles

but it is too hard to explain why 
here



Logical Reasoning

Proofs

stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X). 
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).?- smokes(carl).

?- stress(carl). ?- influences(Y,carl),smokes(Y).

?- smokes(bob).

?- stress(bob). ?- influences(Y1,bob),smokes(Y1).

?- smokes(ann).

?- influences(Y2,ann),smokes(Y2).?- stress(ann).

facts used in successful derivation: 
influences(bob,carl)&influences(ann,bob)&stress(ann)

Y=bob

Y1=ann

33



• Model- vs proof-based


• First order / relational vs propositional


• Grounding


• Differences important for both StarAI and NeSY

34

1. Proof vs Model based
the logic dimension



1. Proof vs Model based
2. Directed vs Undirected

35

LOGIC
PROBABI

LITYLOGIC



0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake. 

alarm :– burglary.

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm. 

alarm

burglary. earthquake. 

calls(mary) calls(john) 

Markov LogicProbabilistic  Logic Programs  
ProbLog

undirected 
Markov Net 

model theoretic
directed 

Bayesian Net 

LOGIC
PROBABI

LITY key representatives

2. Directed vs Undirected
the PGM / StarAI dimension



Logic Programs
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burglary. 
hears_alarm(mary). 

earthquake. 
hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Propositional logic program Two proofs (by refutation)

:- calls(mary).

:- alarm, hears_alarm(mary).

:- earthquake, hears_alarm(mary).

 []  

:- hears_alarm(mary).

:- burglary, hears_alarm(mary).

:- hears_alarm(mary).

 []  

as in the programming language Prolog

A proof-theoretic view
LOGIC



Probabilistic Logic Programs
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0.1 :: burglary. 
0.3 ::hears_alarm(mary). 

0.05 ::earthquake. 
0.6 ::hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Propositional logic program

Probabilistic facts

Key Idea (Sato & Poole) 
the distribution semantics:   

 unify the basic concepts in logic 
and probability:  

random variable ~ propositional 
variable  

an interface between logic and 
probability 

as in the probabilistic programming language ProbLog

LOGIC
PROBABI

LITY



0.1 :: burglary. 
0.3 ::hears_alarm(mary). 

0.05 ::earthquake. 
0.6 ::hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Propositional logic program Two proofs (by refutation)

:- alarm

 []  

:- burglary. :- earthquake. 

 []  

Probabilistic Logic Programs

P=0.1 P=0.05

Probability of one proof : ∏
f:fact∈Proof

Pf

39

as in the probabilistic programming language ProbLog

LOGIC
PROBABI

LITY



Probabilistic Logic Programs

40

0.1 :: burglary. 
0.3 ::hears_alarm(mary). 

0.05 ::earthquake. 
0.6 ::hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Propositional logic program Disjoint sum problem

:- alarm

 []  

:- burglary. :- earthquake. 

 []  

P=0.1 P=0.05

Probability of one proof : ∏
f:fact∈Proof

Pf

P(alarm) = P(burg OR earth) 
= P(burg) + P(earth) - P(burg AND earth)  

=/= P(burg) + P(earth)

as in the probabilistic programming language ProbLog

LOGIC
PROBABI

LITY



Probabilistic Logic Program 
Semantics 

41

[Vennekens et al, ICLP 04]

probabilistic causal laws

earthquake
alarm

alarm alarm

no alarm

no alarm no alarm

burglary burglaryno burglary no burglary

1.0

0.6 0.4

0.050.05
0.95 0.95

0.80.8
0.20.2

P(alarm)=0.6×0.05×0.8+0.6×0.05×0.2+0.6×0.95+0.4×0.05×0.8

earthquake. 

0.05::burglary. 

0.6::alarm :– earthquake. 

0.8::alarm :– burglary. 



0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake. 

alarm :– burglary. 

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm. 

Propositional logic program Bayesian Network

alarm

burglary. earthquake. 

calls(mary) calls(john) 

Bayesian net encoded as Probabilistic Logic Program 
PLPs correspond to directed graphical models 

LOGIC
PROBABI

LITY ProbLog has both (directed) probabilistic graphic models,  
the programming language Prolog (and probabilistic databases) as special case 

Probabilistic Logic Program 
Semantics 

42



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Flexible and Compact Relational 
Model for Predicting Grades

43

“Program” Abstraction: 
• S, C logical variable representing students, courses

• the set of individuals of a type is called a population

• Int(S), Grade(S, C), D(C) are parametrized random variables

Grounding:

• for every student s, there is a random variable Int(s)

• for every course c, there is a random variable Di(c)

• for every s, c pair there is a random variable Grade(s,c)

• all instances share the same structure and parameters



ProbLog by example: 
Grading

Shows relational structure 

• grounded model: replace variables by constants 


Works for any number of students / classes (for 1000 students 
and 100 classes, you get 101100 random variables); still only few 
parameters 

With SRL / PP 


• build and learn compact models, 

• from one set of individuals - > other sets;

• reason also about exchangeability, 

• build even more complex models, 

• incorporate background knowledge 

44



ProbLog by example: 
Grading

Shows relational structure 

• grounded model: replace variables by constants 


Works for any number of students / classes (for 1000 students 
and 100 classes, you get 101100 random variables); still only few 
parameters 

With SRL / PP 


• build and learn compact models, 

• from one set of individuals - > other sets;

• reason also about exchangeability, 

• build even more complex models, 

• incorporate background knowledge 
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ProbLog by example: 
Grading

46

0.4 :: int(S) :- student(S). 
0.5 :: diff(C):- course(C). 

student(john). student(anna). student(bob). 
course(ai).    course(ml).    course(cs). 

gr(S,C,a) :- int(S), not diff(C). 
0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::gr(S,C,c) :-   
           int(S), diff(C). 
0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-   
           student(S), course(C),  
           not int(S), not diff(C). 
0.3::gr(S,C,c); 0.2::gr(S,C,f) :-  
           not int(S), diff(C).



ProbLog by example: Grading

47

unsatisfactory(S) :- student(S), grade(S,C,f). 

excellent(S):- student(S), not(grade(S,C1,G),below(G,a)), 
  grade(S,C2,a).

0.4 :: int(S) :- student(S). 
0.5 :: diff(C):- course(C). 

student(john). student(anna). student(bob). 
course(ai).    course(ml).    course(cs). 

gr(S,C,a) :- int(S), not diff(C). 
0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::gr(S,C,c) :-   
           int(S), diff(C). 
0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-   
           student(S), course(C),  
           not int(S), not diff(C). 
0.3::gr(S,C,c); 0.2::gr(S,C,f) :-  
           not int(S), diff(C).



Dynamic networks

Travian:  A massively multiplayer real-
time strategy game

Can we build a model

of this world ? 

Can we use it for playing

better ?

[Thon et al, MLJ 11]48
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Activity analysis and tracking 
video analysis

• Track people or objects 
over time? Even if 
temporarily hidden?


• Recognize activities?

• Infer object properties?

Fig. 4. Tracking results from experiment 2. In frame 5, two groups are
present. In frame 15, the tracker has correctly split group 1 into 1-0 and 1-1
(see Fig. 3). Between frames 15 and 29, group 1-0 has split up into groups
1-0-0 and 1-0-1, and split up again. New groups, labeled 2 and 3, enter the
field of view in frames 21 and 42 respectively.

Six frames of the current best hypothesis from experiment
2 are shown in Fig. 4, the corresponding hypothesis tree is
shown in Fig. 3. The sequence exemplifies movement and
formation of several groups.

A. Clustering Error

Given the ground truth information on a per-beam basis we
can compute the clustering error of the tracker. This is done
by counting how often a track’s set of points P contains too
many or wrong points (undersegmentation) and how often P
is missing points (oversegmentation) compared to the ground
truth. Two examples for oversegmentation errors can be seen
in Fig. 4, where group 0 and group 1-0 are temporarily
oversegmented. However, from the history of group splits
and merges stored in the group labels, the correct group

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.5  1  1.5  2  2.5  3  3.5

E
rr

o
r 

ra
te

s
 p

e
r 

tr
a

c
k
 a

n
d

 f
ra

m
e

Clustering distance threshold dP (m)

w/o tracking

Overs. + Unders.
Oversegm.

Undersegm.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  4  8  12  16  20

A
v
g

. 
c
y
c
le

 t
im

e
 (

s
e

c
)

Number of people in ground truth

Group tracker
People tracker

Fig. 5. Left: clustering error of the group tracker compared to a memory-
less single linkage clustering (without tracking). The smallest error is
achieved for a cluster distance of 1.3 m which is very close to the border of
personal and social space according to the proxemics theory, marked at 1.2
m by the vertical line. Right: average cycle time for the group tracker versus
a tracker for individual people plotted against the ground truth number of
people.

relations can be determined in such cases.
For experiment 1, the resulting percentages of incorrectly

clustered tracks for the cases undersegmentation, overseg-
mentation and the sum of both are shown in Fig. 5 (left),
plotted against the clustering distance dP . The figure also
shows the error of a single-linkage clustering of the range
data as described in section II. This implements a memory-
less group clustering approach against which we compare
the clustering performance of our group tracker.

The minimum clustering error of 3.1% is achieved by the
tracker at dP = 1.3 m. The minimum error for the memory-
less clustering is 7.0%, more than twice as high. In the
more complex experiment 2, the minimum clustering error
of the tracker rises to 9.6% while the error of the memory-
less clustering reaches 20.2%. The result shows that the
group tracking problem is a recursive clustering problem that
requires integration of information over time. This occurs
when two groups approach each other and pass from opposite
directions. The memory-less approach would merge them
immediately while the tracking approach, accounting for the
velocity information, correctly keeps the groups apart.

In the light of the proxemics theory the result of a minimal
clustering error at 1.3 m is noteworthy. The theory predicts
that when people interact with friends, they maintain a range
of distances between 45 to 120 cm called personal space.
When engaged in interaction with strangers, this distance is
larger. As our data contains students who tend to know each
other well, the result appears consistent with Hall’s findings.

B. Tracking Efficiency

When tracking groups of people rather than individuals,
the assignment problems in the data association stage are
of course smaller. On the other hand, the introduction of
an additional tree level on which different models hypoth-
esize over different group formation processes comes with
additional computational costs. We therefore compare our
system with a person-only tracker which is implemented by
inhibiting all split and merge operations and reducing the
cluster distance dP to the very value that yields the lowest
error for clustering single people given the ground truth. For

49

[Skarlatidis et al, TPLP 14; 
Nitti et al, IROS 13, ICRA 14, 

MLJ 16]
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[Persson et al, IEEE Trans on 
Cogn. & Dev. Sys. 19;

IJCAI 20]



Learning relational affordances

50

Shelf

   
 

  

push

Shelf
   

 

  tap

Shelf
   

 
  grasp

Moldovan et al.  ICRA 12, 13, 14; Auton. Robots 18

LOGIC
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(a) Disparity image (b) Segmented image with landmark points

Clip 7: Illustration of the object size computation. Left-hand image shows the disparity map

of the example shown in Figure 5. The orange points in the right-hand image show the points

that intersect with the ellipse’s major axis. The orange points are mapped onto 3D using their

associated disparity value, and the 3D distance between each pair is defined as the object size.

To learn an a↵ordance model, the robot first performs a behavioural babbling
stage, in which it explores the e↵ect of its actions on the environment. For
this behavioural babbling stage, for the single-arm actions the robot uses its
right-arm only. For these actions a model of the left-arm will be later built by
exploiting symmetry as in [3]. We include the simultaneous two-arm push on
the same object in the babbling phase, allowing for a more accurate modelling
of action e↵ects for the iCub.4

The babbling phase consists of placing pairs of objects in front of the robot
at various positions. The robot executes one of its actions A described above on
one object (named: main object, OMain). OMain may interact with the other
object (secondary object, OSec) causing it to also move. Figure 8 shows such
a setting, with the objects’ position before (l) and after (r) a right-arm action
(tap(10)) execution.

Clip 8: Relational O before (l), and E after the action execution (r).

4
As opposed to the two-arm a↵ordance modelling in [3], we also include in the babbling

phase the two-arm simultaneous actions whose e↵ects might not always be well modelled by

the sum of the individual single-arm actions.

15

similar to probabilistic Strips  
(with continuous distributions)



Biology 

!  Causes: Mutations 
! All related to similar 

phenotype 
!  Effects: Differentially 

expressed genes 
!  27 000 cause effect 

pairs

! Interaction network: 
! 3063 nodes 

! Genes 
! Proteins 

! 16794 edges 
! Molecular interactions 
! Uncertain

! Goal: connect causes to effects 
through common subnetwork 

! = Find mechanism 
! Techniques: 

! DTProbLog 
! Approximate inference

[De Maeyer et al., Molecular Biosystems 13, NAR 15] [Gross et al. Communications Biology, 19]51

LOGIC
PROBABI

LITY



52

LOGIC
PROBABI

LITY



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI

Markov Logic: Intuition

• Undirected graphical model 
• A logical KB is a set of hard constraints 

on the set of possible worlds

• Let’s make them soft constraints: 

When a world violates a formula, 
it becomes less probable, not impossible


• Give each formula a weight 
(Higher weight  ⇒  Stronger constraint)

53

( )∑∝ satisfiesit  formulas of weightsexpP(world)



A possible worlds view
Say we have two domain elements Anna and Bob as well as 
two predicates Friends and Happy

54

),( BobAnnaFriends¬

)(BobHappy)(BobHappy¬

),( BobAnnaFriends

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI slides by Pedro Domingos



A possible worlds view
Logical formulas such as    

          not Friends(Anna,Bob) or Happy(Bob) 
exclude possible worlds

55

),( BobAnnaFriends¬

)(BobHappy)(BobHappy¬

),( BobAnnaFriends

)(
),(
BobHappy

BobAnnaFriends
∨

¬

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI slides by Pedro Domingos



A possible worlds view
four times as likely that rule holds

56

),( BobAnnaFriends¬

)(BobHappy)(BobHappy¬

),( BobAnnaFriends

1))(),(( =∨¬Φ BobHappyBobAnnaFriends
75.0))(),(( =¬∧Φ BobHappyBobAnnaFriends

1 1

175.0

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI slides by Pedro Domingos



),( BobAnnaFriends¬

)(BobHappy)(BobHappy¬

Or as log-linear model this is:

),( BobAnnaFriends

29.0)75.0/1log(
)))(),(((

==

∨¬Φ BobHappyBobAnnaFriendsw

1 1

175.0

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AIThis can also be viewed as building a graphical model

A possible worlds view

57



Cancer(A)

Smokes(A) Smokes(B)

Cancer(B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic
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Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic
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Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic
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Markov Logic

61

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos



Applications

▪ Natural language processing, Collective Classification, Social 
Networks, Activity Recognition, …

62



0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake. 

alarm :– burglary.

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm. 

alarm

burglary. earthquake. 

calls(mary) calls(john) 

Markov LogicProbabilistic  Logic Programs  
ProbLog

undirected 
Markov Net 

model theoretic
directed 

Bayesian Net 

LOGIC
PROBABI

LITY key representatives

2. Directed vs Undirected
the PGM / StarAI dimension

63



1. Proof vs Model based
2. Directed vs Undirected

64

LOGIC
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Two types of Neural Symbolic 
Systems

Logic as a kind of neural 
program 

directed StarAI approach and logic 
programs

65

Logic as the regularizer                             
(reminiscent of Markov Logic 

Networks) 
undirected StarAI approach and 

(soft) constraints

Just like in StarAI 

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing  
knowledge based model construction  KBMC 

where logic is used as a template

Just like in StarAI 

2. Directed vs Undirected
the NeSy dimension



Logic as a neural program

66

A :− B, Z.
B :− C, D.
B :− E, F, G.
Z :− Y, not X.
Y :− S, T.

A   :− B, Z.
B   :− B’.
B   :− B’’.
B’  :− C, D.
B’’ :− E, F, G.
Z   :− Y, not X.
Y   :− S, T.

REWRITE

directed StarAI approach and logic programs

LOGICLOGICLOGICNEURAL

• KBANN (Towell and Shavlik AIJ 94)

• Turn a (propositional) Prolog program into a neural 

network and learn



HIDDEN UNITADD LINKS — ALSO SPURIOUS ONES

and then learn
(Details of activation & loss functions not mentioned)LOGICLOGICLOGICNEURAL

directed StarAI approach and logic programs

Logic as a neural program

67



Lifted Relational Neural Networks

68

LOGICLOGICLOGICNEURAL

[Sourek, Kuzelka, et al JAIR]

directed StarAI approach and logic programs

• Directed (fuzzy) NeSy    

• similar in spirit to the Bayesian Logic Programs and 

Probabilistic Relational Models

• Of course, other kind of (fuzzy) operations for AND, OR 

and Aggregation (cf. later)



Neural Theorem Prover

69[Rocktäschel Riedel, NeurIPS 17; Minervini et al.]
LOGICLOGICLOGICNEURAL

the logic is encoded in the network 
how to reason logically ?

directed StarAI approach and logic programs



Two types of Neural Symbolic 
Systems

Logic as a kind of neural 
program 

directed StarAI approach and logic 
programs

70

Logic as the regularizer                             
(reminiscent of Markov Logic 

Networks) 
undirected StarAI approach and 

(soft) constraints

Just like in StarAI 

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing  
knowledge based model construction  KBMC 

where logic is used as a template

Just like in StarAI 

2. Directed vs Undirected
the NeSy dimension



Logic as constraints

71

figures and example from Xu et al., ICML 2018
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

multi-class classification
This constraint should be satisfied

(¬x1 ^ ¬x2 ^ x3)_ (1)

(¬x1 ^ x2 ^ ¬x3)_ (2)

(x1 ^ ¬x2 ^ ¬x3) (3)

<latexit sha1_base64="XbG4kwy4F1ZEo1s2e3tSfbPsnUI="></latexit>



Logic as constraints

72

multi-class classification
Probability that constraint is satisfied

(1� x1)(1� x2)x3+

(1� x1)x2(1� x3)+

x1(1� x2)(1� x3)

<latexit sha1_base64="siUg7I1JwVFi32UgItD2G0F9eAQ="></latexit>

basis for SEMANTIC LOSS
   (weighted model counting)

LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints



Semantic Loss:

• Use logic as constraints (very much like “propositional 

MLNs)

• Semantic loss


• Used as regulariser 


• Use weighted model counting , close to StarAI

Logic as a regularizer

73

SLoss(T ) / � log
X

X|=T

Y

x2X

pi
Y

¬x2X

(1� pi)

<latexit sha1_base64="dER/6fh2D1SpLgkfxgf7GKJqOOM="></latexit>

Loss = TraditionalLoss+ w.SLoss

<latexit sha1_base64="+S53KnNUSBsAI7yKvOjzIEBijB0=">AAACDHicbZDLSsNAGIUn9dbGW9Wlm8EiCEJIRNGNUHTjwkXF3rANZTKZtEMnF2Ymagl9ADfufYpuXCji1gdw59PoJO1CWw8MfJzz/wz/cSJGhTTNLy03N7+wuJQv6Msrq2vrxY3NughjjkkNhyzkTQcJwmhAapJKRpoRJ8h3GGk4/fM0b9wSLmgYVOUgIraPugH1KEZSWZ1iSb8MhYCnsMqRS1MPMZhZ+/DOgNcpqinTMDPBWbAmUCoXoqeb0f13pVP8bLshjn0SSMyQEC3LjKSdIC4pZmSot2NBIoT7qEtaCgPkE2En2TFDuKscF3ohVy+QMHN/byTIF2LgO2rSR7InprPU/C9rxdI7sRMaRLEkAR5/5MUMyhCmzUCXcoIlGyhAmKsuMMQ9xBGWqj9dlWBNnzwL9QPDOjSOrlQbZ2CsPNgGO2APWOAYlMEFqIAawOABjMALeNUetWftTXsfj+a0yc4W+CPt4wf0Wp1n</latexit>

LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints



Logic Tensor Networks

74 Serafini & Garcez
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints



Semantic Based Regularization

75 Diligenti et al. AIJ
LOGICLOGICLOGICNEURAL

the logic is encoded in the network 
how to reason logically ?

undirected StarAI approach and (soft) constraints



Two types of Neural Symbolic 
Systems

Logic as a kind of neural 
program 

directed StarAI approach and 
logic programs

76

Logic as the regularizer                             
(reminiscent of Markov Logic 

Networks) 
undirected StarAI approach and 

(soft) constraints

Just like in StarAI 

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing  
knowledge based model construction  KBMC 

where logic is used as a template

Consequence : 
the logic is encoded in the network 
the ability to logically reason is lost 

logic is not a special case 



Two types of Neural Symbolic Systems

Logic as a kind of neural 
program 

directed StarAI approach and 
logic programs

77

Logic as the regularizer                             
(reminiscent of Markov Logic 

Networks) 
undirected StarAI approach and 

(soft) constraints

Just like in StarAI 

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing  
knowledge based model construction  KBMC 

where logic is used as a template

Just like in StarAI 

2. Directed vs Undirected
the NeSy dimension



3. Types of Logic

78

LOGIC LOGICLOGICLOGICNEURAL



• Different types of logic exist


• Different types of logic enable different functionalities

79

3. Types of Logic
Key Messages



3. Types of Logic

80

LOGIC



Various flavours of logic

81

Propositional logic First-order logic

LOGIC



Various flavours of first-order 
logic

82

LOGIC

Logic programs 
= programming language



Logic programming and Prolog

83

LOGIC

structured terms

recursion

Full-fledged programming language



Various flavours of first-order 
logic

84

LOGIC

Logic programs 
= programming language

Datalog 
= Logic programs  
   that always terminate



Datalog

85

LOGIC

Query language for deductive databases

no structured terms
guaranteed to terminate



Various flavours of first-order 
logic

86

LOGIC

Logic programs 
= programming language

Datalog 
= Logic programs  
   that always terminate

Answer-set programs 
= Logic programs with 
   multiple models that  
   always terminate

+ soft/hard constraints

+ preferences



Answer-set programming

87

LOGIC

Prolog with multiple models + interesting features

choice rules

constraint



What can it do?

88

LOGIC

Propositional logic: 
simple propositional reasoning



What can it do?

89

LOGIC

Datalog: 
database queries

Propositional logic: 
simple propositional reasoning



What can it do?

90

LOGIC

Datalog: 
database queries

Answer-set programming: 
database queries, common-sense 
reasoning, preferences

Propositional logic: 
simple propositional reasoning



What can it do?

91

LOGIC

Datalog: 
database queries

Answer-set programming: 
database queries, common-sense 
reasoning, preferences

Logic programming: 
programs manipulating structured 
objects, infinite domains, …

Propositional logic: 
simple propositional reasoning



Logic program vs First-order 
logic

92

LOGIC

edge(1,2).
path(A,B)  edge(A,B).
path(A,B)  edge(A,C), path(C,B).

←
←

Logic programs always 
have one model

{edge(1,2), path(1,2)}

First-order logic can have  
many models

{edge(1,2), path(1,2)}
{edge(1,2), path(1,2), path(1,1)}
{edge(1,2), path(1,2), path(2,1)}

Issues with transitive closure in first-order logic



3. Types of Logic

93
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Logic in NeSy - Propositional logic

94

Semantic loss

LOGICLOGICLOGICNEURAL



Logic in NeSy - Datalog

95

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂



Logic in NeSy - Answer-set 
programming

96

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂

NeurASP



Logic in NeSy - Logic programming

97

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂

NeurASP

DeepProblog,  
NLProlog



Logic in NeSy - First-order logic

98

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂

NeurASP

DeepProblog,  
NLProlog

Logic tensor networks, NMLN, 
     SBT, RNM 



• Different types of logic exist


• Different types of logic enable different functionalities

99

3. Types of Logic 
Key Messages



4. Symbolic vs sub-symbolic



• Entities are represented very differently in symbolic and 
sub-symbolic systems, but they are complementary


• NeSy systems differ in how they integrate symbolic and 
sub-symbolic properties

101

4. Symbolic vs sub-symbolic
Key Messages



4. Symbolic vs sub-symbolic

LOGIC



Entities in symbolic AI
• Atoms: an, bob

• Numbers: 4, -3.5

• Variables: X,Y

103

LOGIC

• Structured terms

• mother(an,bob)

• [1,3,5]

• plus(3,times(2,5))

mother(an, bob)

brother(bob, charlie)


mother(X, charlie)

children(an, [bob, charlie])


vs
f(x, y)

g(y, z)

f(W, z)


h(x, [y, z])


However, symbols have no inherent meaning



Symbolic unification

• Powerful mechanism for symbol matching

• basis for many AI systems


• Finds substitution θ such that both symbols match

• mother(X, bob) = mother(an, Y)

• θ = {X = an, Y = bob}


• Not useful to determine similarity

• mother(an,bob) ≈ mother(an,charlie)?

104

LOGIC



4. Symbolic vs sub-symbolic

NEURAL



Entities in sub-symbolic AI

106

0.1 -0.3 ...

-0.9 -0.2 ...

... ... ...

The quick brown fox ...

NEURAL

132 32 204 ... -0.5 0.2 0.1 ...
-0.8 0.4 0.6 ...

Sub-symbolic systems require different representation

Let's call these non-symbolic representation sub-symbols

Entities are already sub-symbolic

The transformation is straight-forward



Entities in sub-symbolic AI

107

NEURAL

0

1

2

3

0.3 -0.5 0.2 0.1

0.6

-0.2

-0.4

0 0 0 0

1 1 0 0

1 0 0 1

1 1 0 0

The transformation is not straight-forward



Sub-symbols in StarAI

• It is possible to represent these sub-symbols in logic

• vectors: [0.1, -0.5, 0.6]

• matrices: [[0.2,0.4], 

                 [0.3, 0.1]]


• However, they are not part of the computation mechanisms.

• i.e. we cannot learn its parameters


• They are not first class citizens.

108

LOGIC



Comparing sub-symbols

• Similarity can be determined through various metrics

• L1, L2, radial-basis function, ...


• Can only give a degree of similarity

• When is a ≠ b? When is a = b?

• Generalizability

• Encoding relations  r(h,t)


• Many ways to structure embedding space

109

a b

||a-b||2

NEURAL



4. Symbolic vs sub-symbolic

LOGICNEURAL



4. Symbolic vs sub-symbolic
Symbols as sub-symbols

LOGICNEURAL



Symbols as sub-symbols

• Symbols are replaced with sub-symbols

• One-hot encoding

• Embeddings

• Inherent numerical properties


• Natural in systems that are originate from a neural base

• LTN, NLM, ...

112

The quick brown fox ... 132 32 204 ... -0.5 0.2 0.1 ...
-0.8 0.4 0.6 ...

LOGICLOGICLOGICNEURAL



Logic Tensor Network

113

LOGICLOGICLOGICNEURAL

• These translations are made explicit in Logic Tensor Networks

Luciano Serafini, Artur S. d'Avila Garcez: Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge. NeSy@HLAI 2016




Logic Tensor Network

114

Encoding symbols

Sub-symbolic 

computation

LOGICLOGICLOGICNEURAL

Luciano Serafini, Artur S. d'Avila Garcez: Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge. NeSy@HLAI 2016




4. Symbolic vs sub-symbolic
Sub-symbols as symbols

LOGICNEURAL



Sub-symbols as symbols

• The sub-symbolic nature is not considered in the logic

• Tensors, vectors, … are treated as symbols

• Sub-symbolic properties are not directly used in the logic


• Difference with StarAI systems

• sub-symbolic properties are used on the neural side

• usually differentiable / learnable


• Natural in systems that are originate from a logic base

• DeepProbLog, NeurASP, ...

116
LOGICLOGICLOGICNEURAL



Sub-symbols as symbols:

DeepProbLog

• DeepProbLog: interface between PLP (ProbLog) and neural networks.


• This interface takes the form of the neural predicate


• Output of neural networks represented as probabilistic facts


nn(mnist_net, [D], N, [0 ... 9] ) :: digit(D,N).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

• In the logic, the images are represented as constants


• Sub-symbolic properties are used in the neural network to make predictions


• This may seem as a limitation, but isn't 

Examples: 
addition(  ,  ,8), addition(  ,  ,4), addition(  ,  ,11), … 



Sub-symbols as symbols:

DeepProbLog
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nn(mnist_net, [X], Y, [0 ... 9] ) :: 
  digit(X,Y).

addition(X,Y,Z) :- 
digit(X,N1), 
digit(Y,N2), 
Z is N1+N2.

PROBABI
LITY

LOGICLOGICLOGICNEURAL

The ACs are differentiable and 
there is an interface  with the 
neural nets




Embeddings as symbols

succesor_n(   ,    ) :- 
	 cnn_embed(    ,e1), 
	 cnn_embed(    ,e2), 
	 embed(“successor”,r), 
	 add(r,e1,e3), 
	 rbf(e2,e3).

CNN

“successor”

embedding

+

RBF

Computational Graph

Idea of TransE [Bordes et al] CNN



4. Symbolic vs sub-symbolic
Sub-symbols as labels

LOGICNEURAL



Sub-symbols as labels

T-PRISM

• StarAI

• probabilites are used as labels


• labels are combined in inference (cfr. arithmetic circuit)

• In this integration, labels are sub-symbols instead

• Example: T-PRISM

121

rel(S,R,O):-

	 	 tensor(v(S),[i]),

	 	 tensor(v(O),[i]),

	 	 tensor(r(R),[i]).


label(rel(S,R,O))

= label(Si ∧ Oi ∧ Ri)

= ∑i sioiri

= DistMult(s,o,r)


LOGICLOGICLOGICNEURAL

Ryosuke Kojima, Taisuke Sato: A tensorized logic programming language for large-scale data. CoRR abs/1901.08548 (2019)

Yang et al.: Embedding entities and relations for learning and inference in knowledge bases. (ICLR 2015)




4. Symbolic vs sub-symbolic
Neural Theorem Prover

LOGICNEURAL



Neural Theorem Prover

• The neural theorem prover uses both symbols and sub-
symbols simultaneously


• Symbols retain their symbolic nature

• Each symbol has a learnable sub-symbol T


• Symbol comparison:

• Normal unification


• Comparison of sub-symbols:

• sim(x,y) = exp( - ||Tx - Ty||2 )


123

LOGICLOGICLOGICNEURAL

Tim Rocktäschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.




Soft unification

• Unify what can be unified

• Use similarity to compare other symbols and use it as a score

124

mother(an, bob) = parent(X, bob)


sim(mother,parent)
 an = X
 bob = bob


mother parent

θ1 = {X = an}
 θ2 = {}


LOGICLOGICLOGICNEURAL

Tim Rocktäschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.




End-to-end differentiable 
proving

• OR module

• Apply every rule whose head soft-unifies with the goal

• Uses AND module to prove sub-goals in body


• AND module

• Prove conjunction of sub-goals

• Uses OR module to prove first goal

• Uses AND module to recursively prove

125

LOGICLOGICLOGICNEURAL

Tim Rocktäschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.




Example

126

mother(an, bob).

r1(X,Y) :- r2(Y,X). child(bob, an)

r2(an, bob).

Unifications


1) mother(an,bob) = child(bob,an)

	 	 sim(mother,child)

	 	 sim(an,bob)

2) r1(X,Y) = child(bob,an)

	 sim(r1,child)

	 X = bob

	 Y = an


3) r2(an, bob) = mother(an, bob)

	 sim(r2,mother)

1
2

3

LOGICLOGICLOGICNEURAL

Tim Rocktäschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.




• Entities are represented very differently in symbolic and 
sub-symbolic systems, but they are complementary


• NeSy systems differ in how they integrate symbolic and 
sub-symbolic properties

127

4. Symbolic vs sub-symbolic
Key Messages



5. Structure vs parameter learning 
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• Learning: finding logical formulas and estimating 
probabilities


• Structure learning: both formulas and probabilities


• Parameter learning: only probabilities


• Many flavours of learning in NeSy

129

5. Learning 
Key Messages



5. Structure vs parameter learning 
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Learning in StarAI

131

↦
0.7::nationality(X,Y) :- 
                  livesIn(X,Y).

0.9::nationality(X,Y) :- 
                  bornIn(X,Y).

0.7::nationality(X,Y) :- 
          livesIn(X,Z), locatedIn(Z,Y).

Obtaining models from data

LOGIC
PROBABI

LITY



StarAI learning paradigms

132

LOGIC
PROBABI

LITY

Structure  
learning

Parameter  
learning

What is  
provided?

What is the  
learning goal?

Data Data and  
discrete structure

Structure and 
parameters

Parameters



Learning types: Parameter learning
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LOGIC
PROBABI

LITY

↦
nationality(X,Y) :- 
                  livesIn(X,Y).

nationality(X,Y) :- 
                  bornIn(X,Y).

nationality(X,Y) :- 
          livesIn(X,Z), locatedIn(Z,Y).

0.7::nationality(X,Y) :- 
                  livesIn(X,Y).

0.9::nationality(X,Y) :- 
                  bornIn(X,Y).

0.7::nationality(X,Y) :- 
          livesIn(X,Z), locatedIn(Z,Y).

the goal of learning

Learning the probabilities/weights of a specified model

Model (the formulas) are given



Learning types: Parameter learning

134

LOGIC
PROBABI

LITY

Learning the probabilities/weights of a specified model

Model (the formulas) are given

Learning principles: identical to learning parameters of any parametric 
model


• gradient descent                  [Lowd & Domingos, 2007]

• least squares                               [Gutmann et al, 2008]

• Expectation Maximisation           [Gutmann et al, 2011]



Learning types: Structure learning
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LOGIC
PROBABI

LITY

Finding the clauses/logical formulas of a model

↦
0.7::nationality(X,Y) :- 
                  livesIn(X,Y).

0.9::nationality(X,Y) :- 
                  bornIn(X,Y).

0.7::nationality(X,Y) :- 
          livesIn(X,Z), locatedIn(Z,Y).

the goal of learning



Learning types: Structure learning
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LOGIC
PROBABI

LITY

Discriminative Generative

• specific target relation

• separate background  

knowledge

• no specific target relation

• learning generative process 

behind data

Two types of structure learning



Learning types: Structure learning
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LOGIC
PROBABI

LITY

Learning by searching

Create/refine 
candidates 

Learn 
parametersEvaluate

Combinatorial enumeration
need to control 
how complex this 
space is



Learning via enumeration - Probfoil+
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LOGIC
PROBABI

LITY

[De Raedt et al, 2015]

grandparent(abe,lisa).

grandparent(abe,bart).

grandparent(jacqueline,lisa).

grandparent(jacqueline,maggie.)



Learning via enumeration - Probfoil+
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LOGIC
PROBABI

LITY

[De Raedt et al, 2015]

                    {}

Learn one rule: p:: grandparent(X,Y)  true←p:: grandparent(X,Y)  true←
if not good enough, refine!

p:: grandparent(X,Y)  mother(X,Y)

p:: grandparent(X,Y)  mother(Y,X)

p:: grandparent(X,Y)  mother(X,Z)

p:: grandparent(X,Y)   father(X,Y)

…..

←
←
←
←

p:: grandparent(X,Y)  mother(X,Y)

p:: grandparent(X,Y)  mother(Y,X)

p:: grandparent(X,Y)  mother(X,Z)

p:: grandparent(X,Y)   father(X,Y)

…..

←
←
←
←

p:: grandparent(X,Y)  mother(X,Y),father(X,Z) 
….

p:: grandparent(X,Y)  mother(X,Z),father(Z,Y)

p:: grandparent(X,Y)  mother(X,Z),mother(Z,Y)

p:: grandparent(X,Y)   father(X,Y),mother(X,Y)

…..

←

←
←
←

{1.0:: grandparent(X,Y)  mother(X,Z), father(Z,Y)}←

start again with a single rule!
p:: grandparent(X,Y)  true←

Model:



Learning via random walks
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LOGIC
PROBABI

LITY

[Kok & Domingos, 2009]

“Lift” a knowledge graph by identifying  
nodes with the same role 

Traverse the lifted knowledge graph 
and 

turn every path into a clause/rule



Learning in StarAI - overview
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LOGIC
PROBABI

LITY

Structure learning Parameter learning

Learning is easierStarts directly from data

An expert needs to provide the rulesCombinatorial problem

User needs to design a language Sensitive to the choice of rules

Scales better



5. Structure vs parameter learning 

LOGIC
PROBABI

LITY LOGICLOGICLOGICNEURAL



Spectrum of learning paradigms
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LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

Structure learning Parameter learning

Neurally-guided 
learning

Soft patterns

Neural generation

Program sketching

Structure via 
parameter learning



DeepCoder
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LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Balog et al, 2017]

StarAI techniques search for clauses/rules systematically



DeepCoder

145
LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Balog et al, 2017]

Explore the subpart of the space with  
primitives that are likely to solve the problem

likely to solve a problem = learned from data

Preferences of learning ‘primitives’



DeepCoder
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LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Balog et al, 2017]
Preferences of learning ‘primitives’

Learn from pairs 
(examples, program)

Given examples, predict  
which functions to use q(functions |examples)



DreamCoder
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LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Ellis et al, 2018]

Distribution of primitives defines a generative model of programs

q(programs |examples)

Neural network outputs the posterior distribution over programs 
likely to solve a specific task



Neural Markov Logic Networks

148
LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Marra et al, 2020]

MLNs can be interpreted as log-linear models 

P(X = x) =
1
Z ∏

i

ϕi(x{i})ni(x)

potentials come from formulas 
        provided by the expert 
  (cliques in Markov network)



Neural Markov Logic Networks
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LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Marra et al, 2020]

Learn neural potentials from fragments of data 

P(X = x) =
1
Z ∏

i

ϕi(x{i})ni(x)

potentials come from fragments 
of data (knowledge graph)

ϕ1ϕ2

ϕ3



Neural Generation
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LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Nye et al, 2020]

ϕ3

Neural model generates discrete structure



Program sketching
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LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Bosnjak et al, 2018; Manhaeve et al, 2018]

def target_function(input_array):
      rarray = [] 
 
      for element in input_array:      
            rarray.append(??(element))
   
       return rarray

partial functionality 
that needs to be learned

Examples: 

[1,4,5]  [1,16,25]
[2,2,5,1]  [4,4,25,1]

↦
↦

Provide partial code
Fill in the missing functionality with neural networks



Structure learning via parameter 
learning

152
LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

grandparent(abe,lisa).

grandparent(abe,bart).

grandparent(jacqueline,lisa).

grandparent(jacqueline,maggie.)



Program sketching
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LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates
T(X,Y)  P(X,Y).

T(X,Y)  P(Y,X).

T(X,Y)  P(X,Z), Q(Z,Y).

←
←
←

Target:   grandparent


Other predicates: father, mother 



Program sketching
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DATA and 
STRUCTUREDATA

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates

T(X,Y)  P(X,Y).

T(X,Y)  P(Y,X).

T(X,Y)  P(X,Z), Q(Z,Y).

←
←
←

Target:   grandparent


Other predicates: father, mother 

grandparent(X,Y)  father(X,Y).

grandparent(X,Y)  mother(X,Y).

←
←

grandparent(X,Y)  father(Y,X).

grandparent(X,Y)  mother(Y,X).

←
←

grandparent(X,Y)  mother(X,Z), mother(Z,Y).

grandparent(X,Y)  mother(Y,X), father(Z,Y).

……

←
←
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LOGICLOGICLOGICNEURAL

Neural guidance

Pros Cons

Soft patterns

Neural generation

Sketching

Structure via params

lots of training datamakes discrete search 
tractable

no explicit structureefficient learning

significant user effort

spurious interactions

lots of training data

removes combinatorial 
search

reduces combinatorial 
search

focused combinatorial 
search



• Learning: finding logical formulas and estimating 
probabilities


• Structure learning: both formulas and probabilities


• Parameter learning: only probabilities


• Many flavours of learning in NeSy

156

5. Learning 
Key Messages



157

6. Semantics

LOGIC
PROBABI

LITYLOGIC LOGICLOGICLOGICNEURAL



• StarAI and NeSy share the same underlying semantics


• Semantics can be described in terms of parametric circuits


• Differentiable semantics/circuits allows an easy integration


• NeSy models can be seen as neural reparameterization of 
StarAI models

158

6. Semantics 
Key Messages



Semantics

• In Logic, semantics is connected to the interpretations of 
logical sentences


• An interpretation assigns a denotation or a value to each 
symbol in that language. 

“42(47)” 
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Semantics

• In Logic, semantics is connected to the interpretations of 
logical sentences


• An interpretation assigns a denotation or a value to each 
symbol in that language. 

“human(socrates)”  

• Given a propositional language L, a labelling function is a 
function:

 ℓ :𝐿 → 𝑉

160
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6. Semantics

Boolean logic

LOGIC



Semantics in Boolean Logic
• Defining a semantics for a propositional language L is about 

assigning a truth value to all the sentences of the logic 


• The labelling function  is: 


 

Three steps: 
1. Labels for propositions 
2. Labels for operators 
3. Labels for formulas 

ℓ𝐵

ℓB : L → {True, False}

162

LOGIC



Semantics in Boolean Logic

1. Providing the labels for propositions


A,B,C.                                      

                                               

        
 
 

ℓ̃B(A) = True
ℓ̃B(B) = False
ℓ̃B(C) = True

163

LOGIC



Semantics in Boolean Logic

2. Providing the semantics for operators 

ℓ→
B

164

LOGIC



Semantics in Boolean Logic

3. The labels of formulas is defined recursively on the semantics 
of its components


  

This recursive evaluation of formulas is said to be extensional 
approach.

ℓB(A → B) = ℓ→
B (ℓ̃B(A), ℓ̃B(B))

165

LOGIC



Semantics in Boolean Logic

• Consider:


 

166

(𝐴 ∧ 𝐵) → 𝐶

→

∧

A B

C

ℓ→
𝑩

ℓ∧
𝑩

ℓ̃B(A) ℓ̃B(B)

ℓ̃B(C)

LOGIC
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6. Semantics

Fuzzy logic

LOGIC



Fuzzy Logic Semantics

• There are many fuzzy logics


• Here we are interested in a subclass, in particular t-norm fuzzy 
logic

168

LOGIC



Fuzzy Logic Semantics
• Defining a semantics for a propositional fuzzy language L is 

again about assigning a truth degree to all the sentences of the 
logic 


• We define a labeling function:


 
Three steps: 
1. Labels for propositions 
2. Labels for operators 
3. Labels for formulas

ℓ𝐹:𝐿 → [0,1]
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Fuzzy Logic Semantics

1. Providing the labels for propositions


A,B,C.                          

                                    

                                   

ℓ̃B(A) = 0.9
ℓ̃B(B) = 0.3
ℓ̃B(C) = 0.5
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LOGIC



Fuzzy Logic Semantics

2. Providing the labels for operators: t-norm theory 
• A t-norm is a binary function that extends the conjunction to 

the continuous case 


 

• There are 3 fundamental t-norms:

• Lukasiewicz t-norm: 

• Goedel t-norm: 

• Product t-norm: 

t : [0,1] × [0,1] → [0,1]

tL(x, y) = max(0,x + y − 1)
tG(x, y) = min(x, y)
tP(x, y) = x ⋅ y

171

LOGIC



Fuzzy Logic Semantics

• All the other operators can be derived from the t-norm (and its 
residuum)

172

LOGIC



Fuzzy Logic Semantics

3. The labels of formulas is defined recursively on the semantics 
of its components


  
This recursive evaluation of formulas is said to be extensional 
approach.


e.g.    

 , ,   

                

                           

ℓF(A → B) = ℓ→
F (ℓ̃F(A), ℓ̃F(B))

ℓ̃F(A) = 0.9 ℓ̃F(B) = 0.3 ℓ→
F = min(1,1 − x + y)

ℓF(A → B) = min(1,1 − 0.9 + 0,3) = 0.4
173

LOGIC



Fuzzy Logic Semantics

• Consider:


 

174

(𝐴 ∧ 𝐵) → 𝐶

LOGIC

→

∧

A B

C

ℓ→
F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)



Fuzzy Logic Semantics

Properties of t-norms


• Most common t-norms are:

• Continuous 
• Differentiable -> This turns to be one of the reason of their 

adoption in NeSY 

• Convex fragments of the logic can be defined (Giannini et al, 
2019)

175

LOGIC



Fuzzy vs Boolean

• Fuzzy and Boolean have different properties

• When fuzzy is used as a “relaxation” (fuzzification) of Boolean 

undesired effects can happen.


• Consider the rule:

1. 


2.  


3. 


4.  


ℓB(A ∨ B ∨ C) = True
ℓF(A ∨ B ∨ C) = min(1,ℓF(A) + ℓF(B) + ℓF(C)) = 1
ℓF(A) = ℓF(B) = ℓF(C) = 0.35
ℓB(A) = ℓB(B) = ℓB(C) = False

176

LOGIC
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Semantics

Probabilistic logic

PROBABI
LITYLOGIC



Probabilistic Logic Semantics

PROBABI
LITYLOGIC

Given a proposition language L, the basic idea is to introduce a 
probability function  :


 

Three steps: 
1. Labels for propositions / formulas 
2. Distribution over possible interpretations  
3. Labels for formulas = Weighted Model Count using distribution

ℓ𝑃

ℓ𝑃:𝐿 → [0,1]

178



Probabilistic Logic Semantics

1. Provide

A. the labels for propositions (e.g. ProbLog) 

                         
                          A, B 

B. the labels for formulas of interest (e.g. Markov Logic) 
                                             A ∧ B ℓ̃P(A ∧ B) = 1.5
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 ℓ̃P(A) = 0.1
ℓ̃P(B) = 0.7

( ≠ ℓP(A ∧ B))

PROBABI
LITYLOGIC



Probabilistic Logic Semantics

2.  Usually  is defined in terms of a probabilistic distribution  
over truth assignments or interpretations of the propositional 
variables.





e.g. p(A=True, B=False) = ?

ℓ𝑃 𝑝

p(ℓB(x1), …, ℓB(xn))

180

PROBABI
LITYLOGIC



Probabilistic Logic Semantics

e.g. in ProbLog:



p(ℓB(x1), …, ℓB(xn)) = ∏
i:ℓB(xi)=True

ℓ̃P(xi) ∏
i:ℓB(xi)=False

(1 − ℓ̃P(xi))

181

PROBABI
LITYLOGIC

0.1 :: burglary.   (B) 
0.05 ::earthquake. (E) 
0.6 ::hears_alarm(john).  (H) 
alarm :– earthquake.  
alarm :– burglary.

B E H p(B,E,H)
F F F 0.342
F F T 0.513
F T F 0.018
F T T 0.027
T F F 0.038
T F T 0.057
T T F 0.002
T T T 0.003

0.1 x 0.05 x (1- 0.6)



Probabilistic Logic Semantics

e.g. Markov Logic  





stress(X) -> smokes(X):   1.5


stress(ann) -> smokes(ann):  True (1)

stress(bob) -> smokes(bob):  False (0)

stress(carl) -> smokes(carl):  True (1)

p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

ℓ̃P(α)∑
x

ℓB(α(x)))

182

PROBABI
LITYLOGIC

Weight formula Number of true groundings 
(Each true grounding 
contributes with 1)

∝ exp(1.5 ⋅ (1 + 0 + 1))



Probabilistic Logic Semantics

3. Given any sentence Q of the propositional language L, with 
variables :


 

WMC - Weighted Model Counting 
(for both ProbLog and Markov Logic)


x1, …, xn

ℓP(Q) = ∑
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))
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PROBABI
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Probabilistic Logic Semantics

For example: 
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B E H p(B,E,H)
F F F 0.342
F F T 0.513
F T F 0.018
F T T 0.027
T F F 0.038
T F T 0.057
T T F 0.002
T T T 0.003

PROBABI
LITYLOGIC

Q = B ∧ H

ℓP(Q) = 0.06

0.1 :: burglary.   (B) 
0.05 ::earthquake. (E) 
0.6 ::hears_alarm(john).  (H) 
alarm :– earthquake.  
alarm :– burglary.



Probabilistic Logic Semantics

• Consider:
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(𝐴 ∧ 𝐵) → 𝐶

(not always at least)

PROBABI
LITYLOGIC

→

∧

A B

C

ℓ→
P

ℓ∧
P

ℓ̃P(A) ℓ̃P(B)

ℓ̃P(C)



Probabilistic Logic Semantics

• Consider:

186

(𝐴 ∧ 𝐵) → 𝐶

PROBABI
LITYLOGIC

∨

¬A ∧

A ∨

¬B ∧

B C

+

1 − ℓ̃P(A) ×

ℓ̃P(A) +

1 − ℓ̃P(B) ×

ℓ̃P(B) ℓ̃P(C)

Knowledge Compilation 

The probabilistic structure is now explicit in 
the compiled formula.

→

∧

A B

C



Probabilistic Soft Logic (PSL)

• Let’s start by an example of a Markov Logic Network:


 

• In PSL, we relax the Boolean semantics  to a fuzzy 
semantics 


 


p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

ℓ̃P(α)∑
x

ℓB(α(x)))
ℓ𝐵

ℓ𝐹

p(ℓF(x1), …, ℓF(xn)) =
1
Z

exp(∑
α

ℓ̃P(α)∑
x

ℓF(α(x)))
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Bach, Stephen H., et al. JMLR 2017

Weight formula Each grounding contributes 
with a value in [0,1]



Probabilistic Soft Logic (PSL)

MPE:


 

α(X) : stress(X) → smokes(X)
ℓF(α(X)) = min(1,1−ℓF(stress(X) + ℓF(smokes(X))

max
ℓF(stress(X)),ℓF(smokes(X))

ℓP(α)∑
X

ℓF(α(X))

ℓF(stress(X)) = ℓF(stress(X)) + λ
∂ℓP(α)∑X ℓf(X)

∂ℓF(stress(X))
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min(1, ∑ 𝑥𝑖)

1  −  𝑥

ℓF(stress(X ))

ℓF(smokes(X ))

PROBABI
LITYLOGIC
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6. Semantics

Neural Symbolic

PROBABI
LITYLOGIC LOGIC NEURAL



Neural Symbolic

How to carry over concepts from the semantics of StarAI to 
neural symbolic?


 

Labelling functions      =       Parametric circuit 
     (semantics)

ℓ(Q)

190

ℓF((A ∧ B) → C)
The query Q determine 
the structure (potentially 
after knowledge 
compilation)

ℓ→
F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)



Neural Symbolic

How to carry over concepts from the semantics of StarAI to 
neural symbolic?


 

             Labelling functions      =       Parametric circuit 
                  (semantics)

ℓ(Q)

191

ℓF((A ∧ B) → C)
The leaves 
represent the 
scalar parameters 
ℓ̃

ℓ→
F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)



Neural Symbolic

How to carry over concepts from the semantics of StarAI to 
neural symbolic?


• Atomic labels  are just scalar tables of parametersℓ̃

192

L
Burglary 0.1
Earthquake 0.05
…

ℓ̃0.1 :: burglary.   (B) 
0.05 ::earthquake. (E) 
0.6 ::hears_alarm(john).  (H) 
alarm :– earthquake.  
alarm :– burglary.



Neural 
Network

Neural Symbolic

• What if we turn scalar parameters  to neural networks?


• Two main reasons:

• Perceptive queries (burglary =          , earthquake=             )

• Semantic sub-symbolic queries (burglary=[0.33,0.56,7.45]) 

ℓ̃

193

L ℓ̃
burglary 0.1



StarAI to Neural Symbolic

194

ℓ→
F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

ℓ→
F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)

NN NN

NN

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

NN

NN

NN

NN NN

LOGIC NEURAL

PROBABI
LITYLOGIC

PROBABI
LITYLOGIC

NEURAL

LOGIC

REPARAMETERIZATION

StarAI

NeSy



Fuzzy Reparameterization

195

Parameters of 
the neural nets

min(1, ∑ 𝑥𝑖)

1  −  𝑥

ℓF(stress(X ))

ℓF(smokes(X ))

NN stress 
θstress

X

NN smokes 
θsmokes

X

max
ℓF(stress(X)),ℓF(smokes(X)) ∑

α

ℓP(α)ℓF(α(X ))

max
θstress,θsmokes

∑
α

ℓP(α)ℓF(α(X))

LOGIC NEURAL

StarAI (PSL)

NeSy (SBR, LTN) 

min(1, ∑ 𝑥𝑖)

1  −  𝑥

ℓF(stress(X ))

ℓF(smokes(X ))

Semantic Based 
Regularization  (Diligenti 
et al, AI 2017)


Logic Tensor Network 
(Donadello et at, IJCAI 
2017)



Probabilistic Reparameterization

• ProbLog: 


 

• Markov Logic:





WMC

p(ℓB(x1), …, ℓB(xn)) = ∏
i:ℓB(xi)=True

ℓ̃P(xi) ∏
i:ℓB(xi)=False

(1−ℓ̃P(xi))

p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

ℓ̃P(α)∑
x

ℓB(α(x)))

196

Probabilistic parameters

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)
ℓP(Q) = ∑

ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))
LOGICNEURAL

PROB



Probabilistic Reparameterization

• DeepProbLog (Manhaeve et al, NeurIPS (2018))


 

• Relational Neural Machines (Marra et al, ECAI 2020)





WMC

p(ℓB(x1), …, ℓB(xn)) = ∏
i:ℓB(xi)=True

ℓ̃P(xi) ∏
i:ℓB(xi)=False

(1−ℓ̃P(xi))

p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

ℓ̃P(α)∑
x

ℓB(α(x)))
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Neural parameters

LOGICNEURAL

PROB
ℓP(Q) = ∑

ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

NN

NN

NN

NN NN



Probabilistic Reparameterization
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LOGICNEURAL

PROB

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

NN

NN

NN

NN NN

• DeepProbLog (Manhaeve et al, NeurIPS (2018))

nn(mnist_net, [X], Y, [0 ... 9] ) :: digit(X,Y).

 :: burglary.
0.01

Neural Predicate

Probabilistic fact

Interface



• StarAI and NeSy share the same underlying semantics


• Semantics can be described in terms of parametric circuits


• Differentiable semantics/circuits allow an easy integration


• NeSy models can be seen as neural reparameterization of 
StarAI models
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6. Semantics 
Key Messages



7. Logic vs Probability vs Neural



• We have three paradigms in the NeSy spectrum: Logic, 
Probability and Neural Networks


• An integration of the three should have the original 
paradigms as special cases 

• Computationally complex


• The integration is usually achieved by sacrificing the base 
paradigms

• More scalable
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7. Logic vs Probability vs Neural
Key Messages



About integration in neural 
symbolic

202

Probability Logic

Neural Networks



Probability Logic

Neural Networks

Statistical Relational AI
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They perfectly integrate 
probability theory (Probabilistic 
Graphical Models) and Logic. 



Probability Logic

Neural Networks

Relaxed theorem provers

204

They sacrifice a bit the pure 
boolean semantics to obtain 
some soft neural capabilities 
(weighted reasoning, 
embeddings).


KBANN (Tawell 1994)

LRNN (Sourek, 2017)

NTPs (Rocktäschel, 2017)

DiffLog (Si et al, 2018)

NN for Relational Data ( 2019)



Probability Logic

Neural Networks

Regularization methods

205

They sacrifice the logic and 
probability a lot by pushing 
everything inside the weights of 
the neural network.


Logic and probability are used 
only at training time. At inference 
time, only the neural net is used.


SBR (Diligenti et al, AI 2017)

LTN (Donatello et al, IJCAI 2017)

SL (Xu et al, ICML 2018)



Probability Logic

Neural Networks

Knowledge Graph Embeddings

206

They use latent spaces, typical 
of neural computation to 
encode a relational structure of 
the data. 
 
Neural networks cannot be 
recovered. 
 
Logic is declined to encoding 
relations


Probabilistic modelling is 
strongly approximated (e.g. 
atom mean field)


Most scalable solutions.

TransE (Bordes 2013) 

DistMult (Yang, 2014)

ComplEx (Trouillon, 2016)

NTN (Socher, 2013) 



Probability Logic

Neural Networks

Graph Neural Networks
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They extend neural network 
to provide some relational 
and multihop reasoning. 
 
Logical semantics is not 
preserved. 

R-GCN - Schlichtkrull et al, 
2017



Probability Logic

Neural Networks

Probabilistic reparameterization

208

They extend StarAI with 
perception capabilities.  

Subsymbols at the level of the 
constants only 
• Not at the level of the atoms 

(like KGE) 
• Not at the level of the rules (like 

GNNs) 

One of the most promising 
direction for NeSy. 

Main problem is scalability. 

DeepProbLog (Manhaeve, 2018) 
RNM (Marra, 2020)



• We have three paradigms in the NeSy spectrum: Logic, 
Probability and Neural Networks


• An integration of the three should have the original 
paradigms as special cases 

• Computationally complex


• The integration is usually achieved by sacrificing the base 
paradigms

• More scalable
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7. Logic vs Probability vs Neural
Key Messages



Conclusions



StarAI and NeSy share similar problems 
and thus similar solutions apply 

See also [De Raedt et al., IJCAI 20] 

Key Message

LOGICLOGICLOGICNEURALLOGIC
PROBABI

LITYFROM TO



The Seven Dimensions
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1.   Proof vs Model based

2.   Directed vs Undirected

3.   Type of Logic

4.   Symbols vs Subsymbols

5.   Parameter vs Structure Learning

6.   Semantics

7.   Logic vs Probability vs Neural



Many questions to ask

 

• What properties should integrated representations satisfy ?

• Should one representation take over ? (As in most 

approaches to NeSy — push the logic inside and forget 
about it afterwards)


• Should one build a pipeline or an interface between the 
integrated representations ? 


• Should one have the originals as a special case ? 

• (yes we believe you should be able to do all what you can 

do with the original representations)
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Many questions to ask

 

• Which learning and reasoning techniques apply  ?

• Can you still reason  logically  / probabilistically ? 

• Can you still apply standard learning methods (like gradient 

descent) ?

• Is everything explainable / trustworthy ?


• How to evaluate integrated representations ?

• 1 + 1 = 3 ?

• Can they do what the originals can do, and can they do more 

?

• Can they do something different ? 
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Challenges 

• For NeSy, 

• scaling up 

• which models to use  

• real life applications 

• peculiarities of neural nets 

• logical inference can be expensive


• This is an excellent area for starting researchers / PhDs
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