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Introduction
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How much effort do you need to 
solve these tasks?
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147 x 13

Is she smiling? The result of …



Thinking fast and slow



Real-life problems involve both 
aspects.
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Who can go first ? 

A. The red car

https://www.theorie-blokken.be/nl/gratis-proefexamen

B. The blue van
C. The white car

https://www.theorie-blokken.be/nl/gratis-proefexamen


Real-life problems involve both 
aspects.
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Who can go first ? 

A. The red car

https://www.theorie-blokken.be/nl/gratis-proefexamen

B. The blue van
C. The white car

Thinking slowThinking fast

https://www.theorie-blokken.be/nl/gratis-proefexamen


Subsymbolic
(Thinking fast)

Symbolic 
(Thinking slow)

associative logical

data knowledge

learning reasoning/planning

noisy input precise input

Thinking fast and slow in AI



Thinking fast 
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NEURAL

MAIN PARADIGM in AI



PROBABILITYLOGIC

TWO MAIN PARADIGMS in AI
Thinking slow = reasoning 
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Integration
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PROBABILITY

LOGIC NEURAL

How to integrate these three paradigms in AI ? 



Deep Learning
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PROBABILITY

Well studied  from a LEARNING perspective

NEURAL



PROBABILITY

LOGIC

Their integration has been well studied in 
Statistical Relational AI (StarAI)
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Statistical Relational AI



Neural Symbolic

14

LOGIC

Being studied from a LEARNING perspective  
in Neuro Symbolic Computation

NEURAL



StarAI and NeSy share similar problems 
and thus similar solutions apply 

See also  
De Raedt, Dumancic, Marra, Manhaeve 

From Statistical Relational to Neuro-Symbolic Artificial Intelligence 
IJCAI 20

Key Message

LOGICLOGICLOGICNEURALLOGIC
PROBABI

LITYFROM TO
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Goal
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PROBABILITY

LOGIC NEURAL

LOGICLOGICLOGICNEURALLOGIC
PROBABI

LITYFROM TO



The Seven Dimensions
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1.   Proof vs Model based

2.   Directed vs Undirected

3.   Type of Logic

4.   Symbols vs Subsymbols

5.   Parameter vs Structure Learning

6.   Semantics

7.   Logic vs Probability vs Neural



1. Proof vs Model based

18

LOGIC
PROBABI

LITYLOGIC LOGICLOGICLOGICNEURAL



1. Proof vs Model based
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LOGIC



Logic Programs
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burglary. 
hears_alarm_mary. 

earthquake. 
hears_alarm_john. 

alarm :– earthquake. 

alarm :– burglary. 

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john. 

Propositional logic program
as in the programming language Prolog

LOGIC

facts : 
burglary = true   



Logic Programs
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burglary. 
hears_alarm_mary. 

earthquake. 
hears_alarm_john. 

alarm :– earthquake. 

alarm :– burglary. 

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john. 

Propositional logic program
as in the programming language Prolog

LOGIC

rule:  
calls_mary =true IF alarm = true AND hears_alarm_mary = true 

 



Logic Programs
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burglary. 
hears_alarm_mary. 

earthquake. 
hears_alarm_john. 

alarm :– earthquake. 

alarm :– burglary. 

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john. 

Propositional logic program

Two proofs

:- calls_mary.

:- alarm, hears_alarm_mary.

:- earthquake, hears_alarm_mary.

 []  

:- hears_alarm_mary.

:- burglary, hears_alarm_mary).

:- hears_alarm_mary.

 []  

as in the programming language Prolog

A proof-theoretic view

LOGIC
backward chaining

Query



Logic as constraints
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calls_mary hears_alarm_mary ∧ alarm←

calls_john    hears_alarm_john ∧ alarm←

alarm   earthquake v burglary←

Propositional logic Model / Possible World

{ burglary, 

hears_alarm_john, 

alarm, 

calls_john}

as in SAT solvers

A model-theoretic view
LOGIC

the facts that are true 
in this model / possible world

SAT: Find a model / possible world that satisfies all the constraints 
SAT SOLVERS



Propositional Logic
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LOGIC

burglary. 
hears_alarm_mary. 

earthquake. 
hears_alarm_john. 

alarm :– earthquake. 

alarm :– burglary. 

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john. 



Relational/First Order Logic
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LOGIC

burglary. 
hears_alarm(mary). 

earthquake. 
hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 
calls(X) :– alarm, hears_alarm(X). 

Introduce Variables and Domains 

allows to exploit symmetries / templates …

Variable X 
Domain = {mary, john} 

BOTH for model and proof-based appraoch



Relational/First Order Logic

26

LOGIC

burglary. 
hears_alarm(mary). 

earthquake. 
hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 
calls(X) :– alarm, hears_alarm(X). 

burglary. 
hears_alarm(mary). 

earthquake. 
hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 
calls(mary) :– alarm, hears_alarm(mary).
calls(john) :– alarm, hears_alarm(john). 

Introduce Variables and Domains 
The meaning of this is always the GROUNDED theory 

allows to exploit symmetries / templates …

Variable X 
Domain = {mary, john} Grounded Theory 

BOTH for model and proof-based appraoch



Logical Reasoning

Proofs

stress(ann).

influences(ann,bob).

influences(bob,carl).


smokes(X) :- stress(X). 
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).

?- smokes(carl).

?- stress(carl). ?- influences(Y,carl),smokes(Y).

?- smokes(bob).

?- stress(bob). ?- influences(Y1,bob),smokes(Y1).

?- smokes(ann).

?- influences(Y2,ann),smokes(Y2).?- stress(ann).

Y=bob

Y1=ann

Ground theory is never instantiated explicitly



1. Proof vs Model based
2. Directed vs Undirected

28

LOGIC
PROBABI

LITYLOGIC



0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake. 

alarm :– burglary.

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm. 

alarm

burglary. earthquake. 

calls(mary) calls(john) 

Markov LogicProbabilistic  Logic Programs  
ProbLog

undirected 
Markov Net

directed 
Bayesian Net 

LOGIC
PROBABI

LITY key representatives

2. Directed vs Undirected
the PGM / StarAI dimension



Logic Programs
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burglary. 
hears_alarm(mary). 

earthquake. 
hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Propositional logic program Two proofs (by refutation)

:- calls(mary).

:- alarm, hears_alarm(mary).

:- earthquake, hears_alarm(mary).

 []  

:- hears_alarm(mary).

:- burglary, hears_alarm(mary).

:- hears_alarm(mary).

 []  

as in the programming language Prolog

A proof-theoretic view
LOGIC



Probabilistic Logic Programs
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0.1 :: burglary. 
0.3 ::hears_alarm(mary). 

0.05 ::earthquake. 
0.6 ::hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Probabilistic logic program

Probabilistic facts

Key Idea (Sato & Poole) 
the distribution semantics:   

 unify the basic concepts in logic 
and probability:  

random variable ~ propositional 
variable  

an interface between logic and 
probability 

as in the probabilistic programming language ProbLog

LOGIC
PROBABI

LITY



0.1 :: burglary. 
0.3 ::hears_alarm(mary). 

0.05 ::earthquake. 
0.6 ::hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Propositional logic program Two proofs (by refutation)

:- alarm

 []  

:- burglary. :- earthquake. 

 []  

Probabilistic Logic Programs

P=0.1 P=0.05

Probability of one proof : ∏
f:fact∈Proof

Pf

32

as in the probabilistic programming language ProbLog

LOGIC
PROBABI

LITY



Probabilistic Logic Programs
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0.1 :: burglary. 
0.3 ::hears_alarm(mary). 

0.05 ::earthquake. 
0.6 ::hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Propositional logic program Disjoint sum problem

:- alarm

 []  

:- burglary. :- earthquake. 

 []  

P=0.1 P=0.05

Probability of one proof : ∏
f:fact∈Proof

Pf

P(alarm) = P(burg OR earth) 
= P(burg) + P(earth) - P(burg AND earth)  

=/= P(burg) + P(earth)

as in the probabilistic programming language ProbLog

LOGIC
PROBABI

LITY



Probabilistic Logic Program 
Semantics 

34

[Vennekens et al, ICLP 04]

probabilistic causal laws

earthquake
alarm

alarm alarm

no alarm

no alarm no alarm

burglary burglaryno burglary no burglary

1.0

0.6 0.4

0.050.05
0.95 0.95

0.80.8
0.20.2

P(alarm)=0.6×0.05×0.8+0.6×0.05×0.2+0.6×0.95+0.4×0.05×0.8

earthquake.


0.05::burglary.


0.6::alarm :– earthquake.


0.8::alarm :– burglary. 



0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake. 

alarm :– burglary. 

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm. 

Propositional logic program Bayesian Network

alarm

burglary. earthquake. 

calls(mary) calls(john) 

Bayesian net encoded as Probabilistic Logic Program 
PLPs correspond to directed graphical models 

LOGIC
PROBABI

LITY ProbLog has both (directed) probabilistic graphic models,  
the programming language Prolog (and probabilistic databases) as special case 

Probabilistic Logic Program 
Semantics 

35



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Flexible and Compact Relational 
Model for Predicting Grades

36

“Program” Abstraction: 
• S, C logical variable representing students, courses

• the set of individuals of a type is called a population

• Int(S), Grade(S, C), D(C) are parametrized random variables

Grounding:

• for every student s, there is a random variable Int(s)

• for every course c, there is a random variable Di(c)

• for every s, c pair there is a random variable Grade(s,c)

• all instances share the same structure and parameters



ProbLog by example:�
Grading

37

0.4 :: int(S) :- student(S).

0.5 :: diff(C):- course(C).


student(john). student(anna). student(bob).

course(ai).    course(ml).    course(cs).


gr(S,C,a) :- int(S), not diff(C).

0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::gr(S,C,c) :-  

           int(S), diff(C).

0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-  

           student(S), course(C), 

           not int(S), not diff(C).

0.3::gr(S,C,c); 0.2::gr(S,C,f) :- 

           not int(S), diff(C).



ProbLog by example: Grading

38

unsatisfactory(S) :- student(S), grade(S,C,f).


excellent(S):- student(S), not(grade(S,C1,G),below(G,a)),

  grade(S,C2,a).

0.4 :: int(S) :- student(S).

0.5 :: diff(C):- course(C).


student(john). student(anna). student(bob).

course(ai).    course(ml).    course(cs).


gr(S,C,a) :- int(S), not diff(C).

0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::gr(S,C,c) :-  

           int(S), diff(C).

0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-  

           student(S), course(C), 

           not int(S), not diff(C).

0.3::gr(S,C,c); 0.2::gr(S,C,f) :- 

           not int(S), diff(C).



Dynamic networks

Travian:  A massively multiplayer real-
time strategy game

Can we build a model

of this world ? 

Can we use it for playing

better ?

[Thon et al, MLJ 11]39
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Activity analysis and tracking 
video analysis

• Track people or objects 
over time? Even if 
temporarily hidden?


• Recognize activities?

• Infer object properties?

Fig. 4. Tracking results from experiment 2. In frame 5, two groups are
present. In frame 15, the tracker has correctly split group 1 into 1-0 and 1-1
(see Fig. 3). Between frames 15 and 29, group 1-0 has split up into groups
1-0-0 and 1-0-1, and split up again. New groups, labeled 2 and 3, enter the
field of view in frames 21 and 42 respectively.

Six frames of the current best hypothesis from experiment
2 are shown in Fig. 4, the corresponding hypothesis tree is
shown in Fig. 3. The sequence exemplifies movement and
formation of several groups.

A. Clustering Error

Given the ground truth information on a per-beam basis we
can compute the clustering error of the tracker. This is done
by counting how often a track’s set of points P contains too
many or wrong points (undersegmentation) and how often P
is missing points (oversegmentation) compared to the ground
truth. Two examples for oversegmentation errors can be seen
in Fig. 4, where group 0 and group 1-0 are temporarily
oversegmented. However, from the history of group splits
and merges stored in the group labels, the correct group
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Fig. 5. Left: clustering error of the group tracker compared to a memory-
less single linkage clustering (without tracking). The smallest error is
achieved for a cluster distance of 1.3 m which is very close to the border of
personal and social space according to the proxemics theory, marked at 1.2
m by the vertical line. Right: average cycle time for the group tracker versus
a tracker for individual people plotted against the ground truth number of
people.

relations can be determined in such cases.
For experiment 1, the resulting percentages of incorrectly

clustered tracks for the cases undersegmentation, overseg-
mentation and the sum of both are shown in Fig. 5 (left),
plotted against the clustering distance dP . The figure also
shows the error of a single-linkage clustering of the range
data as described in section II. This implements a memory-
less group clustering approach against which we compare
the clustering performance of our group tracker.

The minimum clustering error of 3.1% is achieved by the
tracker at dP = 1.3 m. The minimum error for the memory-
less clustering is 7.0%, more than twice as high. In the
more complex experiment 2, the minimum clustering error
of the tracker rises to 9.6% while the error of the memory-
less clustering reaches 20.2%. The result shows that the
group tracking problem is a recursive clustering problem that
requires integration of information over time. This occurs
when two groups approach each other and pass from opposite
directions. The memory-less approach would merge them
immediately while the tracking approach, accounting for the
velocity information, correctly keeps the groups apart.

In the light of the proxemics theory the result of a minimal
clustering error at 1.3 m is noteworthy. The theory predicts
that when people interact with friends, they maintain a range
of distances between 45 to 120 cm called personal space.
When engaged in interaction with strangers, this distance is
larger. As our data contains students who tend to know each
other well, the result appears consistent with Hall’s findings.

B. Tracking Efficiency

When tracking groups of people rather than individuals,
the assignment problems in the data association stage are
of course smaller. On the other hand, the introduction of
an additional tree level on which different models hypoth-
esize over different group formation processes comes with
additional computational costs. We therefore compare our
system with a person-only tracker which is implemented by
inhibiting all split and merge operations and reducing the
cluster distance dP to the very value that yields the lowest
error for clustering single people given the ground truth. For

40

[Skarlatidis et al, TPLP 14; 
Nitti et al, IROS 13, ICRA 14, 

MLJ 16]

LOGIC
PROBABI

LITY

[Persson et al, IEEE Trans on 
Cogn. & Dev. Sys. 19;

IJCAI 20]



Learning relational affordances

41

Shelf

   
 

  

push

Shelf
   

 

  tap

Shelf
   

 
  grasp

Moldovan et al.  ICRA 12, 13, 14; Auton. Robots 18

LOGIC
PROBABI

LITY

(a) Disparity image (b) Segmented image with landmark points

Clip 7: Illustration of the object size computation. Left-hand image shows the disparity map

of the example shown in Figure 5. The orange points in the right-hand image show the points

that intersect with the ellipse’s major axis. The orange points are mapped onto 3D using their

associated disparity value, and the 3D distance between each pair is defined as the object size.

To learn an a↵ordance model, the robot first performs a behavioural babbling
stage, in which it explores the e↵ect of its actions on the environment. For
this behavioural babbling stage, for the single-arm actions the robot uses its
right-arm only. For these actions a model of the left-arm will be later built by
exploiting symmetry as in [3]. We include the simultaneous two-arm push on
the same object in the babbling phase, allowing for a more accurate modelling
of action e↵ects for the iCub.4

The babbling phase consists of placing pairs of objects in front of the robot
at various positions. The robot executes one of its actions A described above on
one object (named: main object, OMain). OMain may interact with the other
object (secondary object, OSec) causing it to also move. Figure 8 shows such
a setting, with the objects’ position before (l) and after (r) a right-arm action
(tap(10)) execution.

Clip 8: Relational O before (l), and E after the action execution (r).

4
As opposed to the two-arm a↵ordance modelling in [3], we also include in the babbling

phase the two-arm simultaneous actions whose e↵ects might not always be well modelled by

the sum of the individual single-arm actions.

15

similar to probabilistic Strips  
(with continuous distributions)



Learning relational affordances

41

Shelf

   
 

  

push

Shelf
   

 

  tap

Shelf
   

 
  grasp

Moldovan et al.  ICRA 12, 13, 14; Auton. Robots 18
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(a) Disparity image (b) Segmented image with landmark points

Clip 7: Illustration of the object size computation. Left-hand image shows the disparity map

of the example shown in Figure 5. The orange points in the right-hand image show the points

that intersect with the ellipse’s major axis. The orange points are mapped onto 3D using their

associated disparity value, and the 3D distance between each pair is defined as the object size.

To learn an a↵ordance model, the robot first performs a behavioural babbling
stage, in which it explores the e↵ect of its actions on the environment. For
this behavioural babbling stage, for the single-arm actions the robot uses its
right-arm only. For these actions a model of the left-arm will be later built by
exploiting symmetry as in [3]. We include the simultaneous two-arm push on
the same object in the babbling phase, allowing for a more accurate modelling
of action e↵ects for the iCub.4

The babbling phase consists of placing pairs of objects in front of the robot
at various positions. The robot executes one of its actions A described above on
one object (named: main object, OMain). OMain may interact with the other
object (secondary object, OSec) causing it to also move. Figure 8 shows such
a setting, with the objects’ position before (l) and after (r) a right-arm action
(tap(10)) execution.

Clip 8: Relational O before (l), and E after the action execution (r).

4
As opposed to the two-arm a↵ordance modelling in [3], we also include in the babbling

phase the two-arm simultaneous actions whose e↵ects might not always be well modelled by

the sum of the individual single-arm actions.

15

similar to probabilistic Strips  
(with continuous distributions)



Biology 

!  Causes: Mutations

! All related to similar 

phenotype

!  Effects: Differentially 

expressed genes

!  27 000 cause effect 

pairs

! Interaction network:

! 3063 nodes


! Genes

! Proteins


! 16794 edges

! Molecular interactions

! Uncertain

! Goal: connect causes to effects 
through common subnetwork


! = Find mechanism

! Techniques:


! DTProbLog

! Approximate inference

[De Maeyer et al., Molecular Biosystems 13, NAR 15] [Gross et al. Communications Biology, 19]42
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Constraints

44

          not Friends(Anna,Bob) or Happy(Bob) 

What about constraints? Do they have a probabilistic interpretation?



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI

Markov Logic: Intuition

• Undirected graphical model 
• A logical KB is a set of hard constraints 

on the set of possible worlds

• Let’s make them soft constraints: 

When a world violates a formula, 
it becomes less probable, not impossible


• Give each formula a weight 
(Higher weight  ⇒  Stronger constraint)

45

( )∑∝ satisfiesit  formulas of weightsexpP(world)



A possible worlds view
Say we have two domain elements Anna and Bob as well as 
two predicates Friends and Happy

46

),( BobAnnaFriends¬

)(BobHappy)(BobHappy¬

),( BobAnnaFriends

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI slides by Pedro Domingos



A possible worlds view
Logical formulas such as    

          not Friends(Anna,Bob) or Happy(Bob) 
exclude possible worlds

47

),( BobAnnaFriends¬

)(BobHappy)(BobHappy¬

),( BobAnnaFriends

)(
),(
BobHappy

BobAnnaFriends
∨

¬

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI slides by Pedro Domingos



A possible worlds view
four times as likely that rule holds

48

),( BobAnnaFriends¬

)(BobHappy)(BobHappy¬

),( BobAnnaFriends

1))(),(( =∨¬Φ BobHappyBobAnnaFriends
75.0))(),(( =¬∧Φ BobHappyBobAnnaFriends

1 1

175.0

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI slides by Pedro Domingos



),( BobAnnaFriends¬

)(BobHappy)(BobHappy¬

Or as log-linear model this is:

),( BobAnnaFriends

29.0)75.0/1log(
)))(),(((

==

∨¬Φ BobHappyBobAnnaFriendsw

1 1

175.0

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI

A possible worlds view
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),( BobAnnaFriends¬

)(BobHappy)(BobHappy¬

Or as log-linear model this is:

),( BobAnnaFriends

29.0)75.0/1log(
)))(),(((

==

∨¬Φ BobHappyBobAnnaFriendsw

1 1

175.0

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AIThis can also be viewed as building a graphical model

A possible worlds view

49



Cancer(A)

Smokes(A) Smokes(B)

Cancer(B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic
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Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic
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Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic
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Markov Logic

53

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos



Applications

▪ Natural language processing, Collective Classification, Social 
Networks, Activity Recognition, …

54



0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake. 

alarm :– burglary.

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm. 

alarm

burglary. earthquake. 

calls(mary) calls(john) 

LOGIC
PROBABI

LITY

2. Directed vs Undirected
the PGM / StarAI dimension

55

Logic is used as a template for a probabilistic 
graphical model: knowledge based model 

construction  KBMC 
 



1. Proof vs Model based
2. Directed vs Undirected

56

LOGIC
PROBABI

LITYLOGIC LOGICLOGICLOGICNEURAL



Two types of Neural Symbolic 
Systems

57

Logic as a regularizer 
                          

undirected StarAI approach and 
(soft) constraints

LOGICLOGICLOGICNEURAL

Many NeSy systems are doing  
knowledge based model construction  KBMC 

where logic is used as a template

Just like in StarAI!! 

2. Directed vs Undirected
the NeSy dimension

Logic as a neural program 
                          

Directed StarAI approach and 
logic programs



Logic as a neural program

58

A :− B, Z.
B :− C, D.
B :− E, F, G.
Z :− Y, not X.
Y :− S, T.

A   :− B, Z.
B   :− B’.
B   :− B’’.
B’  :− C, D.
B’’ :− E, F, G.
Z   :− Y, not X.
Y   :− S, T.

REWRITE

directed StarAI approach and logic programs

LOGICLOGICLOGICNEURAL

• KBANN (Towell and Shavlik AIJ 94)

• Turn a (propositional) Prolog program into a neural 

network and learn



HIDDEN UNITADD LINKS — ALSO SPURIOUS ONES

and then learn
(Details of activation & loss functions not mentioned)LOGICLOGICLOGICNEURAL

directed StarAI approach and logic programs

Logic as a neural program

59



Lifted Relational Neural Networks

60

LOGICLOGICLOGICNEURAL

[Sourek, Kuzelka, et al JAIR]

directed StarAI approach and logic programs

• Directed (fuzzy) NeSy    

• similar in spirit to the Bayesian Logic Programs and 

Probabilistic Relational Models

• Of course, other kind of (fuzzy) operations for AND, OR 

and Aggregation (cf. later)



Neural Theorem Prover

61

LOGICLOGICLOGICNEURAL

directed StarAI approach and logic programs

father(Omer,Bart).

father(Abe,Omer).

parent(X,Y) :- father(X,Y).

grandFather(X,Y) :- father(X,Z), 

                               parent(Z,Y)

:- grandFather(Abe,Bart)

:- father(Abe,Z), parent(Z,Bart)

:- father(Abe,Omer), parent(Omer,Bart)
Z=Omer

:- parent(Omer,Bart)

:- father(Omer,Bart)

:- [ ]



Neural Theorem Prover
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LOGICLOGICLOGICNEURAL

directed StarAI approach and logic programs

father(Omer,Bart).

father(Abe,Omer).

parent(X,Y) :- father(X,Y).

grandFather(X,Y) :- father(X,Z), 

                               parent(Z,Y)

:- grandPa(Abe,Bart)

?????



Neural Theorem Prover

63

LOGICLOGICLOGICNEURAL

directed StarAI approach and logic programs

father(Omer,Bart).

father(Abe,Omer).

parent(X,Y) :- father(X,Y).

grandFather(X,Y) :- father(X,Z), 

                               parent(Z,Y)

:- grandPa(Abe,Bart)

:- father(Abe,Z), parent(Z,Bart)

Z=Omer

w ~ distance(grandPa, 
grandFather)

…



Logic as constraints

64

figures and example from Xu et al., ICML 2018
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

multi-class classification



Logic as constraints
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figures and example from Xu et al., ICML 2018
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

multi-class classification
This constraint should be satisfied

(¬x1 ^ ¬x2 ^ x3)_ (1)

(¬x1 ^ x2 ^ ¬x3)_ (2)

(x1 ^ ¬x2 ^ ¬x3) (3)

<latexit sha1_base64="XbG4kwy4F1ZEo1s2e3tSfbPsnUI="></latexit>



Logic as constraints

65

multi-class classification
Probability that constraint is satisfied

(1� x1)(1� x2)x3+

(1� x1)x2(1� x3)+

x1(1� x2)(1� x3)

<latexit sha1_base64="siUg7I1JwVFi32UgItD2G0F9eAQ="></latexit>

basis for SEMANTIC LOSS
   (weighted model counting)

LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints



Semantic Loss:

• Use logic as constraints (very much like “propositional 

MLNs)

• Semantic loss


• Used as regulariser 


• Use weighted model counting , close to StarAI

Logic as a regularizer

66

SLoss(T ) / � log
X

X|=T

Y

x2X

pi
Y

¬x2X

(1� pi)

<latexit sha1_base64="dER/6fh2D1SpLgkfxgf7GKJqOOM="></latexit>

Loss = TraditionalLoss+ w.SLoss

<latexit sha1_base64="+S53KnNUSBsAI7yKvOjzIEBijB0=">AAACDHicbZDLSsNAGIUn9dbGW9Wlm8EiCEJIRNGNUHTjwkXF3rANZTKZtEMnF2Ymagl9ADfufYpuXCji1gdw59PoJO1CWw8MfJzz/wz/cSJGhTTNLy03N7+wuJQv6Msrq2vrxY3NughjjkkNhyzkTQcJwmhAapJKRpoRJ8h3GGk4/fM0b9wSLmgYVOUgIraPugH1KEZSWZ1iSb8MhYCnsMqRS1MPMZhZ+/DOgNcpqinTMDPBWbAmUCoXoqeb0f13pVP8bLshjn0SSMyQEC3LjKSdIC4pZmSot2NBIoT7qEtaCgPkE2En2TFDuKscF3ohVy+QMHN/byTIF2LgO2rSR7InprPU/C9rxdI7sRMaRLEkAR5/5MUMyhCmzUCXcoIlGyhAmKsuMMQ9xBGWqj9dlWBNnzwL9QPDOjSOrlQbZ2CsPNgGO2APWOAYlMEFqIAawOABjMALeNUetWftTXsfj+a0yc4W+CPt4wf0Wp1n</latexit>

LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints



Semantic Based Regularization

67 Diligenti et al.
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints



Logic Tensor Networks

68 Serafini & Garcez
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints



Two types of Neural Symbolic 
Systems

69
Just like in StarAI LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing  
knowledge based model construction  KBMC 

where logic is used as a template

Logic as a regularizer 
                          

undirected StarAI approach and 
(soft) constraints

Logic as a neural program 
                          

Directed StarAI approach and 
logic programs



3. Types of Logic

70

LOGIC LOGICLOGICLOGICNEURAL



• Different types of logic exist


• Different types of logic enable different functionalities

71

3. Types of Logic
Key Messages



3. Types of Logic

72

LOGIC



Various flavours of logic

73

Propositional logic First-order logic

LOGIC



Various flavours of first-order 
logic

74

LOGIC

Logic programs 
= programming language

FOL constraints



Logic programming and Prolog

75

LOGIC

structured terms

recursion

Full-fledged programming language



Various flavours of first-order 
logic

76

LOGIC

Logic programs 
= programming language

Datalog 
= Logic programs  
   that always terminate



Datalog

77

LOGIC

Query language for deductive databases

no structured terms
guaranteed to terminate



Various flavours of first-order 
logic

78

LOGIC

Logic programs 
= programming language

Datalog 
= Logic programs  
   that always terminate

Answer-set programs 
= Logic programs with 
   multiple models that  
   always terminate

+ soft/hard constraints

+ preferences



Answer-set programming

79

LOGIC

Prolog with multiple models + interesting features

choice rules

constraint



What can it do?

80

LOGIC

Propositional logic: 
simple propositional reasoning



What can it do?

81

LOGIC

Datalog: 
database queries

Propositional logic: 
simple propositional reasoning



What can it do?
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LOGIC

Datalog: 
database queries

Answer-set programming: 
database queries, common-sense 
reasoning, preferences

Propositional logic: 
simple propositional reasoning



What can it do?

83

LOGIC

Datalog: 
database queries

Answer-set programming: 
database queries, common-sense 
reasoning, preferences

Logic programming: 
programs manipulating structured 
objects, infinite domains, …

Propositional logic: 
simple propositional reasoning



3. Types of Logic
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LOGIC LOGICLOGICLOGICNEURAL



Logic in NeSy - Propositional logic

85

Semantic loss

LOGICLOGICLOGICNEURAL



Logic in NeSy - Datalog

86

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂



Logic in NeSy - Answer-set 
programming

87

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂

NeurASP



Logic in NeSy - Logic programming

88

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂

NeurASP

DeepProblog,  
NLProlog



Logic in NeSy - First-order logic

89

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂

NeurASP

DeepProblog,  
NLProlog

Logic tensor networks, NMLN, 
     SBR, RNM 



• Different types of logic exist


• Different types of logic enable different functionalities

90

3. Types of Logic 
Key Messages



5. Structure vs parameter learning 

LOGIC
PROBABI

LITY LOGICLOGICLOGICNEURAL



• Learning: finding logical formulas and estimating 
probabilities


• Structure learning: both formulas and probabilities


• Parameter learning: only probabilities


• Many flavours of learning in NeSy

92

5. Learning 
Key Messages



5. Structure vs parameter learning 

LOGIC
PROBABI

LITY



Learning in StarAI

94

↦
0.7::nationality(X,Y) :- 
                  livesIn(X,Y).

0.9::nationality(X,Y) :- 
                  bornIn(X,Y).

0.7::nationality(X,Y) :- 
          livesIn(X,Z), locatedIn(Z,Y).

Obtaining models from data

LOGIC
PROBABI

LITY



StarAI learning paradigms

95

LOGIC
PROBABI

LITY

Structure  
learning

Parameter  
learning

What is  
provided?

What is the  
learning goal?

Data Data and  
discrete structure

Structure and 
parameters

Parameters



Learning types: Parameter learning
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LOGIC
PROBABI

LITY

↦
nationality(X,Y) :- 
                  livesIn(X,Y).

nationality(X,Y) :- 
                  bornIn(X,Y).

nationality(X,Y) :- 
          livesIn(X,Z), locatedIn(Z,Y).

0.7::nationality(X,Y) :- 
                  livesIn(X,Y).

0.9::nationality(X,Y) :- 
                  bornIn(X,Y).

0.7::nationality(X,Y) :- 
          livesIn(X,Z), locatedIn(Z,Y).

the goal of learning

Learning the probabilities/weights of a specified model

Model (the formulas) are given



Learning types: Parameter learning
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LOGIC
PROBABI

LITY

Learning the probabilities/weights of a specified model

Model (the formulas) are given

Learning principles: identical to learning parameters of any parametric 
model


• gradient descent                  [Lowd & Domingos, 2007]

• least squares                               [Gutmann et al, 2008]

• Expectation Maximisation           [Gutmann et al, 2011]



Learning types: Structure learning
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LOGIC
PROBABI

LITY

Finding the clauses/logical formulas of a model

↦
0.7::nationality(X,Y) :- 
                  livesIn(X,Y).

0.9::nationality(X,Y) :- 
                  bornIn(X,Y).

0.7::nationality(X,Y) :- 
          livesIn(X,Z), locatedIn(Z,Y).

the goal of learning



Learning types: Structure learning
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LOGIC
PROBABI

LITY

Discriminative Generative

• specific target relation

• separate background  

knowledge

• no specific target relation

• learning generative process 

behind data

Two types of structure learning



Learning types: Structure learning
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LOGIC
PROBABI

LITY

Learning by searching

Create/refine 
candidates 

Learn 
parametersEvaluate



Learning types: Structure learning
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LOGIC
PROBABI

LITY

Learning by searching

Create/refine 
candidates 

Learn 
parametersEvaluate

Combinatorial enumeration
need to control 
how complex this 
space is



Learning via enumeration - Probfoil+
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LOGIC
PROBABI

LITY

[De Raedt et al, 2015]

grandparent(abe,lisa).

grandparent(abe,bart).

grandparent(jacqueline,lisa).

grandparent(jacqueline,maggie.)



Learning via enumeration - Probfoil+

102

LOGIC
PROBABI

LITY

[De Raedt et al, 2015]

                    {}Model:



Learning via enumeration - Probfoil+
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LOGIC
PROBABI

LITY

[De Raedt et al, 2015]

                    {}

Learn one rule: p:: grandparent(X,Y)  true←

Model:



Learning via enumeration - Probfoil+
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LOGIC
PROBABI

LITY

[De Raedt et al, 2015]

                    {}

Learn one rule: p:: grandparent(X,Y)  true←
if not good enough, refine!

p:: grandparent(X,Y)  mother(X,Y)

p:: grandparent(X,Y)  mother(Y,X)

p:: grandparent(X,Y)  mother(X,Z)

p:: grandparent(X,Y)   father(X,Y)

…..

←
←
←
←

Model:



Learning via enumeration - Probfoil+
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LOGIC
PROBABI

LITY

[De Raedt et al, 2015]

                    {}

Learn one rule: p:: grandparent(X,Y)  true←
if not good enough, refine!

p:: grandparent(X,Y)  mother(X,Y)

p:: grandparent(X,Y)  mother(Y,X)

p:: grandparent(X,Y)  mother(X,Z)

p:: grandparent(X,Y)   father(X,Y)

…..

←
←
←
←

p:: grandparent(X,Y)  mother(X,Y),father(X,Z) 
….

p:: grandparent(X,Y)  mother(X,Z),father(Z,Y)

p:: grandparent(X,Y)  mother(X,Z),mother(Z,Y)

p:: grandparent(X,Y)   father(X,Y),mother(X,Y)

…..

←

←
←
←

Model:



Learning via enumeration - Probfoil+
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LOGIC
PROBABI

LITY

[De Raedt et al, 2015]

Learn one rule: p:: grandparent(X,Y)  true←
if not good enough, refine!

p:: grandparent(X,Y)  mother(X,Y)

p:: grandparent(X,Y)  mother(Y,X)

p:: grandparent(X,Y)  mother(X,Z)

p:: grandparent(X,Y)   father(X,Y)

…..

←
←
←
←

p:: grandparent(X,Y)  mother(X,Y),father(X,Z) 
….

p:: grandparent(X,Y)  mother(X,Z),father(Z,Y)

p:: grandparent(X,Y)  mother(X,Z),mother(Z,Y)

p:: grandparent(X,Y)   father(X,Y),mother(X,Y)

…..

←

←
←
←

{1.0:: grandparent(X,Y)  mother(X,Z), father(Z,Y)}←Model:



Learning via enumeration - Probfoil+
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LOGIC
PROBABI

LITY

[De Raedt et al, 2015]

Learn one rule:

{1.0:: grandparent(X,Y)  mother(X,Z), father(Z,Y)}←

start again with a single rule!
p:: grandparent(X,Y)  true←

Model:



Learning via random walks
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LOGIC
PROBABI

LITY

[Kok & Domingos, 2009]



Learning via random walks
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LOGIC
PROBABI

LITY

[Kok & Domingos, 2009]

“Lift” a knowledge graph by identifying  
nodes with the same role 



Learning via random walks
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LOGIC
PROBABI

LITY

[Kok & Domingos, 2009]

“Lift” a knowledge graph by identifying  
nodes with the same role 

Traverse the lifted knowledge graph 
and 

turn every path into a clause/rule



Learning in StarAI - overview

104

LOGIC
PROBABI

LITY

Structure learning Parameter learning

Learning is easierStarts directly from data

An expert needs to provide the rulesCombinatorial problem

User needs to design a language Sensitive to the choice of rules

Scales better



5. Structure vs parameter learning 

LOGIC
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Spectrum of learning paradigms

106
LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

Structure learning Parameter learning



Spectrum of learning paradigms
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LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

Structure learning Parameter learning

Neurally-guided 
learning

Soft patterns

Neural generation

Program sketching

Structure via 
parameter learning



DeepCoder

107
LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Balog et al, 2017]

StarAI techniques search for clauses/rules systematically



DeepCoder
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LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Balog et al, 2017]

Explore the subpart of the space with  
primitives that are likely to solve the problem

likely to solve a problem = learned from data

Preferences of learning ‘primitives’



DeepCoder
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DATA and 
STRUCTUREDATA

[Balog et al, 2017]
Preferences of learning ‘primitives’

Learn from pairs 
(examples, program)

Given examples, predict  
which functions to use q(functions |examples)



DeepCoder
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LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Balog et al, 2017]
Preferences of learning ‘primitives’

Learn from pairs 
(examples, program)

Given examples, predict  
which functions to use 



DeepCoder
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LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Balog et al, 2017]
Preferences of learning ‘primitives’

Learn from pairs 
(examples, program)

Given examples, predict  
which functions to use 



DreamCoder
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LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Ellis et al, 2018]

Distribution of primitives defines a generative model of programs

q(programs |examples)

Neural network outputs the posterior distribution over programs 
likely to solve a specific task



Neural Markov Logic Networks
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LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Marra et al, 2020]

MLNs can be interpreted as log-linear models 

P(X = x) =
1
Z ∏

i

ϕi(x{i})ni(x)

potentials come from formulas 
        provided by the expert 
  (cliques in Markov network)



Neural Markov Logic Networks
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DATA and 
STRUCTUREDATA

[Marra et al, 2020]

Learn neural potentials from fragments of data 

P(X = x) =
1
Z ∏

i

ϕi(x{i})ni(x)

potentials come from fragments 
of data (knowledge graph)

ϕ1ϕ2

ϕ3



Neural Generation
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DATA and 
STRUCTUREDATA

[Nye et al, 2020]

ϕ3

Neural model generates discrete structure



Program sketching
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DATA and 
STRUCTUREDATA

[Bosnjak et al, 2018; Manhaeve et al, 2018]

def target_function(input_array):
      rarray = [] 
 
      for element in input_array:      
            rarray.append(??(element))
   
       return rarray

partial functionality 
that needs to be learned

Examples: 

[1,4,5]  [1,16,25]
[2,2,5,1]  [4,4,25,1]

↦
↦

Provide partial code
Fill in the missing functionality with neural networks



Structure learning via parameter 
learning

115
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DATA and 
STRUCTUREDATA

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

grandparent(abe,lisa).

grandparent(abe,bart).

grandparent(jacqueline,lisa).

grandparent(jacqueline,maggie.)



Program sketching
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DATA and 
STRUCTUREDATA

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates
T(X,Y)  P(X,Y).

T(X,Y)  P(Y,X).

T(X,Y)  P(X,Z), Q(Z,Y).

←
←
←

Target:   grandparent


Other predicates: father, mother 



Program sketching
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DATA and 
STRUCTUREDATA

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates

T(X,Y)  P(X,Y).

T(X,Y)  P(Y,X).

T(X,Y)  P(X,Z), Q(Z,Y).

←
←
←

Target:   grandparent


Other predicates: father, mother 



Program sketching
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DATA and 
STRUCTUREDATA

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates

T(X,Y)  P(X,Y).

T(X,Y)  P(Y,X).

T(X,Y)  P(X,Z), Q(Z,Y).

←
←
←

Target:   grandparent


Other predicates: father, mother 

grandparent(X,Y)  father(X,Y).

grandparent(X,Y)  mother(X,Y).

←
←



Program sketching
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DATA and 
STRUCTUREDATA

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates

T(X,Y)  P(X,Y).

T(X,Y)  P(Y,X).

T(X,Y)  P(X,Z), Q(Z,Y).

←
←
←

Target:   grandparent


Other predicates: father, mother 

grandparent(X,Y)  father(X,Y).

grandparent(X,Y)  mother(X,Y).

←
←

grandparent(X,Y)  father(Y,X).

grandparent(X,Y)  mother(Y,X).

←
←



Program sketching
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DATA and 
STRUCTUREDATA

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates

T(X,Y)  P(X,Y).

T(X,Y)  P(Y,X).

T(X,Y)  P(X,Z), Q(Z,Y).

←
←
←

Target:   grandparent


Other predicates: father, mother 

grandparent(X,Y)  father(X,Y).

grandparent(X,Y)  mother(X,Y).

←
←

grandparent(X,Y)  father(Y,X).

grandparent(X,Y)  mother(Y,X).

←
←

grandparent(X,Y)  mother(X,Z), mother(Z,Y).

grandparent(X,Y)  mother(Y,X), father(Z,Y).

……

←
←
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Neural guidance

Pros Cons

Soft patterns

Neural generation

Sketching

Structure via params

lots of training datamakes discrete search 
tractable

no explicit structureefficient learning

significant user effort

spurious interactions

lots of training data

removes combinatorial 
search

reduces combinatorial 
search

focused combinatorial 
search



• Learning: finding logical formulas and estimating 
probabilities


• Structure learning: both formulas and probabilities


• Parameter learning: only probabilities


• Many flavours of learning in NeSy
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5. Learning 
Key Messages
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6. Semantics

LOGIC
PROBABI

LITYLOGIC LOGICLOGICLOGICNEURAL



• StarAI and NeSy share the same underlying semantics


• Semantics can be described in terms of parametric circuits


• Differentiable semantics/circuits allows an easy integration


• NeSy models can be seen as neural reparameterization of 
StarAI models
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6. Semantics 
Key Messages



Semantics

• In Logic, semantics is connected to the interpretations of 
logical sentences


• An interpretation assigns a denotation or a value to each 
symbol in that language.


“human(socrates)” 

“47(42)” 
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Semantics

• In Logic, semantics is connected to the interpretations of 
logical sentences


• An interpretation assigns a denotation or a value to each 
symbol in that language.


123

“human(socrates)” = True 




Semantics

• We are interested in answering the following family of 
questions:


Given a sentence of a propositional (or propositionalized through 
grounding) language, what is its value? 
 

The nature of what value is differs in the different semantics.
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Semantics

For simplicity,


• labelling function is the function  that assigns, to the 
sentence Q, the value v according to semantics S. 

ℓS

ℓS(Q) = v

125

We are interested in the algebraic (differentiability!) and computational 
properties of such labelling functions!
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6. Semantics

Boolean logic

LOGIC



Semantics in Boolean Logic
• Defining a semantics for a propositional language L is about 

assigning a truth value to all the sentences of the logic 


• Boolean truth values: 


 

Three steps:

1. Truth values for propositions

2. Truth values for operators

3. Labelling formulas


{True, False}
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LOGIC



Semantics in Boolean Logic

1. Providing the labels for propositions

L = {burglary, earthquake, hears_alarm(john)}











This is a model or a possible world, a “potential” assignment of 
truth values to all the propositional variables in the language.


ℓB(burglary) = True
ℓB(earthquake) = False

ℓB(hears_alarm( john)) = True
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LOGIC



Semantics in Boolean Logic

2. Providing the semantics for operators
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LOGIC

ℓ→
Bℓ∧

B



Semantics in Boolean Logic

3. The labels of formulas are defined recursively on the semantics 
of its components


 


This recursive evaluation of formulas is said to be extensional 
approach.

ℓB(earthquake ∧ burglary) = ℓ∧
B (ℓB(earthquake), ℓB(burglary))
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LOGIC



Semantics in Boolean Logic

• Consider:
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(burglary ∨ earthquake) → alarm

→

∨

burglary earthquake

Alarm

ℓ→
B

ℓ∨
B

ℓB(burglary) ℓB(earthquake)

ℓB(alarm)

LOGIC



Semantics in Boolean Logic

• Boolean semantics is not differentiable, thus it is hard to 
connect to a learning component (goal of both StarAI and 
NeSy)


• How to solve?

• Alternative logic semantics -> Fuzzy Logic 
• Additional layer of semantics -> Probabilistic Logic 
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LOGIC
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6. Semantics

Fuzzy logic

LOGIC



Semantics in Fuzzy Logic

• There are many fuzzy logics


• Here we are interested in a subclass, in particular t-norm fuzzy 
logic
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LOGIC



Semantics in Fuzzy Logic
• Defining a semantics for a propositional fuzzy language L is 

again about assigning a truth degree to all the sentences of the 
logic 


• Fuzzy truth degrees:


 
Three steps:

1. Labels for propositions

2. Labels for operators

3. Labels for formulas

ℓ𝐹:𝐿 → [0,1]
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LOGIC



Semantics in Fuzzy Logic

1. Providing the labels for propositions

L = {burglary, earthquake, hears_alarm(john)}











ℓF(burglary) = 0.9
ℓF(earthquake) = 0.1

ℓF(hears_alarm( john)) = 0.8
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LOGIC

Note:  -> very mild earthquake,


(  probability of earthquake = 0.1)

 

 fuzzy is a measure of intensity/vagueness not of uncertainty

ℓF(earthquake) = 0.1
≠



Semantics in Fuzzy Logic

2. Providing the labels for operators: t-norm theory

• A t-norm is a binary function that extends the conjunction to 

the continuous case 


 

• There are 3 fundamental t-norms:

• Lukasiewicz t-norm: 

• Goedel t-norm: 

• Product t-norm: 

t : [0,1] × [0,1] → [0,1]

tL(x, y) = max(0,x + y − 1)
tG(x, y) = min(x, y)
tP(x, y) = x ⋅ y
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LOGIC They are the continuous version of truth tables!!



Semantics in Fuzzy Logic

• All the other operators can be derived from the t-norm (and its 
residuum)

138

LOGIC

They are the continuous version of truth tables!!



Semantics in Fuzzy Logic

3. The labels of formulas is defined recursively on the semantics 
of its components


 

This recursive evaluation of formulas is said to be extensional 
approach.


e.g.    

 , ,  



                         


ℓF(burglary → alarm) = ℓ→
F (ℓF(burglary), ℓF(alarm))

ℓF(burglary) = 0.9 ℓF(alarm) = 0.3
ℓ→

F = min(1,1 − x + y) = min(1,1 − 0.9 + 0,3) = 0.4
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Semantics in Fuzzy Logic

• Consider:
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(burglary ∨ earthquake) → alarm

→

∨

burglary earthquake

Alarm

ℓ→
F

ℓ∨
F

ℓB(burglary) ℓB(earthquake)

ℓB(alarm)

LOGIC



Fuzzy Logic Semantics

• Most common t-norms are:

• Continuous

• Differentiable -> This turns to be one of the reason of their 

adoption in NeSY


• Convex fragments of the logic can be defined (Giannini et al, 
2019)


• But,  ????ℓF(human(Socrates)) = 0.8
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LOGIC



Fuzzy vs Boolean

• Fuzzy and Boolean have different properties

• When fuzzy is used as a “relaxation” (fuzzification) of Boolean 

undesired effects can happen.


• Suppose:                      


• Satisfying assignments (Lukasiewicz)


•  (all true)


•  (at least one true)


•

A ∨ B ∨ C ∨ D ∨ E = 1

A = B = C = D = E = 1
A = 1, B = C = D = E = 0
A = B = C = D = E = 0.2
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LOGIC
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Semantics

Probabilistic logic

PROBABI
LITYLOGIC



Probabilistic Logic Semantics

PROBABI
LITYLOGIC

Given a proposition language L, the basic idea is to introduce a 
probability function  :


 

p

p : L → [0,1]
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Probabilistic Logic Semantics

PROBABI
LITYLOGIC

Two steps:

• Define a probability distribution over interpretations / 

worlds (i.e. boolean semantics)

 


(E.g. 


• Define a the probability of sentence Q of L:


p(ℓB(x1), …, ℓB(xn))
p(ℓB(burglary) = True, ℓB(earthquake) = False, . . . )

p(Q) = ∑
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))
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Probabilistic Logic Semantics

Problog

0.1 :: burglary.   (B) 
0.05 ::earthquake. (E) 
0.6 ::hears_alarm(john).  (H) 
alarm :– earthquake.  
alarm :– burglary. 
calls(john) :- alarm, hears_alarm(john)




 
 
parameters = the labels for propositions (i.e. probabilistic facts)


p(ℓB(x1), …, ℓB(xn)) = ∏
i:ℓB(xi)=True

p(xi) ∏
i:ℓB(xi)=False

(1 − p(xi))
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PROBABI
LITYLOGIC



e.g. in ProbLog:
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PROBABI
LITYLOGIC

B E H p(B,E,H)
F F F 0.342
F F T 0.513
F T F 0.018
F T T 0.027
T F F 0.038
T F T 0.057
T T F 0.002
T T T 0.003

0.1 x 0.05 x (1- 0.6)

Probabilistic Logic Semantics

Problog

0.1 :: burglary.   (B) 
0.05 ::earthquake. (E) 
0.6 ::hears_alarm(john).  (H) 
alarm :– earthquake.  
alarm :– burglary. 
calls(john) :- alarm, hears_alarm(john)



1.5 : calls(Mary) <- hears_alarm(Mary), alarm

2.0 : alarm <- earthquake

0.5 : alarm <- burglary



p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

wα ℓB(α))
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PROBABI
LITYLOGIC

Weight formula 1 if  is True otherwise 0α

Probabilistic Logic Semantics

Markov Logic



1.5 : calls(Mary) <- hears_alarm(Mary), alarm

2.0 : alarm <- earthquake

0.5 : alarm <- burglary
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PROBABI
LITYLOGIC

Probabilistic Logic Semantics

Markov Logic

B E A H C p
T F T T T 0.05
T F T T F 0.01
… … … … … …

 exp(1.5 + 2.0 + 0.5)∝
 exp(0    + 2.0 + 0.5)∝



Probabilistic Logic Semantics

Given any sentence Q of the propositional language L, with 
variables :





WMC - Weighted Model Counting 
(for both ProbLog and Markov Logic)


x1, …, xn

ℓP(Q) = ∑
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))
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PROBABI
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Probabilistic Logic Semantics

For example: 
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B E H p(B,E,H)
F F F 0.342
F F T 0.513
F T F 0.018
F T T 0.027
T F F 0.038
T F T 0.057
T T F 0.002
T T T 0.003

PROBABI
LITYLOGIC

Q = B ∧ H

p(Q) = 0.06

0.1 :: burglary.   (B) 
0.05 ::earthquake. (E) 
0.6 ::hears_alarm(john).  (H) 
alarm :– earthquake.  
alarm :– burglary. 
calls(john) :- alarm, hears_alarm(john)

Query = burglary ^ hears_alarm(john)



Probabilistic Logic Semantics

Probabilistic Semantics is different from a pure logic semantics


1.  It is built on top of a logical semantics; .


2. Probability is NOT extensional, the probability of a formula

A. cannot be defined recursively by the probabilities of its 

arguments

B. requires WMC

p(ℓB(x1), …, ℓB(xn))
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• Consider:
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(alarm ∧ hears_alarm) → calls

→

∧

alarm hears_alarm

calls

+

+

1 − p(alarm) 1 − p(hears_alarm)

p(calls)

LOGIC

Probabilistic Logic Semantics



Probabilistic Logic Semantics

• Consider:
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(𝐴 ∧ 𝐵) → 𝐶

PROBABI
LITYLOGIC

∨

¬A ∧

A ∨

¬B ∧

B C

+

1 − p(A) ×

p(A) +

1 − p(B) ×

p(B) p(C)

Knowledge Compilation


The probabilistic structure is now explicit in 
the compiled formula.

→

∧

A B

C

ℓP(Q) = ∑
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))



Probabilistic Logic Semantics

• Consider:
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(𝐴 ∧ 𝐵) → 𝐶

PROBABI
LITYLOGIC

∨

¬A ∧

A ∨

¬B ∧

B C

The circuit is differentiable!

→

∧

A B

C

+

1 − p(A) ×

p(A) +

1 − p(B) ×

p(B) p(C)



Probabilistic Logic Semantics
• WMC:





• Another important inference task in MPE inference (connected 
to maxSAT)


p(Q) = ∑
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))

ℓ⋆
B (x1), …, ℓ⋆

B (xn) = max
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))
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Boolean vs Fuzzy vs Probability

• Boolean and Fuzzy logic are two alternative logical semantics


• Probability is a semantics that is built on top of a logical one 
(i.e. “which is the probability of a given truth assignments / 
world?”)


• Can we have a probabilistic fuzzy logic as well?
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Probabilistic Soft Logic (PSL)

• Let’s start by an example of a Markov Logic Network:


• In PSL, we relax the Boolean semantics  to a fuzzy 
semantics 


 


p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

wα ℓB(α))
ℓ𝐵

ℓ𝐹

p(ℓF(x1), …, ℓF(xn)) =
1
Z

exp(∑
α

wα ℓF(α))
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Bach, Stephen H., et al. JMLR 2017

Weight formula Each formula contributes 
with a value in [0,1]



Probabilistic Soft Logic (PSL)

MPE:


 

α : burglary → alarm
ℓF(α) = min(1,1−ℓF(burglary + ℓF(alarm)

max
ℓF(burglary),ℓF(alarm)

wαℓF(α)

ℓF(burglary) = ℓF(burglary) + λ
∂wαℓF(α)

∂ℓF(burglary)
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min(1, ∑ 𝑥𝑖)

1  −  𝑥

ℓF(burglary)

ℓF(alarm)

PROBABI
LITYLOGIC

This is soft SAT 

using fuzzy logic



Probabilistic vs Fuzzy

• Fuzzy is an alternative logical semantics and it can still coupled 
with the probabilistic ones


• Fuzzy logic is sometimes used as an approximation of MPE in 
probabilistic logic


• Fuzzy logic is sometimes used to solve satisfiability faster

• However, it does not guarantee solutions coherent with the 

Boolean logic theory.

• (Remember )A = B = C = D = E = 0.2

160



161

6. Semantics

Neural Symbolic

PROBABI
LITYLOGIC LOGIC NEURAL



Neural Symbolic

How to carry over concepts from the semantics of StarAI to 
neural symbolic?


 

Labelling functions      =       Parametric circuit 
     (semantics)

ℓ(Q)
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ℓF((A ∧ B) → C)
The query Q determine 
the structure (potentially 
after knowledge 
compilation)

ℓ→
F

ℓ∧
F

ℓF(A) ℓF(B)

ℓF(C)



Neural Symbolic

How to carry over concepts from the semantics of StarAI to 
neural symbolic?


 

             Labelling functions      =       Parametric circuit 
                  (semantics)

ℓ(Q)
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ℓF((A ∧ B) → C)
The leaves 
represent the 
scalar parameters

ℓ→
F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)

ℓ→
F

ℓ∧
F

ℓF(A) ℓF(B)

ℓF(C)



Neural Symbolic

How to carry over concepts from the semantics of StarAI to 
neural symbolic?


• Atomic labels are just scalar tables of parameters
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L
Burglary 0.1
Earthquake 0.05
…

p0.1 :: burglary.   (B) 
0.05 ::earthquake. (E) 
0.6 ::hears_alarm(john).  (H) 
alarm :– earthquake.  
alarm :– burglary.



Neural Symbolic

How to carry over concepts from the semantics of StarAI to 
neural symbolic?

•

165

? :: burglary(.     )    
? ::earthquake. (        ) 
? ::hears_alarm(john).   
alarm :– earthquake.  
alarm :– burglary.

?



Neural Symbolic

How to carry over concepts from the semantics of StarAI to 
neural symbolic?


• What if atomic labels are just neural networks?
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? :: burglary(.     )    
? ::earthquake. (        ) 
? ::hears_alarm(john).   
alarm :– earthquake.  
alarm :– burglary.



StarAI to Neural Symbolic
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ℓ→
F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

ℓ→
F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)

NN NN

NN

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

NN

NN

NN

NN NN

LOGIC NEURAL

PROBABI
LITYLOGIC

PROBABI
LITYLOGIC

NEURAL

LOGIC

REPARAMETERIZATION

StarAI

NeSy



Fuzzy Reparameterization
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Parameters of 
the neural nets

min(1, ∑ 𝑥𝑖)

1  −  𝑥

ℓF(burglary)

ℓF(alarm)

NN stress

θburglary

X

NN smokes

θalarm

X

max
ℓF(stress(X)),ℓF(smokes(X))

wαℓF(α)

max
θburglary,θalarm

wαℓF(α)

LOGIC NEURAL

StarAI (PSL)

NeSy (SBR, LTN, DLM) 

min(1, ∑ 𝑥𝑖)

1  −  𝑥

ℓF(burglary)

ℓF(alarm)

Semantic Based 
Regularization  (Diligenti 
et al, AI 2017)


Logic Tensor Network 
(Donadello et at, IJCAI 
2017)

α : burglary → alarm



Probabilistic Reparameterization

• ProbLog: 


 

• Markov Logic:





WMC

p(ℓB(x1), …, ℓB(xn)) = ∏
i:ℓB(xi)=True

p(xi) ∏
i:ℓB(xi)=False

(1−p(xi))

p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

wαℓB(α))
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Probabilistic parameters

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)
p(Q) = ∑

ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))
LOGICNEURAL

PROB



Probabilistic Reparameterization

• DeepProbLog (Manhaeve et al, NeurIPS (2018))


 

• Relational Neural Machines (Marra et al, ECAI 2020)





WMC

p(ℓB(x1), …, ℓB(xn)) = ∏
i:ℓB(xi)=True

p(xi) ∏
i:ℓB(xi)=False

(1−p(xi))

p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

wαℓB(α))
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Neural parameters

LOGICNEURAL

PROB
p(Q) = ∑

ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

NN

NN

NN

NN NN



Probabilistic Reparameterization

171

LOGICNEURAL

PROB

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

NN

NN

NN

NN NN

• DeepProbLog (Manhaeve et al, NeurIPS (2018))

nn(mnist_net, [X], Y, [0 ... 9] ) :: digit(X,Y).

 :: burglary.
0.01

Neural Predicate

Probabilistic fact

Interface



Conclusions



StarAI and NeSy share similar problems 
and thus similar solutions apply 

See also [De Raedt et al., IJCAI 20] 

Key Message

LOGICLOGICLOGICNEURALLOGIC
PROBABI

LITYFROM TO



The Seven Dimensions

174

1.   Proof vs Model based

2.   Directed vs Undirected

3.   Type of Logic

4.   Symbols vs Subsymbols

5.   Parameter vs Structure Learning

6.   Semantics

7.   Logic vs Probability vs Neural



Many questions to ask

 

• What properties should integrated representations satisfy

• Should one representation take over ? 


• (As in most approaches to NeSy — push the logic inside 
and forget about it afterwards)


• Should one have the originals as a special case ? 

• Should one build a pipeline (e.g. first neural then logic) or a 

bi-directional interface between the integrated 
representations? 


• Can neural and logic features be intermixed more closely?
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Many questions to ask

 

• Which learning and reasoning techniques apply  ?

• Can you still reason  logically  / probabilistically ? 

• Can you still apply standard learning methods (like gradient 

descent) ?

• Is everything explainable / trustworthy ?
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Challenges 

• For NeSy, 

• Better understanding

• scaling up 

• which models to use  

• real life applications 

• peculiarities of neural nets 

• logical inference can be expensive


• This is an excellent area for starting researchers / PhDs
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