From Statistical Relational Al to
Neural Symbolic Computation

Luc De Raedt, Sebastijan Dumancic, Robin Manhaeve, Giuseppe Marra
firstname.lastname@kuleuven.be

reusing some slides from previous tutorials with
Angelika Kimmig, Kristian Kersting, David Poole, and Sriraam Natarajan

. ..
e) m)
%
MACHINE LEARNING éo Uqu?)Q\

..........
.....
. 0008,
........
........

mailto:firstname.lastname@kuleuven.be

You can find an up-to-date version of this tutorial
and additional content at

https://dtai.cs.kuleuven.be/tutorials/nesytutorial

. ..

e B})

o Y [e
%

MACHINE LEARNING (?O UNl\]?S\

https://dtai.cs.kuleuven.be/tutorials/nesytutorial

Introduction

Learning and Reasoning
both needed

DANIEL
KAHNEMAN

System 1 - thinking fast - can do things like 2+2 = ? and
recognise objects in image

System 2 - thinking slow - can reason about solving complex
problems - planning a complex task

alternative terms — data-driven vs knowledge-driven, symbolic
Vs subsymbolic, solvers and learners, neuro-symbolic...

A lot of work on integrating learning and reasoning, neural
symbolic computation to integrate logic / symbols
reasoning with neural networks

see also arguments

by Marcus, Darwiche, Levesque, Tenenbaum, Geffner, ”
Bengio, Le Cun, Kautz, ... “are
see also Al Debates i

Real-life problems involve two
Important aspects.

Who can go first ?

A. The red car

B. The blue van

C. The white car

°
Jre% 6%0% e
........

https://www.theorie-blokken.be/nl/gratis-proefexamen

Real-life problems involve two
Important aspects.

Who can go first ?

A. The red car

B. The blue van

C. The white car

Reasoning
Sub-symbolic perception erc

®'e
005¢
Jre% 6%0% e
ceCeee’.

https://www.theorie-blokken.be/nl/gratis-proefexamen

Thinking fast

MAIN PARADIGM in Al
Focus on Learning

NEURAL

oo .
...........

Thinking slow = reasoning

TWO MAIN PARADIGMS in Al

PROBABILITY

LOGIC

Their integration has been well studied In

Probabilistic (Logic) Programming and Statistical Relational Al (StarAl)
e

Learning

PROBABILITY

NEURAL

A lot of ML

PROBABILITY

NEURAL

Well studied from a LEARNING perspective
in Deep Learning

10

oo .
...........

Thinking slow = reasoning

TWO MAIN PARADIGMS in Al

PROBABILITY

LOGIC

Their integration has been well studied In

Probabilistic (Logic) Programming and Statistical Relational Al (StarAl)
e

State of the Art

LOGIC

NEURAL

Being studied from a LEARNING perspective
in Neuro Symbolic Computation

12

Key Message

FroM 10

StarAl and NeSy share similar problems
and thus similar solutions apply

. WARNING

TALK MAY NOT COVER ALL of
NESY

See also
De Raedt, Dumancic, Marra, Manhaeve
From Statistical Relational to Neuro-Symbolic Artificial Intelligence Herc

IJCAI 20 S
13

o0
.........
........

Applications

Feedback in two directions

* Logic can help neural networks to use external knowledge:
* Better performance
* Less data

* Neural networks can help logic-based systems to explore
combinatorial spaces more efficiently.

erc

Addition

Learn to add the sum of lists of MNIST images

EIBEE R AELI° 359

example multi-addition predicate

Assume you do not know how to map MNIST images to
numbers, but do know the rules of addition. Can you lean from
these examples how to map MNIST to numbers ?

' DeepProblLog, Manhaeve et al, NeurlPS 2018

Semantic Image Interpretation

Vay(partOf(z,y) — —partOf(y, x))
Vxy(Cat(x) A partOf(xz,y) — Tail(y) V Muzzle(y))

Vzy(Cat(x) — —partOf(z,y))

10 Precision-Recall curve types

0.8}

o
o

Precision
=
S

vy
head eye
!."‘r

torso

0.2}

right leg

— LTN_prior: AUC=0.800
— LTN_expl: AUC=0.692
—— FRCNN: AUC=0.756

2.0 0.2 0.4 0.6 0.8 1.0
Recall

left leg

Visual Reasoning

How many blocks are on the Will the block tower fall if What is the shape of the object Are there more trees than
right of the three-level tower? the top block is removed? closest to the large cylinder? animals?

Figure 1: Human reasoning is interpretable and disentangled: we first draw abstract knowledge of

the scene via visual perception and then perform logic reasoning on it. This enables compositional,

accurate, and generalizable reasoning in rich visual contexts.

Adding a reasoning component on top of
the perception can improve performance.

. o,
0 g® o
.......

.....
XN

e NS-VQA, Yi et al , NeurlPS 2019

One can also add

ontological knowledge.

Visual Reasoning

Common-Sense Question: Is this image related to zoology?

Visual Question: How many giraffes in the image?
Answer: Two. Reason: Two giraffes are detected.

Attributes:
glass
house
room
standing
walking
wall

Z00

Scenes:

indoor

Answer: Yes. Reason: Object/Giraffe --> Herbivorous animals -->

Animal --> Zoology; Attribute/Zoo --> Zoology.

KB-Knowledge Question: What are the common properties between

the animal in this image and the zebra?
Answer: Herbivorous animals; Animals; Megafauna of Africa.

19 Wang et al, [JCAI 2017

Program Induction from image
and language

I: I I

k- [{y_loc . color 'Black’, type: ’square’, x_loc

Adding an intermediate size: 20,

Sym bOI |C represen‘ta‘“on x :There is a small yellow item not touching any wall
. . y :True

helps generalization

Goldman et al, ACL 2018

z :Exist (Filter (ALL_.ITEMS, Az.And(And(IsYellow(z),
IsSmall(z)), Not(IsTouchingWall(x, Side.Any))))))

Figure 1: Overview of our visual reasoning setup for the CN-
LVR dataset. Given an image rendered from a KB k and an
utterance x, our goal is to parse x to a program z that re-
sults in the correct denotation y. Our training data includes
(z, k,y) triplets.

20

The Seven Dimensions

1.
2.
3.
4.
5.
6.
/.

Proof vs Model based

Directed vs Undirected

Type of Logic

Symbols vs Subsymbols
Parameter vs Structure Learning
Semantics

Logic vs Probability vs Neural

21

1. Proof vs Model based

22

1. Proof vs Model based

23

1. Proof vs Model based
the logic dimension

Model- vs proof-based

First order / relational vs propositional
Grounding

Differences important for both StarAl and NeSY

24

Logic Programs

as in the programming language Prolog

Propositional logic program

burglary.
hears_alarm_mary.
facts :
burglary = true
earthquake.
hears_alarm_john.

alarm :— earthquake.

alarm :— burglary.

calls_mary :—alarm, hears_alarm_mary.

calls_john :—alarm, hears_alarm_john.

°00 o
..........
.....
. o0 L]
........
........

25

Logic Programs

as in the programming language Prolog

Propositional logic program

burglary.
hears_alarm_mary.

earthquake.
hears_alarm_john.

alarm :— earthquake.
rule:

alarm :—burglary. cails_mary =true IF alarm = true AND hears_alarm_mary = true

calls_mary :— alarm, hears_alarm_mary.

calls_john :—alarm, hears_alarm_john.

26

Logic Programs

as in the programming language Prolog
Propositional logic program Two proofs (by refutation)

burglary.

.- calls_mary.
hears_alarm_mary. B

l

:- alarm, hears_alarm_mary.

earthquake. l
hears_alarm_john. .- earthquake, hears_alarm_m

l :- burglary, hears_alarm

alarm :— earthquake. - hears_alarm_mary.

- hears_a}arm_mary.

alarm :— burglary. !

[M

calls_mary :—alarm, hears_alarm_mary. i

calls_john :—alarm, hears_alarm_john. A proof-theoretic view ...

backward chaining €

27

Logic as constraints

as in SAT solvers
Propositional logic Model / Possible World

IF AND

calls(mary)«hears_alarm(mary) A alarm { burglary
hears_alarm(john),

calls(john) <« hears_alarm(john) A alarm alarm,

OR calls(john)}
alarm < earthquake v burglary

the facts that are true
in this model / possible world

SAT: Find a model / possible world that satisfies all the constraints
SAT SOLVERS

A model-theoretic view:::

28

Relational/First Order Logic

Introduce Variables and Domains
The meaning of this is always the GROUNDED theory

allows to exploit symmetries / templates ...

burglary.

burglary.
Sy hears_alarm(mary).

hears_alarm(mary).
earthquake.

earthquake. .
hears_alarm(john).

hears_alarm(john).

alarm :— earthquake. alarm :— earthquake.

alarm :— burglary.

alarm :— burglary.
Sy calls(mary) :— alarm, hears_alarm(mary).

calls(X) :— alarm, hears_alarm(X).

calls(john) :— alarm, hears_alarm(john).
Variable X

Domain = {mary, john} Grounded Theory

BOTH for model and proof-based appraoch erc

29

Logical Theory

GROUNDING OUT

stress (ann) .
influences (ann,bob) .
influences (bob,carl).

smokes (ann) :- stress(ann).
smokes (bob) :- stress (bob).
smokes (carl) :- stress(carl).

influences (ann,ann),
influences (bob,ann),

smokes (ann) :-
smokes (ann) :-
smokes (ann) :-

influences (ann,bob),
influences (bob,bob),

smokes (bob) :-
smokes (bob) :-
smokes (bob) :-

smokes (carl)
smokes (carl)
smokes (carl)

influences (carl,ann),

influences (carl, bob),

:— influences (ann,carl),
:— influences (bob,carl),
:— influences (carl,carl),

stress (ann) .
influences (ann,bob) .
influences (bob,carl).

smokes (X) :- stress (X).

smokes (X) :-
influences (Y, X),
smokes (Y) .

IF INTERESTED ONLY IN
CERTAIN QUERIES,
CLEVER TECHNIQUES EXIST
TO AVOID GROUNDING OUT
COMPLETELY

smokes (ann) .
smokes (bob) .
smokes (carl) .

smokes (ann) .
smokes (bob) .
smokes (carl) .

smokes (ann) . Lerc

smokes (bob) . S
smokes (carl) .

stress(ann) .

LOg ical ReaSOning: influences (ann,bob) .

influences (bob,carl).

MOdeI TheOretiC smokes (X) :- stress (X).

smokes (X) :-
influences (Y, X),

FINDING A MODEL smokes (Y) .

stress (ann) .
influences (ann,bob) .
influences (bob,carl).

smokes (ann) :- stress(ann).
-> infer smokes (ann)

smokes (bob) :- influences (ann,bob), smokes (ann)
-> infer smokes (bob)

smokes (carl) :- influences (bob,carl), smokes (bob).
-> infer smokes(carl).

FINDING A MODEL
here — the least Herbrand model as in Prolog using the Tp Operator (forward reasoning
“derc

o0
.........
........

31

. . §tress(ann).
Logical Reasoning: saneiznen;
MOdeI TheOretiC smokes (X) :- stress(X).

smokes (X) :-

Clark’s completion AND call a SAT Solver influences (Y,X) ,
stress (ann) . smokes (Y) .
influences (ann,bob) .
influences (bob,carl) . Clark’s completion’s as a

grounding is incorrect
for Prolog when there are cycles

smokes (ann) <-> stress(ann) but it is too hard to explain why
v influences(ann,ann), smokes (ann) phere
v influences (bob,ann), smokes (bob)
v influences (carl,ann), smokes(carl)

smokes (bob) <-> stress (bob)
v influences (ann,bob), smokes (ann)
v influences (bob,bob), smokes (bob)
v influences (carl,bob), smokes (carl)

smokes (carl) <-> stress(carl)
v influences (ann,carl), smokes (ann) G
v influences (bob,carl), smokes (bob) g5
v influences(%arl,carl), smokes (carl)

o0
aaaaaa
ce®ec0®.

stress (ann) .

LOgiCaI ReaSOning influences (ann,bob) .

influences (bob,carl).

PrOOfS smokes (X) :- stress (X).

smokes (X) :-
influences (Y, X),

?- smokes (carl). smokes (Y) .
?- stress(carl). ?—~influ§nces(Y,carl),smokes(Y).

\

?- smokes (bob) .

T Yl=ann

?- stress (bob) . ?-l influences (Y1l,bob) ,6 smokes (Y1) .

/

?- smokes (ann) .
—— N

?-| stress (ann) . ?—- influences (Y2,ann),b smokes (Y2).

|

facts used in successful derivation: ...

influences(bob,carl)&influences(ann,bob)&stress(anﬁi¢

1. Proof vs Model based
the logic dimension

Model- vs proof-based

First order / relational vs propositional
Grounding

Differences important for both StarAl and NeSY

34

1. Proof vs Model based
2. Directed vs Undirected

35

2. Directed vs Undirected = =z
the PGM / StarAl dimension

Friends(A,B)

Friends(A,A) @ Smokes(B) Friends(B,B)
Cancer(B)
Friends(B,A)

0.1 ::burglary.
0.05 :: earthquake.

alarm :— earthquake.

alarm :— burglary.

0.7:calls(mary) :— alarm.

0.6::calls(john) :— alarm.

1.5 Vvx Smokes(x) = Cancer(x)
1.1 vx,y Friends(x,y) = (Smokes(x) & Smokes(y))

Probabilistic Logic Programs
ProblLog

undirected
directed Markov Net
Bayesian Net model theoretic
BABI “Here

! key representatives

Markov Logic

Logic Programs

as in the programming language Prolog

Propositional logic program Two proofs (by refutation)
burglary. .
hears_alarm(mary). - Ialls(mary).

:- alarm, hears_alarm(mary).

earthquake. l
hears_alarm(john). .- earthquake, hears_alarm(ma

l .- burglary, hears_alarm(|

alarm :— earthquake. - hears_alarm(mary).

- hears_a*arm(mary)

alarm :— burglary. !

[M

calls(mary) :— alarm, hears_alarm(mary). [

calls(john) :— alarm, hears_alarm(john). N
A proof-theoretic wewer A

o0
........
.........

37

Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program

0.1 ::burglary.
0.3 ::hears_alarm(mary).

Probabilistic facts

0.05 ::earthquake.
0.6 ::hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).

)BABI
Y

38

Key Ildea (Sato & Poole)
the distribution semantics:

unify the basic concepts in logic
and probability:

random variable ~ propositional
variable

an interface between logic and
probability

Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program

0.1 ::burglary.
0.3 ::hears_alarm(mary).

0.05 ::earthquake.
0.6 ::hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).

39

Two proofs (by refutation)

- alarm

/T

:- burglary. .- earthquake.
P=0.1 l P=0.05 l

[]

[]
Probability of one proof: H Pf
f:facteProof

o0
.........
........

Probabilistic Logic Programs

as in the probabilistic programming language ProbLog
Propositional logic program Disjoint sum problem

0.1 :: burglary. .- alarm

0.3 ::hears_alarm(mary). / \

0.05 ::earthquake.

. :- burglary. .- earthquake.
0.6 ::hears_alarm(john).
P=0.1 l P=0.05 l
alarm :— earthquake. 1 1
alarm :— burglary.
Probability of one proof: H Pf
f:facteProof

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john). P(alarm) = P(burg OR earth) ...
= P(burg) + P(earth) - P(burg AND eztg}

=/= P(burg) + P(earth)
40

Probabilistic Logic Program
Semantics

earthquake. [Vennekens et al, ICLP 04]

0.05: :burglary. re .
probabilistic causal laws

0.6::alarm :- earthquake.

0.8::alarm :- burglary.
g y earthquake |].0

alarm no alarm

0.6 0.4

burglary no burglary burglary

05 0.95\, no burglary

no alarm alarm no alarm

0.2

alarm

P(alarm)=0.6x0.05%0.8+0.6x0.05%0.2:+0.6X0.95+0.4%0.05X (26

Probabilistic Logic Program
Semantics

. : Bayesian Network
Propositional logic program

0.1 :: burglary. burglary.
0.05 :: earthquake.

alarm :— earthquake.

alarm :— burglary.

0.7::calls(mary) :— alarm.

0.6::calls(john) :— alarm.

Bayesian net encoded as Probabilistic Logic Program
PLPs correspond to directed graphical models

Flexible and Compact Relational
Model for Predicting Grades

8

“Program” Abstraction: c

* S, Clogical variable representing students, courses

* the set of individuals of a type is called a population

* Int(S), Grade(S, C), D(C) are parametrized random variables
Grounding:

* for every student s, there is a random variable Int(s)

* for every course c, there is a random variable Di(c)

* for every s, c pair there is a random variable Grade(s,c)

* all instances share the same structure and parameters

De Raedt, Kersting, Natarajan, Poole: Statistical Relationﬁ Al

DO 3
..)
~::?'eﬁuﬁ

,,,,,,
.. c.",oﬁs;°
sssss

000®
aaaaaaaaa
RO

ProblLog by example:

Grading

Shows relational structure C

* grounded model: replace variables by constants

Works for any number of students / classes (for 1000 students
and 100 classes, you get 101100 random variables); still only few
parameters

1 T ()Ih‘;‘(‘svl)'—v\» o Obsetved Value: A %T (()j‘léfo(c'; :
With SRL / PP et
* build and learn compact models, .. | R (e
(_int(s3) ,\ *._“Qbr ehved 8 \rg/
* from one set of individuals - > other sets; 1322:'/ = :;;‘:’ }
* reason also about exchangeabillity, Tl | {‘ /i
. i)
* build even more complex models, N> T
i SO P ey ol |
* incorporate background knowledge Coul) Y)

ProblLog by example:

Grading

Shows relational structure C

* grounded model: replace variables by constants

Works for any number of students / classes (for 1000 students
and 100 classes, you get 101100 random variables); still only few

parameters Student | Course | Grade
With SRL / PP S1 C1 A

» build and learn compact models, z g g

» from one set of individuals - > other sets; s, c3 B

* reason also about exchangeability, S3 C2 B

* build even more complex models, 2‘3‘ 2 é

* incorporate background knowledge 54 ca ?

ProblLog by example:

Grading

0.4 int(S) :- student(S).
0.5 diff (C) :- course(C).
student (john) .

course (ai) .

student (anna) .
course (ml) .

gr(S,C,a) :- int(S), not diff(C).

0.3::gr(S,C,a);

0

0

.1

.3

int(S), diff(C).

student (S) ,
not int (S),

not int(S),

:gr(s,C,b); 0.2::gr(S,C,c);

not diff (C).
:gr(s,C,c); 0.2::gr(Ss,C,f)

diff (C).

student (bob) .
course (cs) .

0.5::gr(s,C,b);0.2::gr(S,C,c) :-

0.2::gr(Ss,C,£f) :-
course (C) ,

ere

ProblLog by example: Grading

unsatisfactory(S) :- student(S), grade(S,C,f).

excellent (S) :- student(S), not(grade(S,Cl,G) ,below(G,a)),
grade (S,C2,a).

0.4 int(S) :- student(S).

0.5 :: diff(C) :- course(C).

student (john) . student (anna) . student (bob).

course (ai) . course (ml) . course (cs) .

gr(S,C,a) :- int(S), not diff(C).

0.3::gr(s,C,a); 0.5::gr(s,C,b);0.2::gr(Ss,C,c) :-
int(S), diff (C).

0.1::gr(s,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,£f) :-
student (S), course(C),
not int(S), not diff (C). L

0.3::gr(S,C,c); 0.2::gr(S,C,f) :- “Hare

not int(S), di-t;;f (C) .

Dynamic networks

P‘:w 2 PG//'
|| S
AAnil:.l‘ jance 2 /1 A / w\

| i\"’ M&

A

O

\ ¢e ‘ |
AW NWAN
Allian #Q‘ ﬁ%’s
s NN\ My
':/ \P %“‘“\~"‘i @
/' nu‘y"

Travian: A massively multiplayer real-
time strategy game

iance
\
\"‘\"

i
\ il

/ / /! I I i
//Q// [
i;éé;lﬁ/ ‘E’D\hM'\

/

Can we build a model

of this world ?

Can we use it for playing
better ?

ce0%0e%e?
......

48 [Thon et al, MLJ | 1]

Activity analysis and tracking

| G‘%)\M}g.o

Track people or objects
over time? Even if
temporarily hidden?

Recognize activities?
Infer object properties?

[Skarlatidis et al, TPLP 14;
Nitti et al, IROS 13, ICRA 1[4,
ML] 16]

49

V|deo analy3|s

[Persson et al, IEEE Trans on
Cogn. & Dev. Sys. 19;
[JCAI 20]

°
Jre% 6%0% e
TLel S

Learning relational affordances

Learning relational
affordances
between

two objects
(learnt by experience)

1), an Similar to probabilistic Strips
(with continuous distributions) Moldovan et al. ICRA 12, |13, 4;Auton. Robots |8

I

Biology

Interaction network

Probabilistic Sub-network
network generation inference

2 »
» . fii
"' 3 ‘ T
: g iwr- ~ " \ ..
* 3“3{. 4 L‘V &,—;—V ” o 30
o) ¢ %/
%4 - 3
.
= “, .\ Inferred
&"—V _ sub-network

Molecular profiling Gene list

Figure 1. Overview of PheNetic, a web service for network-based interpretation of ‘omics’ data. The web service uses as input a genome wide interaction
network for the organism of interest, a user generated molecular profiling data set and a gene list derived from these data. Interaction networks for a wide
variety of organisms are readily available from the web server. Using the uploaded user-generated molecular data the interaction network is converted into
a probabilistic network: edges receive a probability proportional to the levels measured for the terminal nodes in the molecular profiling data set. This
probabilistic interaction network is used to infer the sub-network that best links the genes from the gene list. The inferred sub-network provides a trade-off
between linking as many genes as possible from the gene list and selecting the least number of edges.

e Causes: Mutations * Interaction network: * Goal: connect causes to effects
 All related to similar e 3063 nodes through common subnetwork
phenotype * Genes * = Find mechanism
« Effects: Differentially * Proteins * Techniques:
expressed genes * 16794 edges DTProbLog
000 cause effect * Molecular interactions ¢ Approximate inference
* Uncertain

> C \ https://dtai.cs.kuleuven.be/problog/

Home

SN T 5 /)

)\ =4

=10 aid in the interpretation of gene lists, PheNetic:was built:on top of ProbLog.

Introduction.
Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities.

ProbLog is a tool that allows you to intuitively build programs that do not only encode complex interactions between a large sets of heterogenous components bt
uncertainties that are present in real-life situations.

The engine tackles several tasks such as computing the marginals given evidence and learning from (partial) interpretations. ProbLog is a suite of efficient algorithms
tasks. It is based on a conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce the inference tasks to well-s
weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature.

The Language. Probabilistic Logic Programming.

ProbLog makes it easy to express complex, probabilistic models.

0.3::stress(X) :- person(X).
0.2::influences(X,Y) :- person(X), person(Y).

smokes(X) :- stress(X).
smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y).

1BABI

Y
52

Markov Logic: Intuition

* Undirected graphical model

* Alogical KB is a set of hard constraints
on the set of possible worlds

* Let’'s make them soft constraints:
When a world violates a formula,
It becomes less probable, not impossible

* Give each formula a weight
(Higher weight = Stronger constraint)

P(world) o exp (E weights of formulas it satisﬁes)

+HeIC

De Raedt, Kersting, Natarajan, Poole: Statistical Relationat Al

A possible worlds view

Say we have two domain elements Anna and Bob as well as
two predicates Friends and Happy

- Friends(Anna, Bob)

Friends(Anna, Bob)

-~ Happy(Bob) Happy(Bob) erc

De Raedt, Kersting, Natarajan, Poole: Statistical Relational Al slides by Pedro Domingos

A possible worlds view

Logical formulas such as
not Friends(Anna,Bob) or Happy(Bob)
exclude possible worlds

- Friends(Anna, Bob) ~I'riends(Anna, Bob)
v Happy(Bob)
Friends(Anna, Bob)
- Happy(Bob) Happy(Bob) erc

De Raedt, Kersting, Natarajan, Poole: Statistical Relational*Al slides by Pedro Domingos

A possible worlds view

four times as likely that rule holds

O (- Friends(Anna, Bob) v Happy(Bob)) =1
O(Friends(Anna, Bob) n —Happy(Bob)) =0.75

-~ Friends(Anna, Bob) 1 1

Friends(Anna, Bob)

~Happy(Bob) Happy(Bob) e;rc

De Raedt, Kersting, Natarajan, Poole: Statistical Relational Al slides by Pedro Domingos

A possible worlds view

Or as log-linear model this is:

w(® (- Friends(Anna, Bob) v Happy(Bob)))
=log(1/0.75) =0.29

-~ Friends(Anna, Bob) 1 1

Friends(Anna, Bob)

~Happy(Bob) Happy(Bob) erc

This can also be viewed as' building a graphical model

Markov Logic

1.5
1.1

Vx Smokes(x) = Cancer(x)

Vx,y Friends(x,y) = (Smokes(x) & Smokes(y))

Suppose we have two constants: Anna (A) and Bob (B)

Cancer(B)

erc

slides by Pedro Domingos

Markov Logic

1.5
1.1

Vx Smokes(x) = Cancer(x)

Vx,y Friends(x,y) = (Smokes(x) & Smokes(y))

Suppose we have two constants: Anna (A) and Bob (B)

Friends(A,B)

Friends(AA

Smokes(B) Friends(B,B)

Cancer(B)
Friends(B,A)

erc
slides by Pedro Domingos

Markov Logic

1.5
1.1

Vx Smokes(x) = Cancer(x)

Vx,y Friends(x,y) = (Smokes(x) & Smokes(y))

Suppose we have two constants: Anna (A) and Bob (B)

Friends(A,B)

Friends(AA @
Friends(B,A)

Friends(B,B)

erc
slides by Pedro Domingos

Markov Logic

1.5 |Vx Smokes(x) = Cancer(x)
1.1 |Vx,y Friends(x,y) = (Smokes(x) & Smokes(y))

Suppose we have two constants: Anna (A) and Bob (B)

Friends(A,B)

Friends(AA Smokes(B) Friends(B,B)
Cancer(B)

Friends(B,A)

erc
slides by Pedro Domingos

Applications

= Natural language processing, Collective Classification, Social
Networks, Activity Recognition, ...

Alchemy: Open Source Al

Tutorial Welcome to the Alchemy system! Alchemy is a software package providing a series
of algorithms for statistical relational learning and probabilistic logic inference,
Mailing Lists based on the Markov logic representation. Alchemy allows you to easily develop a

wide range of Al applications, including:

Alchemy
Collective classification

Link prediction

Entity resolution

Social network modeling
Information extraction

Alchemy-announce

Alchemy-update

Alchemy-discuss

Repositories
P Choose a version of Alchemy:
Code
Datasets
MLNs Alchemy Lite
Publications Alchemy Lite is a software package for inference in Tractable Markov Logic
(TML), the first tractable first-order probabilistic logic. Alchemy Lite allows for iremat
Related Links fast, exact inference for models formulated in TML. Alchemy Lite can be used in ;.:.:.:','::'.'.:
batch or interactive mode. '..'...e‘ rC

62

2. Directed vs Undirected =i
the PGM / StarAl dimension

Friends(A,B)

Friends(A,A) @ Smokes(B) Friends(B,B)
Cancer(B)
Friends(B,A)

0.1 ::burglary.
0.05 :: earthquake.

alarm :— earthquake.

alarm :— burglary.

0.7:calls(mary) :— alarm.

0.6::calls(john) :— alarm.

1.5 Vvx Smokes(x) = Cancer(x)
1.1 vx,y Friends(x,y) = (Smokes(x) & Smokes(y))

Probabilistic Logic Programs
ProblLog

_ undirected
directed Markov Net
Bayesian Net model theoretic i
“derc

key representatives
63

Markov Logic

1. Proof vs Model based
2. Directed vs Undirected

64

2. Directed vs Undirected
the NeSy dimension

TW O ty p e S Of N e u ra I Sy m b O I i C T
SyStemS Just like in StarAl

Logic as a kind of neural

program Logic as the regularizer

(reminiscent of Markov Logic

directed StarAl approach and logic Networks)
programs undirected StarAl approach and
(soft) constraints

Also, many NeSy systems are doing
knowledge based model construction KBMC
where logic is used as a template

Just like in StarAl

65

Logic as a neural program

directed StarAl approach and logic programs

e KBANN (Towell and Shavlik Ald 94)

* Turn a (propositional) Prolog program into a neural
network and learn

A - B, Z. Ke A
b - B, > REWRITE : _ B: y /O\
B - C, D.ﬁ B _Brr. ﬁ A
B :— E, F, G ;. A B ,
! !) B C, D. conjunction L
Z :— Y, not X. B''" :- E, F, G. /\
Y :— S, T. Z - Y, not X. duer;r;erlizgv B’ B .
vome VO~ S W
‘megated | C D E F G S T X
dependency ¢ — Step 1
GrC
66

Logic as a neural program

directed StarAl approach and logic programs

e — Step 3

ADD LINKS — ALSO SPURIOUS ONES HIDDEN UNIT

and then learn

iIs of activation & loss functions not mentlonerc

Lifted Relational Neural Networks

directed StarAl approach and logic programs

* Directed (fuzzy) NeSy

* similar in spirit to the Bayesian Logic Programs and
Probabilistic Relational Models

* Of course, other kind of (fuzzy) operations for AND, OR
and Aggregation (cf. later)

o0
.........
........

68 [Sourek, Kuzelka, et al JAIR]

Neural Theorem Prover

directed StarAl approach and logic programs

Towards Neural Theorem Proving at Scale

Example Knowledge Base:

IZ] fatherOf(ABE, HOMER).

parentOf(HOMER, BART).

@ grandfatherOf(X,Y) -
fatherOIi(X,Z),
parentO£(Z,Y).

1.0

E BART
- P
QO0

a8

R

AB

grandpaOf

r Y Y -..
wAAT
1.

2

3.1 father0£(X,Z)
3.2 parent0£(Z,Y)

*
o’
©
"
“"
father0OE ABE et
..................

X/ABE
Y/BART
ZMOMER

32 parent0£(Z,Y)
N

-
* parentOf

v I 3 [
A 4 .
wes b

HOMER

BART

.
L]
XJ/ABE
Y/BART »
ZIHOMER :

FAIL

X/ABE :
Y/BART »
Z/HOMER :

the logic is encoded In the network

how to reason logically ?

LOOUM

[Rocktdschel Riedel, NeurIPS 17; Minervini et al]

2. Directed vs Undirected
the NeSy dimension

TW O ty p e S Of N e u ra I Sy m b O I i C T
SyStemS Just like in StarAl

Logic as a kind of neural

program Logic as the regularizer

(reminiscent of Markov Logic

directed StarAl approach and logic Networks)
programs undirected StarAl approach and
(soft) constraints

Also, many NeSy systems are doing
knowledge based model construction KBMC
where logic is used as a template

Just like in StarAl

70

Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

This constraint should be satisfied

(—031 A\ X9 N\ ZEg)\/
(_I.le A\ L9 A\ _l.ilfg)\/

(371 /\ %) N\ _ng)

from Xu et al., ICML 2018

71

Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

Probability that constraint is satisfied

(1 — .2131)(1 — CUQ)CEg—-
(1 — 2131)5172(1 — 563)——
331(1 — 2132)(1 — 5133)

basis for SEMANTIC LOSS

(weighted model counting)

72

Logic as a regularizer

undirected StarAl approach and (soft) constraints

Semantic Loss:

* Use logic as constraints (very much like “propositional
MLNSs)

+ Semantic loss ~ SLoss(T)ox—log > [»] 1 —ps)

XETrzeX —zxzeX

* Used as regulariser Loss = T'raditional Loss + w.S Loss

* Use weighted model counting , close to StarAl

(o)

73

°00 o
..........
.....
. 000%,
........
........

Logic Tensor Networks

undirected StarAl approach and (soft) constraints

P(x,y) — A(y), with G(x) = vand G(y) = u

G(P(v,u) - A(u)

74 Serafini & Garcez

Semantic Based Regularization

undirected StarAl approach and (soft) constraints

Evidence Predicate

F = Vd Pa(d) = A(d)
Fr = VdVd R(d,d') = ((Ad) N A(d)) V (mA(d) A —=A(d))) Groundings
C = {dladQ} PA(dl) =1
R(dy,ds) =1
1\ Output
Output Layer
2.

‘B avg

__

Propositional Layer [Ly (PA(d1), fA(d1)) } {t}‘«n (R(d1-, d2)7 fA (dl)s fA(dQ))]

the logic is encoded in the network
how to reason logically ?

Diligenti et al. AlJ

o

®

Jre% 6%0% e
TLel S

Two types of Neural Symbo| i

Just like in StarAl
Logic as a kind of neural Logic as the regularizer
roaram (reminiscent of Markov Logic
prog Networks)
directed StarAl approach and undirected StarAl approach and
logic programs (soft) constraints

Conseqguence :
the logic Is encoded in the network

the ability to logically reason is lost
logic Is not a special case erc

Jre% 6%0% e
Lot el

2. Directed vs Undirected
the NeSy dimension

and Computation
Luc de Raedt
[Kristian Kersting
' “ O t e S O e u I a I I I O I C S t e I I l S =
SYNTHESIS LECTURES ON ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING
Ronald. Beachan, Wilsm W. Cohen, and Ptcr Stonc, S

Just like in StarAl

Logic as a kind of neural

program Logic as the regqularizer
(reminiscent of Markov Logic

Networks)

undirected StarAl approach and
(soft) constraints

directed StarAl approach and
logic programs

Also, many NeSy systems are doing
knowledge based model construction KBMC
where logic is used as a template

Just like in StarAl

77

3. Types of Logic

/8

3. Types of Logic

Key Messages

o Different types of logic exist

e Different types of logic enable different functionalities

79

3. Types of Logic

80

Various flavours of logic

stress (ann) .

alarm :— earthquake. influences (ann,bob) .

alarm :— burglary. influences (bob,carl).
smokes (X) :- stress (X).
calls_mary :— alarm, hears_alarm_mary. smokes (X) :-

influences(Y,X),

calls_john :—alarm, hears_alarm_john. smokes (Y) .

Propositional logic First-order logic

°00 o

.....
e o0 L]
........
........

81

Various flavours of first-order
logic

Logic programs
= programming language

. 82

° .
.........
.....

Logic programming and Prolog

Full-fledged programming language
structured terms

/

member (X, [X]|]).

member (X, [|Tail]) :-
member (X, Tail).

AN

recursion

83

o0
.........
........

Various flavours of first-order
logic

Logic programs
= programming language

Datalog
= Logic programs
that always terminate

° .
...........

Datalog

Query language for deductive databases

no structured terms
guaranteed to terminate

ancestor (X, Y) :- parent(X, Y).
ancestor (X, Y) :- parent(X, Z2), ancestor(Zz, Y).

85

Various flavours of first-order
logic

Answer-set programs
= Logic programs with
multiple models that

always terminate
+ soft/hard constraints

+ preferences

Logic programs
= programming language

Datalog
= Logic programs
that always terminate

86

Answer-set programming

Prolog with multiple models + interesting features

choice rules

col(r). col(g). col(b). /

1 {color(X,C) : col(C)} 1]:- node(X).
:— edge(X,Y), color(X, , color (Y, .

\ constraint

°
Jre% 6%0% e
TLel S

87

What can it do?

erc

What can it do?

Datalog:
database queries

89

What can it do?

Answer-set programming:
database queries, common-sense
reasoning, preferences

Datalog:
database queries

° .
..........

90

What can it do?

91

Logic programming:
programs manipulating structured
objects, infinite domains, ...

Answer-set programming:
database queries, common-sense
reasoning, preferences

Datalog:
database queries

oo .
...........

Logic program vs First-order
logic

Issues with transitive closure in first-order logic
edge(|,2).
path(A,B) < edge(A,B).
path(A,B) < edge(A,C), path(C,B).

Logic programs always First-order logic can have
have one model many models
{edge(1,2), path(l1,2)} {edge(1,2), path(1,2)}

{edge(1,2), path(1,2), path(l,1)}
{edge(l,2), path(l,2), path(2,1)}

e rc
92 L

3. Types of Logic

93

Logic in NeSy -

Logic in NeSy - Dataloo

JdILP, Neural Theorem
Provers, LRNN, DiffLog, ...

Logic in NeSy - Answer-satl
programming

NeurASP

JdILP, Neural Theorem
Provers, LRNN, DiffLog, ...

° .
.........
.....

Logic in NeSy - oo programming

DeepProblog,
NLProlog

NeurASP

JdILP, Neural Theorem
Provers, LRNN, DiffLog, ...

97 '

Logic in NeSy - First-order logic

Logic tensor networks, NMLN,
SBT, RNM

DeepProblog,
NLProlog

NeurASP

JdILP, Neural Theorem
Provers, LRNN, DiffLog, ...

98

3. Types of Logic

Key Messages

o Different types of logic exist

e Different types of logic enable different functionalities

99

4. Symbolic vs sub-symbolic

4. Symbolic vs sub-symbolic
Key Messages

e Entities are represented very differently in symbolic and
sub-symbolic systems, but they are complementary

e NeSy systems differ in how they integrate symbolic and
sub-symbolic properties

101

4. Symbolic vs sub-symbolic

Entities iIn symbolic Al

 Atoms: an, bob e Structured terms
* Numbers: 4, -3.5 * mother(an,bob)
* Variables: X,Y * [1,3,9]

* plus(3,times(2,5))

However, symbols have no inherent meaning

mother(an, bob) f(x, y)

brother(bob, charlie) VS a(y,)

mother(X, charlie) f(W, z)
children(an, [bob, charlie]) h(x, [y, z])

Symbolic unification

* Powerful mechanism for symbol matching
* basis for many Al systems

* Finds substitution 8 such that both symbols match
* mother(X, bob) = mother(an, Y)
*0={X=an, Y =bob}

* Not useful to determine similarity
* mother(an,bob) = mother(an,charlie)?

4. Symbolic vs sub-symbolic

Entities iIn sub-symbolic Al

Sub-symbolic systems require different representation
Let's call these non-symbolic representation sub-symbols

Entities are already sub-symbolic

5

The transformation is straight-forward

The quick brown fox ...

—

132 32 204 ...

.................................

.................................

N NnnNn ' N 4 .

0.8 0.4 06 ..

ferc

Entities iIn sub-symbolic Al

The transformation is not straight-forward

j

N

o
-
c\a

o —

107

0.3 -0.5: 0.2
0:0:0:0
1 1 i 0 :0
1 i 0:i0 i1

...

Sub-symbols in StarAl

* |t Is possible to represent these sub-symbols in logic
* vectors: [0.1, -0.5, 0.6]

* matrices: [[0.2,0.4],
[0.3, 0.1]]

* However, they are not part of the computation mechanisms.
* l.e. we cannot learn its parameters
* They are not first class citizens.

Comparing sub-symbols

Similarity can be determined through various metrics

* L1, L2, radial-basis function, ...

Can only give a degree of similarity
Whenis a # b? Whenis a = b?

Generalizability
Encoding relations r(h,t)

* Many ways to structure embedding space

Models

score function f(h, r, t)

TransE [2]
TransR [10]
DistMult [20]
ComplEXx [16]
RESCAL [12]
RotatE [135]

—|[h +r—t|f
_lerh'*'l'—Mrt”%
h ' diag(r)t
Real(h™ diag(r)D)
h™M;t
—|[hor—t|f’

la-bll2
(/

4. Symbolic vs sub-symbolic

4. Symbolic vs sub-symbolic
Symbols as sub-symbols

Symbols as sub-symbols

* Symbols are replaced with sub-symbols

* One-hot encoding

 Embeddings

* Inherent numerical properties

* Natural in systems that are originate from a neural base

* LTN, NLM, ...

The quick brown fox ...

(o

—

132 32 204 ...

N - NN N 4 .

0.8, 0.4 06 ..

erc

Logic Tensor Network

* These translations are made explicit in Logic Tensor Networks

Definition 1. A grounding G for a first order language L is a function from the signa-
ture of L to the real numbers that satisfies the following conditions:

1. G(c¢) € R™ for every constant symbol ¢ € C;
2. G(f) e Rmolf) — R™ for every f € F;
3. G(P) e R**(B) —[0,1] for every P € P;

G(f(tr, - tm)) = G(F)(G(1), -, Gltm))
G(P(tr, - tm)) = G(P)(G(tr), .-, G(tm))

G(~P(t1,... tm)) =1 —G(P(t1,. . tm)
G(or V-V b)) = w(G(d1), ..., G(on)) erc

113
Luciano Serafini, Artur S. d'Avila Garcez: Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge. NeSy@HLAI 2016

Logic Tensor Network

G(P(v,u) —» A(u)

Sub-symbolic

(@)
@‘@ : computation
oo
\ >/ '
(1) (%)

o0
.........
........

114
Luciano Serafini, Artur S. d'Avila Garcez: Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge. NeSy@HLAI 2016

4. Symbolic vs sub-symbolic
Sub-symbols as symbols

Sub-symbols as symbols

* The sub-symbolic nature is not considered in the logic

* Tensors, vectors, ... are treated as symbols

* Sub-symbolic properties are not directly used in the logic
 Difference with StarAl systems

* sub-symbolic properties are used on the neural side

* usually differentiable / learnable
* Natural in systems that are originate from a logic base

* DeepProblLog, NeurASP ...

er

Sub-symbols as symbols:
DeepProblog

e DeepProblLog: interface between PLP (ProblLog) and neural networks.
e This interface takes the form of the neural predicate

e Qutput of neural networks represented as probabilistic facts

nn(mnist net, [D], N, [0 ... 9]) :: digit(D,N).
addition(X,Y,Z2) :- digit(X,N1l), digit(¥,N2), Z is N1+N2.

e In the logic, the images are represented as constants
e Sub-symbolic properties are used in the neural network to make predictions

e This may seem as a limitation, but isn't

Examples:

addition(El, y8), addition(H ,Bl ,4), addition(El, E,11), .. erC

Sub-symbols as symbols:
DeepProblog

nn(mnist net, [X], Y, [0 ... 9])

(X,Y). N q-

addlthH(X,YrZ) s = [@.6,9.2,'@5i1,@.8] D
(X,N1),
(Y,NZ) , 0.48, ® 0.02,

[0.6,0,0,0.8] ® l0.0.2,0.1,0]

Z is N1+N2. ,////A\t::><ii://\\\\\

[digit(ﬂ,@) } [digit(ﬂj) } [digit(ll,‘l) } [digit (i, 9) }
0.8, 0.1, 0.6, 8.2,

The ACs are differentiable and [1,8,0,0] (01,0 0] [0,0,0,1] [0,8,1,0]
there is an interface with the
neural nets

PROBABI

8 |
]

Embeddings as symbols

Computational Graph

RBF succesor_n(El E) :-

— cnn_embed(E,e1),

| cnn_embed(E,c2),
% embed(“successor”,r),
: add(r,e1,e3),
: I_ | rbf(c2,e3).
ﬂ Slee il i@ |dea of TransE [Bordes et al]

| 1 |
“successor’

o0
.........
........

4. Symbolic vs sub-symbolic
Sub-symbols as labels

Sub-symbols as labels
T-PRISM

« StarAl

* probabilites are used as labels
* labels are combined in inference (cfr. arithmetic circuit)
* |In this integration, labels are sub-symbols instead

 Example: T-PRISM

rel(S,R,0):- label(rel(S,R,0))
tensor(v(S),[i]), = label(Si A Oi A R))
tensor(v(O),[i]), =)i SiOif|
tensor(r(R),[i]). = DistMult(s,0,r)

g

: e rc

Ryosuke Kojima, Taisuke Sato: A tensorized logic programming language for large-scale data. CoRR abs/1901.08548 (2019)

Yang et al.: Embedding entities and relations for learning and inference in knowledge bases. (ICLR 2015)

4. Symbolic vs sub-symbolic
Neural Theorem Prover

Neural Theorem Prover

* The neural theorem prover uses both symbols and sub-
symbols simultaneously

* Symbols retain their symbolic nature
* Each symbol has a learnable sub-symbol T

* Symbol comparison:
* Normal unification

* Comparison of sub-symbols:
* sim(x,y) = exp(- [[Tx - Ty|2)

gr

Tim Rocktaschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.

Soft unification

* Unify what can be unified
* Use similarity to compare other symbols and use it as a score

mother(an, bob) = parent(X, bob)

—

sim(mother,parent) an =X bob = bob
— —, 01 = {X = an} B2 = {}
mother parent

Tim Rocktaschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.

End-to-end differentiable
proving

* OR module
* Apply every rule whose head soft-unifies with the goal
* Uses AND module to prove sub-goals in body

* AND module

* Prove conjunction of sub-goals

* Uses OR module to prove first goal

* Uses AND module to recursively prove

gr

Tim Rocktaschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.

Example

mother(an, bob).
r1(X,Y) - r2(Y,X). child(bob, an) 5

/ \‘ r2(an,l bob).
3

v,
Unifications Q

1) mother(an,bob) = child(bob,an) 2) r1(X,Y) = child(bob,an)
sim(mother,child) sim(r1,child)
sim(an,bob) X =bob

Y =an

3) r2(an, bob) = mother(an, bg%)
sim(r2,mother) T
126

Tim Rocktaschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.

4. Symbolic vs sub-symbolic
Key Messages

e Entities are represented very differently in symbolic and
sub-symbolic systems, but they are complementary

e NeSy systems differ in how they integrate symbolic and
sub-symbolic properties

127

5. Structure vs parameter learning

5. Learning
Key Messages

Learning: finding logical formulas and estimating
probabillities

Structure learning: both formulas and probabilities
Parameter learning: only probabilities

Many flavours of learning in NeSy

129

5. Structure vs parameter learning

Learning in StarAl

Obtaining models from data

131

0.7::nationality(X,Y) :-
livesin(X,Y).

0.7::nationality(X,Y) :-
livesin(X,Z), locatedIn(Z,Y).

0.9::nationality(X,Y) :-
bornin(X,Y).

000
Jre% 6%0% e
........

StarAl learning paradigms

What is
provided?

What is the
learning goal?

@

Structure
learning

Data

Structure and
parameters

132

Parameter
learning

Data and
discrete structure

Parameters

o0
.........
........

Learning types: Parameter learning

Learning the probabilities/weights of a specified model
the goal of learning

e

0.7::nationality(X,Y) :-

I) livesIn(X,Y).

0.7::nationality(X,Y) :-

Model (the formulas) are given

nationality(X,Y) :- livesin(X,2), locatedIn(Z,Y).
livesIn(X,Y).
nationality(X,Y) :- 0.9::nationality(X,Y) :-
livesIn(X,Z), locatedIn(Z,Y). bornin(X,Y).
nationality(X,Y) :-
bornin(X,Y).
erc

133

Learning types: Parameter learning

Learning the probabilities/weights of a specified model
Model (the formulas) are given

Learning principles: identical to learning parameters of any parametric

model
e gradient descent [Lowd & Domingos, 2007]
* |least squares [Gutmann et al, 2008]
e Expectation Maximisation [Gutmann et al, 2011]

& BABI “ierc

Learning types: Structure learning

Finding the clauses/logical formulas of a model

the goal of learning

e

0.7::nationality(X,Y) :-
livesin(X,Y).

H 0.7::nationality(X,Y) :-

livesin(X,2), locatedIn(Z,Y).

0.9::nationality(X,Y) :-
bornin(X,Y).

. 000
700 0000

135

Learning types: Structure learning

Two types of structure learning

Discriminative Generative
* specific target relation * no specific target relation
* separate background * learning generative process
knowledge behind data

(@ - erc

Learning types: Structure learning

Learning by searching

g

)BABI

/

Combinatorial enumeration

~

Evaluate

_

Create/refine
candidates

~

J

—

N\

need to control
how complex this
space Is

-

137

Learn
parameters
\

J

°00 o
..........
.....
. 000%,
........
........

Learning via enumeration - Probfoll+

[De Raedt et al, 2015]

grandparent(abe,lisa).
grandparent(abe,bart).
grandparent(jacqueline,lisa).
grandparent(jacqueline,maggie.)

000
Jre% 6%0% e
........

138

Learning via enumeration - Probfoll+

[De Raedt et al, 2015]

Model: {3.0:: grandparent(X,Y) < mother(X,Z), father(Z,Y)}

Htaatared @RpLDLING BN c!

Learn one rule:

p:: grandparent(X,Y) < mother(X,Z),father(Z,Y)

p:: grandparent(X,Y) < mother(X,Z),mother(Z,Y)
q B¢‘B' p:: grandparent(X,Y) < father(X,Y),mother(X,Y) er C
..... -

Learning via random walks

[Kok & Domingos, 2009]

“Lift” a knowledge graph by identifying
nodes with the same role

Student Student’

Book Professor Book’
@D--d2] () (82
S\se)§ s 2
2 Qo

Traverse the lifted knowledge graph
and
turn every path into a clause/rulg::

140

Learning in StarAl - overview

Structure learning

& Starts directly from data

@ Combinatorial problem

@ User needs to design a language

<

141

Parameter learning

& Learning is easier

& Scales better
@ An expert needs to provide the rules

@ Sensitive to the choice of rules

000
Jre% 6%0% e
........

5. Structure vs parameter learning

Spectrum of learning paradigms

Soft patterns

Neural generation Structure via
parameter learning

Neurally-guided

learning Program sketching
DATA and
STRUCTURE
Structure learning Parameter learning

DeepCoder

[Balog et al, 2017]

O
e e
/‘\ /‘\ /'\ /‘\
O O O O O O O O

StarAl techniques search for clauses/rules systematically

>
144

DeepCoder

[Balog et al, 2017]
Preferences of learning ‘primitives’

/\
0\ O O

rd N
o O O

Explore the subpart of the space with
primitives that are likely to solve the problem

likely to solve a problem = learned from data

Ok

DeepCoder

[Balog et al, 2017]
Preferences of learning ‘primitives’

i a<+ [int] An input-output example:
| earn from pairs b « FILTER (<0) a Input:
c + MAP (x4) b [-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11]
(examp|es, program) d ¢ SORT ¢ Output:
e < REVERSE d [-12, -20, -32, -36, -68]

o | SCANL] e

—_ = s
— o L T =
1o = & o @ E 5 2 =
— o~ * m M <t = ° ° wi < - o o Q = < (@) = <
20 @ £ £ ¥ 2 F 2 A A2 E S s £ 3 &2 38 2K + «x = = O = = @
0 0 1 0 0 0 .0 .o..o .o..o > 0 .o_.o 1 0 4 6o 1 0 2 1 0 0 0 0

DATA 54 EIC
STRUCTUREF.

146

DreamCoder

[Ellis et al, 2018]

Distribution of primitives defines a generative model of programs

g(programs | examples)

Neural network outputs the posterior distribution over programs
likely to solve a specific task

Neural Markov Logic Networks

[Marra et al, 2020]

MLNs can be interpreted as log-linear models

PX =x) = ngb.(x{.})ni(x)
l l
z1
.m ..Cancer(B) ‘

potentials come from formulas

provided by the expert
(cliques in Markov network)

Neural Markov Logic Networks

[Marra et al, 2020]

Learn neural potentials from fragments of data

1
® 4 PX =x) == | [dio
\ i
potentials come from fragments
¢3 of data (knowledge graph)

Ok

Neural Generation

[INye et al, 2020]

Neural model generates discrete structure

Grammar proposals: Symbolic application

. - Counterexample: on query set
run twice

support examples > run -> RUN

— ,' look -> LOOK
-~ ~N . RUN RUN RUN
run twice 1 x twice -> [x][x][x] G.apply(look twice’)
' X thrice -> [x1[x]) = LOOK LOOK
RUN RUN !
. J ! G = Counterexample:
'
~ ’ run -> LOOK run twice
look thrice Neural Model - € = = = P Jook -> RUN
\ X twice -> [x][x] LOOK LOOK
&LOOK LOOK LOOKJ \| x thrice -> [x][x][x]
[
1 e
— 1

'\ irun -> RUN . satisfies all
S) look -> LOOK —3» support
'x twice -> [x][x] ; examples

\x thrice -> [x][x][x]).

DATA 34 C
STRUCTURE:E.

Program sketching

[Bosnjak et al, 2018; Manhaeve et al, 2018]
Provide partial code

Fill in the missing functionality with neural networks

target_function(input_array):

Examples: rarray =]

element in input_array:

[1,4,5] = [1,16,25] rarray.append(??(element))

[2,2,5,1] — [4,4,25,1]

return rarray (

g2

partial functionality

Structure learning via parameter

learning

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates

and learn their probabilities/weights

152

grandparent(abe,lisa).
grandparent(abe,bart).
grandparent(jacqueline,lisa).
grandparent(jacqueline,maggie.)

Program sketching

Enumerate (lots of) logical formulas from templates

and learn their probabilities/weights

153

[Su et al, 2019]

Program templates

TX,Y) <
T(X,Y) «
TX,Y) «

D(X,Y).
P(Y,X).

P(X,2), Q(Z,Y).

Target: grandparent

Other predicates: father, mother

l

DATA amf Ic
STRUCTURE:F

Program sketching

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates ‘ grandparent(X,Y) < father(X,Y).
/ grandparent(X,Y) < mother(X,Y).
T(X,Y) < P(X)Y).

T(X,Y) < P(Y,X). grandparent(X,Y) « father(Y,X).
TX,Y) < P(X,2), QZ,Y). grandparent(X,Y) < mother(Y,X).

\ grandparent(X,Y) < mother(X,Z), mother(Z,Y).

grandparent(X,Y) < mother(Y,X), father(Z,Y).

Target: grandparent

Other predicates: father, mother

. . 154

DATA 34EIC
STRUCTURE:F

Neural guidance

Soft patterns

Neural generation

Sketching

Structure via params

Pros

makes discrete search
tractable

efficient learning

focused combinatorial
search

reduces combinatorial
search

removes combinatorial
search

155

cCons

lots of training data

no explicit structure

lots of training data

significant user effort

spurious interactions

. 000
700 0000

5. Learning
Key Messages

Learning: finding logical formulas and estimating
probabillities

Structure learning: both formulas and probabilities
Parameter learning: only probabilities

Many flavours of learning in NeSy

156

157

6. Semantics
Key Messages

* StarAl and NeSy share the same underlying semantics
* Semantics can be described in terms of parametric circuits
* Differentiable semantics/circuits allows an easy integration

* NeSy models can be seen as neural reparameterization of
StarAl models

158

Semantics

* In Logic, semantics is connected to the interpretations of
logical sentences

* An interpretation assigns a denotation or a value to each
symbol in that language.

“42(47)”

Semantics

* In Logic, semantics is connected to the interpretations of
logical sentences

* An interpretation assigns a denotation or a value to each
symbol in that language.

“human(socrates)”

* Given a propositional language L, a labelling function is a
function:

L -V

160

coe o¢
L °
NS

,,,,,,
L 00000009
sssss

oo0®
aaaaaaaaa
RO

6. Semantics

Boolean logic

161

o 0
...........
........

Semantics in Boolean Logic

* Defining a semantics for a propositional language L is about
assigning a truth value to all the sentences of the logic

» The labelling function ¢ is:

p: L — {True, False}

Three steps:

1. Labels for propositions
2. Labels for operators

3. Labels for formulas

@ Lerc

Semantics in Boolean Logic

1. Providing the labels for propositions

A B,C. 4 g(A) = True
£ s(B) = False
£n(C) = True

25 %000¢
e

Semantics in Boolean Logic

2. Providing the semantics for operators

b—q

’5

BSllesierllerlle
|| e
=il

erc

Semantics in Boolean Logic

3. The labels of formulas is defined recursively on the semantics
of its components

g(A — B) = Lﬂ;(gB(A)a LZB(B))

This recursive evaluation of formulas is said to be extensional
approach.

es® Selede
< 20,%90004°
c00e® 000
XY ANY)
XA
%000
< ej000
209 00%0®
ce® % e,

Semantics in Boolean Logic

 Consider:

(AANB) - C

6. Semantics

Fuzzy logic

167

o 0
...........
........

Fuzzy Logic Semantics

* There are many fuzzy logics

* Here we are interested in a subclass, in particular t-norm fuzzy
logic

erc

Fuzzy Logic Semantics

* Defining a semantics for a propositional fuzzy language L is
again about assigning a truth degree to all the sentences of the
logic

* We define a labeling function:

{p: L — [0,1]
Three steps:
1. Labels for propositions
2. Labels for operators
3. Labels for formulas

‘g0 ® 0he
. 00,%0004°
RXrSALD)
‘Lece ® 00
.00 0O
%0000
c 0 000
‘e’%00
‘e 00 o0 ¢
‘e00® "00¢
‘v000%g 20
0000 g0
cre0e% 008,
e L T

Fuzzy Logic Semantics

1. Providing the labels for propositions

A,B,C. £n(A) = 0.9
£n(B) =0.3
£(C) =0.5

170

uuuuu
..........
.....

oo0®
.........
.........

Fuzzy Logic Semantics

2. Providing the labels for operators: t-norm theory

* A t-norm is a binary function that extends the conjunction to
the continuous case

t: 10,11 x[0,1] — [0O,1]
* There are 3 fundamental t-norms:

- Lukasiewicz t-norm: #; (x, y) = max(0,x +y — 1)
» Goedel t-norm: f(x, y) = min(x, y)

I. Product t-norm: fp(x,y) = x - y .
erc
171

Fuzzy Logic Semantics

* All the other operators can be derived from the t-norm (and its

residuum)
Product tukasiewicz Godel
XAy Xy max(0,x + y—1) | min(x, y)
XVy X+y—x-y min(1l, x + y) max(x, y)
—X 1 —x 1 —x l —x
x=>y (x>y) y/x min(l,1 —x+ y) y

172

o0
.........
........

Fuzzy Logic Semantics

3. The labels of formulas is defined recursively on the semantics
of its components

‘(A — B) = fz?(gF(A)a LZF(B))

This recursive evaluation of formulas is said to be extensional
approach.

e.g.

‘A —> B) =min(1,1 -0.9+0.3) =04 g

Fuzzy Logic Semantics

 Consider:

(AANB) - C

Fuzzy Logic Semantics

Properties of t-norms

* Most common t-norms are:
e Continuous

* Differentiable -> This turns to be one of the reason of their
adoption in NeSY

* Convex fragments of the logic can be defined (Giannini et al,
2019)

Fuzzy vs Boolean

* Fuzzy and Boolean have different properties

* When fuzzy is used as a “relaxation” (fuzzification) of Boolean
undesired effects can happen.

e Consider the rule:
1. £5(AV BV C) =True

2. AV BV C)=min(1,:A) + £4(B) + £(C)) = 1
3. £HA) = ¢{B) = £(C) = 0.35

A~ p(A) = Cp(B) = C»(C) = False ’
&

Semantics

Probabilistic logic

177

o 0

........

Probabilistic Logic Semantics

Given a proposition language L, the basic idea is to introduce a
probability function £ :

£p: L — [0,1]

Three steps:

1. Labels for propositions / formulas

2. Distribution over possible interpretations

3. Labels for formulas = Weighted Model Count using distribution

PROBABI erc
{ LITY

Probabilistic Logic Semantics

1. Provide
A. the labels for propositions (e.g. ProbLog)
£n(A) =0.1
B HA) =
p(B) = 0.7

B. the labels for formulas of interest (e.g. Markov Logic)
AAB £o(AAB)=1.5

(# Cp(A A B))

S e
179

Probabilistic Logic Semantics

2. Usually £'pis defined in terms of a probabilistic distribution p
over truth assignments or interpretations of the propositional
variables.

p(Cp(x), ..., Cp(x,))

e.g. p(A=True, B=False) = ?

25 %000¢
e

Probabilistic Logic Semantics

e.g. in ProblLog:

pCsx)). ... 5=] Zed [] (-2
1:0g(x)=True 1:0g(x;)=False
0.1 ::burglary. (B)

0.05 ::earthquake. (E) “ﬂ“

0.6 :thears_alarm(john). (H)

alarm :— earthquake i 3 F 0.342
— uakKe.

alarm — burgl'jry. F F T 0.513
F T F 0.018
F T T 0.027
T F F 0.038

ROBABI T F T 0.057

/LTy T T F 0.002 0.1x0.05 x (1-8f

T T T 0.003 i

Probabilistic Logic Semantics

e.g. Markov Logic
1 .
PR, s Cpl)) = — exp< 20; £p(a)) fB(a(x))>

Number of true groundings
(Each true grounding
contributes with 1)

xexp(l5-(1+04+1))

stress(X) -> smokes(X):

stress(ann) -> smokes(ann): True (1)
stress(bob) -> smokes(bob): False (0) B R I
tress(carl) -> smokes(carl): True (1) '

ROBABI
X LITY

182

Probabilistic Logic Semantics

3. Given any sentence Q of the propositional language L, with

variables xy, ..., X,

Q)=) P, ...)

p(x)),...,Cg(x)FQ

WMC - Weighted Model Counting
(for both ProbLog and Markov Logic)

PROBABI erc
{ LITY

Probabilistic Logic Semantics

For example: 0.l ::burglary. (B)

0.05 ::earthquake. (E)

0.6 ::hears_alarm(john). (H)
alarm :— earthquake.

alarm :— burglary.

B | _E____H_[pBEH

O=BAH
T F T 0.057

T T T 0.003 7p(Q) = 0.06

ROBABI
X LITY
184

Probabilistic Logic Semantics
* Consider:

_ " \w
A B s

(not always at least)

185 R

Probabilistic Logic Semantics

* Consider:

o B

o BT

oF BT

B ¢ Zp(B) £p(C)

v

Knowledge Compilation
‘ SITB¢BI The probabilistic structure is now explicit in
the compiled formula. .,

Probabillistic Soft Logic (PSL)

Bach, Stephen H., et al. JIMLR 2017

* Let’s start by an example of a Markov Logic Network:

1 -
p(Cp(xy), ..., Cp(X,)) = E exp(; ¢ p(ax) ; fB(a(X)))

- In PSL, we relax the Boolean semantics ¢ 5 to a fuzzy
semantics £ .

1 _
P, O) = — exp(Za: £ p(a) Z fF(a(x)))

Each grounding contrlbutes
ROBABI with a value in [0,1]: :;:-erc
@ ‘.. ..F:TT{‘-:
187

Probabillistic Soft Logic (PSL)

a(X) : stress(X) —
C(a(X)) = min(1,1-7(stress(X) +)

min(l, Z xi)
|

PE:
|
X
4 F(Stress(XI)gaX fp(a) ; fF(a())
ot p(ax)), CAX)
L p(stress(X)) = Cp(stress(X)) + A l ZX 4
oC (stress(X))

: ROBABI
LITY
188

|
¢ p(smokes(X))

6. Semantics

Neural Symbolic

189

Neural Symbolic

How to carry over concepts from the semantics of StarAl to
neural symbolic?

£(Q)

Labelling functions = Parametric circuit

(semantics)

| — The query Q determine
Cr((AAB) = CO) A F(C) the structure (potentially
after knowledge
| ' | compilation)
22G) ¢ p(B) e

190

Neural Symbolic

How to carry over concepts from the semantics of StarAl to
neural symbolic?

£(Q)

Labelling functions = Parametric circuit

(semantics)

| — The leaves
£H{((ANB) - C) fF(C) represent the
scalar parameters
| 7 | g AN
7A) 7B erc

191

Neural Symbolic

How to carry over concepts from the semantics of StarAl to

neural symbolic?

. Atomic labels Z are just

0.1 ::burglary. (B)

0.05 ::earthquake. (E)

0.6 ::hears_alarm(john). (H)
alarm :— earthquake.

alarm :— burglary.

L £
Burglary 0.1
Earthquake|0.05

ere

Neural Symbolic

« What if we turn to neural networks?
L 4
burglary 0.1

« Two main reasons:

* Perceptive queries (burglary = @ﬁ‘* , earthquake=—)
- Semantic sub-symbolic queries (burglary=[0.33,0.56,7.45])

ferc

StarAl to Neural Symbolic

— KO StarAl
£r(A) Zr(B)
Cp(B) ¢p(C)
& REPARAMETERIZATION &

I_I_I

| '_I_l
@ s - =%
7 (A) 2F(B) m NeSy 1 — £4(B) -
0 m g
—

194

Zp(B) £p(C)

Fuzzy Reparameterization

StarAl (PSL)
max Z (@) p(a(X))

£ p(stress(X)),

I
[|
Cp(stress(X))

NeSy (SBR, LTN)
| max Y (@)t aX))

stress*” smokes

Semantic Based
Regularization (Diligenti
et al, Al 2017)

a

Logic Tensor Network
(Donadello et at, IJCAI NN smokes
201 7) esmokes

NN stress

0

stress

Parameters of |
the neural nets e

Ce
0@
.......
000
........

Probabilistic Reparameterization

[l Probabilistic parameters

* ProblLog:
pCsx). ...) =[] I a0
1:0g(x;)=True i:0g(x;)=False
* Markov Logic:
1
PR, E5(5) = — exp(My me(x))) I
a X 1 - £p(A) -
——
WMC ZON
(rr0s =
PROB e
N Q=), PR, Epxy) P
Cp(x)),....0 B()ing)elszQ Rscoo

Probabilistic Reparameterization

B Neural parameters
* DeepProbLog (Manhaeve et al, NeurlPS (2018))

pCsx). ...t = |1 7o)] (a=Zp0)
1:0g(x;)=True 1:0g(x;)=False
* Relational Neural Machines (Marra et al, ECAI 2020) .
|—|—|
e [

1 - | |
p(Cp(x)), ..., Cpx)) = E exp(Z ¢ p(ar) Z LﬂB(a(x))> mf‘) -
a x | R —

l—|—|
WMC m £B) £H(C)

@@ £p(Q) = Y Py, ...)

—
p(x)),...,Cg(x,)FQ

197

Probabilistic Reparameterization

DeepProbLog (Manhaeve et al, NeurlPS (2018))

e Probabilistic fact
I — ..
o - :: burglary.
[| -
O8N
X i
1= 44(B) _
—— Neural Predicate
8 9 |nterface
— — < nn(mnist_net, [X], Y, [0 ... 9]) :: digit(X,Y).

T
&

198

6. Semantics
Key Messages

* StarAl and NeSy share the same underlying semantics
* Semantics can be described in terms of parametric circuits
* Differentiable semantics/circuits allow an easy integration

* NeSy models can be seen as neural reparameterization of
StarAl models

199

7. Logic vs Probability vs Neural

7. Logic vs Probability vs Neural
Key Messages

* We have three paradigms in the NeSy spectrum: Logic,
Probability and Neural Networks

* An integration of the three should have the original
paradigms as special cases

e Computationally complex

* The integration is usually achieved by sacrificing the base
paradigms

e More scalable

201

About integration in neural
symbolic

Neural Networks

Probability | Logic

202

000
Jre% 6%0% e
........

Statistical Relational Al

They perfectly integrate
probability theory (Probabilistic
Graphical Models) and Logic.

°
Jre% 6%0% e
........

203

Probability

Relaxed theorem provers

Neural Networks

204

They sacrifice a bit the pure
boolean semantics to obtain
some soft neural capabilities
(weighted reasoning,
embeddings).

KBANN (Tawell 1994)
LRNN (Sourek, 2017)
NTPs (Rocktéaschel, 2017)
DiffLog (Si et al, 2018)

NN for Relational Data (2019)

)

. -.Q:......‘,

‘oo
so0gee0se

Regularization methods

They sacrifice the logic and
probability a lot by pushing
everything inside the weights of
the neural network.

Logic and probability are used
only at training time. At inference
time, only the neural net is used.

., SBR (Diligenti et al, Al 2017)
Logic LTN (Donatello et al, IJCAI 2017)
SL (Xu et al, ICML 2018)

.....
oooooooooo
(J
........
.....
~~~~~~
........

205



Knowledge Graph Embeddings

Probability

Neural Networks

Transk (Bordes 2013)
DistMult (Yang, 2014)
ComplEx (Trouillon, 2016)
NTN (Socher, 2013)

206

They use latent spaces, typical
of neural computation to
encode a relational structure of
the data.

Neural networks cannot be
recovered.

Logic is declined to encoding
relations

Probabilistic modelling is
strongly approximated (e.qg.
atom mean field)

Most scalable solutions.



Graph Neural Networks

207

They extend neural network
to provide some relational
and multihop reasoning.

Logical semantics is not
preserved.

R-GCN - Schlichtkrull et al,
2017

°
Jre% 6%0% e
........



Probabilistic reparameterization

Probability

208

Logic

They extend StarAl with
perception capabillities.

Subsymbols at the level of the

constants only

e Not at the level of the atoms
(like KGE)

e Not at the level of the rules (like
GNNs)

One of the most promising
direction for NeSy.

Main problem is scalability.



7. Logic vs Probability vs Neural
Key Messages

* We have three paradigms in the NeSy spectrum: Logic,
Probability and Neural Networks

* An integration of the three should have the original
paradigms as special cases

e Computationally complex

* The integration is usually achieved by sacrificing the base
paradigms

e More scalable

209



Conclusions




Key Message

Luc de Raedt

Kristian Kersting

Sriraam Natarajan

David Poole

SYNTHESIS LECTURES ON ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING
Ronald ). Beachaman, Willam W. Cohen, and Peter Stone,

StarAl and NeSy share similar problems
and thus similar solutions apply

See also [De Raedt et al., IJCAI 20]
erc



The Seven Dimensions

1.
2.
3.
4.
5.
6.
/.

Proof vs Model based

Directed vs Undirected

Type of Logic

Symbols vs Subsymbols
Parameter vs Structure Learning
Semantics

Logic vs Probability vs Neural

212



Many questions to ask

* What properties should integrated representations satisfy ?

* Should one representation take over ? (As in most
approaches to NeSy — push the logic inside and forget
about it afterwards)

* Should one build a pipeline or an interface between the
integrated representations ?

* Should one have the originals as a special case ?

* (yes we believe you should be able to do all what you can
do with the original representations)

erc



Many questions to ask

* Which learning and reasoning techniques apply ?
* Can you still reason logically / probabilistically ?

* Can you still apply standard learning methods (like gradient
descent) ?

* |s everything explainable / trustworthy ?
* How to evaluate integrated representations ?

*1+1=37
* Can they do what the originals can do, and can they do more
?

* Can they do something different ?

erc



Challenges

* For NeSy,
* scaling up
* which models to use
* real life applications
* peculiarities of neural nets
* |ogical inference can be expensive
* This is an excellent area for starting researchers / PhDs

215

o0
.....
.....



THANKS

° .
...........



References

Tarek R. Besold, Artur S. d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro M. Domingos, Pascal Hitzler, Kai-
Uwe Kiihnberger, Luis C.Lamb, Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung
Poon, and Gerson Zaverucha. Neural-symboliclearning and reasoning: A survey and interpretation.CoRR, abs/
1711.03902, 2017.

Matko BosSnjak, Tim Rocktaschel, Jason Naradowsky, and Sebastian Riedel. Programming with a differentiable forth
interpreter. INICML,2017.

William W. Cohen, Fan Yang, and Kathryn Mazaitis. Tensorlog: Deep learning meets probabilistic dbs.CoRR, abs/
1707.05390, 2017.

Andrew Cropper. Playgol: Learning programs through play. InlJCAI 2019, 2019.

Andrew Cropper and Stephen H. Muggleton. Metagol system. https://github.com/metagol/metagol, 2016.

Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge bases. InlJCAI, 2011.

Artur S. d’Avila Garcez, Marco Gori, Luis C. Lamb, Luciano Serafini, Michael Spranger, and Son N. Tran. Neural-
symbolic computing: An effective methodology for principled integration of machine learning and reasoning.FLAP,
6, 2019.

Luc De Raedt, Sebastian Dumancic., Robin Manhaeve and Giuseppe Marra. From statistical relational to neuro-
symbolic artificial intelligence. In [JCAI 2020.

Luc De Raedt.Logical and relational learning. Springer, 2008.

Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole.Statistical Relational Artificial Intelligence:
Logic, Probability, andComputation. Morgan & Claypool Publishers, 2016.




References

Luc De Raedt and Angelika Kimmig. Probabilistic (logic) programming concepts.Machine Learning, 100, 2015.

Luc De Raedt, Robin Manhaeve, Sebastijan Duman~ci’c, Thomas Demeester, and Angelika Kimmig. Neuro-
symbolic= neural+ logical+probabilistic. InNeSy @ 1JCAl, 2019.

Thomas Demeester, Tim Rocktaschel, and Sebastian Riedel. Lifted rule injection for relation embeddings. INEMNLP,
2016.

Michelangelo Diligenti, Marco Gori, and Claudio Sacca. Semantic-based regularization for learning and
inference.Artif. Intell., 244, 2017.

lvan Donadello, Luciano Serafini, and Artur S. d’Avila Garcez. Logic tensor networks for semantic image
interpretation. In 1JCAI, 2017.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic machines. InICLR,
20109.

Sebastijan Duman’ci’c, Tias Guns, Wannes Meert, and Hendrik Blockeel. Learning relational representations with
auto-encoding logic programs.InlJCAI, 2019.

Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-Lezama, and Josh Tenenbaum. Learning libraries
of subroutines forneurally-guided bayesian program induction. InNeurlPS, 2018.

Kevin Ellis, Maxwell I. Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama. Write, execute,
assess: Program synthesiswith a REPL.CoRR, abs/1906.04604, 2019.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data.J. Artif. Intell. Res., 61, 2018.




References

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens,
and Luc De Raedt.Inference and learning in probabilistic logic programs using weighted boolean formulas.Theory
and Practice of Logic Programming, 15, 2015.

Peter Flach.Simply Logical: Intelligent Reasoning by Example. John Wiley & Sons, Inc., 1994.

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational models. InlJCAI, 1999.
Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer set solving in practice.Synthesis
lectures on artificialintelligence and machine learning, 6, 2012.

L. Getoor and B. Taskar, editors.An Introduction to Statistical Relational Learning. MIT Press, 2007.

Francesco Giannini, Michelangelo Diligenti, Marco Gori, and Marco Maggini. On a convex logic fragment for
learning and reasoning.lEEETFS, 27, 2018.CV Radhakrishnan et al.:Preprint submitted to Elsevier

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for
guantum chemistry.arXivpreprint arXiv:1704.01212, 2017.

Goldman, O., Latcinnik, V., Naveh, U., Globerson, A., & Berant, J.. Weakly-supervised semantic parsing with
abstract examples. ACL 2018

Bernd Gutmann, Angelika Kimmig, Kristian Kersting, and Luc De Raedt. Parameter learning in probabilistic
databases: A least squaresapproach. INECML&PKDD, 2008.

Manfred Jaeger. Model-theoretic expressivity analysis. In Luc De Raedt, Paolo Frasconi, Kristian Kersting, and
Stephen Muggleton, editors,Probabilistic Inductive Logic Programming - Theory and Applications, volume 4911 of
LNCS. Springer, 2008.




References

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gulwani. Neural-guided
deductive search forreal-time program synthesis from examples. InICLR, 2018.

Kristian Kersting and Luc De Raedt. Bayesian logic programming: Theory and tool. In L. Getoor and B. Taskar,
editors,An introduction toStatistical Relational Learning. MIT Press, 2007.

Stanley Kok and Pedro Domingos. Learning the structure of markov logic networks. InICML, 2005.

Daphne Koller and Nir Friedman.Probabilistic Graphical Models - Principles and Techniques. MIT Press, 2009.
Marco Lippi and Paolo Frasconi. Prediction of protein beta-residue contacts by markov logic networks with
grounding-specific weights.Bioinform., 25, 20009.

John W Lloyd.Foundations of logic programming. Springer Science & Business Media, 2012.

Daniel Lowd and Pedro Domingos. Efficient weight learning for markov logic networks. InECML&PKDD, 2007.
Robin Manhaeve, Sebastijan Dumanci’c, Angelika Kimmig, Thomas Demeester, and Luc De Raedt. Deepproblog:
Neural probabilistic logicporogramming. InNeurlPS, 2018.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The neuro-symbolic concept
learner: Interpreting scenes,words, and sentences from natural supervision. In ICLR, 2019.

Giuseppe Marra, Michelangelo Diligenti, Francesco Giannini, Marco Gori, and Marco Maggini. Relational neural
machines. In ECAI, 2020.

Giuseppe Marra and Ondrej Kuzelka. Neural markov logic networks. CoRR, abs/1905.13462, 2019.




References

Pasquale Minervini, Matko Bosnjak, Tim Rocktaschel, Sebastian Riedel, and Edward Grefenstette. Differentiable
reasoning on large knowledgebases and natural language. InAAAI, 2020.

Pasquale Minervini, Thomas Demeester, Tim Rocktaschel, and Sebastian Riedel. Adversarial sets for regularising
neural link predictors. InUAI, 2017.

Stephen Muggleton. Stochastic logic programs.Advances in inductive logic programming, 32, 1996.

Maxwell I. Nye, Armando Solar-Lezama, Josh Tenenbaum, and Brenden M. Lake. Learning compositional rules via
neural program synthesis.In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors,Advances in Neural InformationProcessing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurlPS 2020, December 6-12, 2020, virtual,2020.

David Poole. The independent choice logic and beyond. InProbabilistic Inductive Logic Programming - Theory and
Applications, volume4911 ofLNCS. Springer, 2008.

Matthew Richardson and Pedro M. Domingos. Markov logic networks.Machine Learning, 62, 2006.

Tim Rocktaschel and Sebastian Riedel. End-to-end differentiable proving. InNIPS, 2017.

Tim Rocktaschel, Sameer Singh, and Sebastian Riedel. Injecting logical background knowledge into embeddings for
relation extraction. INNAACL HLT, 2015.

Stuart Russell. Unifying logic and probability.Communications of the ACM, 58, 2015.




References

Xujie Si, Mukund Raghothaman, Kihong Heo, and Mayur Naik. Synthesizing datalog programs using numerical
relaxation. InlJCAI, 2019.

Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles A. Sutton, and Swarat Chaudhuri. Houdini: Lifelong

learning as program synthesis.InNeurlPS, 2018.

Guy Van den Broeck, Dan Suciu, et al. Query processing on probabilistic data: A survey.Foundations and Trends® in
Databases, 7, 2017.

Emile van Krieken, Erman Acar, and Frank van Harmelen. Analyzing differentiable fuzzy logic operators.CoRR, abs/
2002.06100, 2020.

Wenya Wang and Sinno Jialin Pan. Integrating deep learning with logic fusion for information extraction.CoRR, abs/
1912.03041, 2019.

Wang, P., Wu, Q., Shen, C., Hengel, A. V. D., & Dick, A. . Explicit knowledge-based reasoning for visual question
answering. IJCAl 2017

Leon Weber, Pasquale Minervini, Jannes Munchmeyer, Ulf Leser, and Tim Rocktaschel. Nlprolog: Reasoning with

weak unification forquestion answering in natural language. InACL, 2019.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss function for deep

learning with symbolicknowledge. InICML, 2018.

Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for knowledge base reasoning.
InNIPS, 2017.

Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: Embracing neural networks into answer set programming.
InProceedings of theTwenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI, pages 1755-1762;:




References

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum. Neural-symbolic vga:
Disentangling reasoningfrom vision and language understanding. InNeurlPS, 2018.

Lotfi A Zadeh. Fuzzy logic and approximate reasoning.Synthese, 30(3-4):407-428, 1975.

Pedro Zuidberg Dos Martires, Vincent Derkinderen, Robin Manhaeve, Wannes Meert, Angelika Kimmig, and Luc De
Raedt. Transformingprobabilistic programs into algebraic circuits for inference and learning. InProgram
Transformations for ML Workshop at NeurlIPS, 2019.

Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezny, Steven Schockaert, and Ondrej KuZelka. Lifted relational
neural networks: Efficientlearning of latent relational structures.). Artif. Intell. Res., 62, 2018




