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Introduction




How much effort do you need to
solve these tasks?

Is she smiling? The result of ...

147 x 13




Thinking fast and slow

THINKING,
FAST.. STOW

s
DANIEL
KAHNEMAN



Real-life problems involve both

aspects.

AT
B. T

Who can go first ?

ne red car

ne blue van

C. T

ne white car


https://www.theorie-blokken.be/nl/gratis-proefexamen

Real-life problems involve both
aspects.

Who can go first ?

A. The red car

B. The blue van

C. The white car

Thinking fast Thinking slow


https://www.theorie-blokken.be/nl/gratis-proefexamen

Thinking fast and slow Iin Al

Subsymbolic Symbolic
(Thinking fast) (Thinking slow)
associative logical
data knowledge
learning reasoning/planning

noisy input precise input



Thinking fast

MAIN PARADIGM in Al

NEURAL




Thinking slow = reasoning

TWO MAIN PARADIGMS in Al

LOGIC PROBABILITY
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Integration

PROBABILITY

LOGIC NEURAL

How to integrate these three paradigms in Al ?
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Deep Learning

PROBABILITY

NEURAL

Well studied from a LEARNING perspective
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Statistical Relational Al

PROBABILITY

LOGIC

Their integration has been well studied In
Statistical Relational Al (StarAl)
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Neural Symbolic

LOGIC NEURAL

Being studied from a LEARNING perspective
in Neuro Symbolic Computation
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Key Message

StarAl and NeSy share similar problems
and thus similar solutions apply

See also
De Raedt, Dumancic, Marra, Manhaeve
From Statistical Relational to Neuro-Symbolic Artificial Intelligence erc
IJCAI 20
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Goal

PROBABILITY

LOGIC NEURAL
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The Seven Dimensions

1. Proof vs Model based
2. Directed vs Undirected
3. Type of Logic

5. Parameter vs Structure Learning
6. Semantics
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1. Proof vs Model based
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1. Proof vs Model based

19



Logic Programs

as in the programming language Prolog

Propositional logic program

burglary.
hears_alarm_mary.
facts :

burglary = true
earthquake.
hears_alarm_john.

alarm :— earthquake.

alarm :— burglary.

calls_mary :—alarm, hears_alarm_mary.

calls_john :—alarm, hears_alarm_john.

20



Logic Programs

as in the programming language Prolog

Propositional logic program

burglary.
hears_alarm_mary.

earthquake.
hears_alarm_john.

alarm :— earthquake.
rule:

alarm :—burglary. cails_mary =true IF alarm = true AND hears_alarm_mary = true

calls_mary :— alarm, hears_alarm_mary.

calls_john :—alarm, hears_alarm_john.

21



Logic Programs

as in the programming language Prolog
Propositional logic program
Query

burglary.

.- calls_mary.
hears_alarm_mary. B

l

:- alarm, hears_alarm_mary.

earthquake. l
hears_alarm_john. .- earthquake, hears_alarm_m

l :- burglary, hears_alarm

alarm :— earthquake. - hears_alarm_mary.

- hears_a}arm_mary.

alarm :— burglary. !

[ M

Two proofs [

calls_mary :—alarm, hears_alarm_mary.

calls_john :— alarm, hears_alarm_john. A proof-theoretic view

backward chaining

22



Logic as constraints

as in SAT solvers
Propositional logic Model / Possible World

calls_mary<«hears_alarm_mary A alarm { burglary,
]

hears_alarm_john,

calls_john <« hears _alarm_john A alarm
— alarm,

calls_john}
alarm < earthquake v burglary

the facts that are true
in this model / possible world

SAT: Find a model / possible world that satisfies all the constraints
SAT SOLVERS

A model-theoretic view
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Propositional Logic

burglary.
hears_alarm_mary.

earthquake.
hears_alarm_john.

alarm :— earthquake.

alarm :— burglary.

calls_mary :— alarm, hears_alarm_mary.

calls_john :—alarm, hears_alarm_john.
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Relational/First Order Logic

Introduce Variables and Domains

allows to exploit symmetries / templates ...

burglary.
hears_alarm(mary).

earthquake.
hears_alarm(john).

alarm :— earthquake.
alarm :— burglary.

calls(X) :— alarm, hears_alarm(X).

Variable X
Domain = {mary, john}

BOTH for model and proof-based appraoch

25



Relational/First Order Logic

Introduce Variables and Domains
The meaning of this is always the GROUNDED theory

allows to exploit symmetries / templates ...

burglary.

burglary.
Sy hears_alarm(mary).

hears_alarm(mary).
earthquake.

earthquake. .
hears_alarm(john).

hears_alarm(john).

alarm :— earthquake. alarm :— earthquake.

alarm :— burglary.

alarm :— burglary.
Sy calls(mary) :— alarm, hears_alarm(mary).

calls(X) :— alarm, hears_alarm(X).

calls(john) :— alarm, hears_alarm(john).
Variable X

Domain = {mary, john} Grounded Theory

BOTH for model and proof-based appraoch
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LOgicaI ReaSOning stress (ann) .

influences (ann,bob) .

P rO OfS influences (bob,carl) .

smokes (X) :- stress (X).

smokes (X) :-
influences (Y, X),
smokes (Y) .

?- smokes (carl).

__— \ Y=bob

?- stress(carl). ?—~influ§nces(Y,carl),smokes(Y).

\

?- smokes (bob) .

/ \ Yl=ann

?—- stress (bob) . ?-l influences (Y1l,bob) , smokes (Y1) .

/

?- smokes (ann) .
—— N

?-| stress (ann) . ?- influences (Y2, ann) ,b smokes (Y2).

|

Ground theory is never instantiated explicitly



1. Proof vs Model based
2. Directed vs Undirected
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2. Directed vs Undirected =
the PGM / StarAl dimension

Friends(A,B)

Friends(A,A) @ Smokes(B) Friends(B,B)
Cancer(B)
Friends(B,A)

0.1 ::burglary.
0.05 :: earthquake.

alarm :— earthquake.

alarm :— burglary.

0.7:calls(mary) :— alarm.

0.6::calls(john) :— alarm.

1.5 Vvx Smokes(x) = Cancer(x)
1.1 vx,y Friends(x,y) = (Smokes(x) & Smokes(y))

Probabilistic Logic Programs
ProblLog

directed undirected
Bayesian Net Markov Net
BAB|

Y key representatives

Markov Logic




Logic Programs

as in the programming language Prolog

Propositional logic program Two proofs (by refutation)
burglary. .
hears_alarm(mary). - Ialls(mary).

:- alarm, hears_alarm(mary).

earthquake. l
hears_alarm(john). .- earthquake, hears_alarm(ma

l .- burglary, hears_alarm(|
alarm :— earthquake. - hears_alarm(mary).

alarm :— burglary. - hears_a*arm(mary)

[] v

calls(mary) :— alarm, hears_alarm(mary). [

calls(john) :— alarm, hears_alarm(john).
A proof-theoretic view
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Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Probabilistic logic program

0.1 ::burglary.
0.3 ::hears_alarm(mary).

Probabilistic facts

0.05 ::earthquake.
0.6 ::hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).

)BABI
Y

31

Key Ildea (Sato & Poole)
the distribution semantics:

unify the basic concepts in logic
and probability:

random variable ~ propositional
variable

an interface between logic and
probability




Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program

0.1 ::burglary.
0.3 ::hears_alarm(mary).

0.05 ::earthquake.
0.6 ::hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).

32

Two proofs (by refutation)

.- alarm
:- burglary. .- earthquake.
P=0.1 l P=0.05 l
[] []
Probability of one proof: H Pf

fifacteProof



Probabilistic Logic Programs

as in the probabilistic programming language ProbLog
Propositional logic program Disjoint sum problem

0.1 :: burglary. .- alarm

0.3 ::hears_alarm(mary). / \

0.05 ::earthquake.

. :- burglary. .- earthquake.
0.6 ::hears_alarm(john).
P=0.1 l P=0.05 l
alarm :— earthquake. 1 1
alarm :— burglary.
Probability of one proof: H Pf
fifacteProof

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john). P(alarm) = P(burg OR earth)

= P(burg) + P(earth) - P(burg AND earth)

=/= P(burg) + P(earth)
33



Probabilistic Logic Program
Semantics

earthquake. [Vennekens et al, ICLP 04]

0.05: :burglary. re .
probabilistic causal laws

0.6::alarm :- earthquake.

0.8::alarm :- burglary.
g y earthquake |].0

alarm no alarm

0.6 0.4

burglary no burglary burglary

05 0.95\, no burglary

no alarm alarm no alarm

0.2

alarm

P(alarm)=0.6%0.05%x0.8+0.6x0.05%0.2+0.6%0.95+0.4%x0.05%0.8



Probabilistic Logic Program
Semantics

. : Bayesian Network
Propositional logic program

0.1 :: burglary. burglary.
0.05 :: earthquake.

alarm :— earthquake.

alarm :— burglary.

0.7::calls(mary) :— alarm.

0.6::calls(john) :— alarm.

Bayesian net encoded as Probabilistic Logic Program
PLPs correspond to directed graphical models

ProbLog has both (directed) probabilistic graphic models,




Flexible and Compact Relational
Model for Predicting Grades

8

“Program” Abstraction: c

* S, Clogical variable representing students, courses

* the set of individuals of a type is called a population

* Int(S), Grade(S, C), D(C) are parametrized random variables
Grounding:

* for every student s, there is a random variable Int(s)

* for every course c, there is a random variable Di(c)

* for every s, c pair there is a random variable Grade(s,c)

* all instances share the same structure and parameters

De Raedt, Kersting, Natarajan, Poole: Statistical Relation?élf? Al



ProblLog by example:

Grading

0.
0.

student (john) . student (anna).
course (ml) .

course (ai) .

4 int(S) :- student(S).
5 :: diff(C) :- course(C).

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(s,C,a); 0.5::gr(s,C,b);0.2::gr(S,C,c) :-
int(S), diff(C).

0.1::gr(s,C,b); 0.2::gr(S,C,c);

not int (S),

not diff (C).

0.3::gr(S,C,c); 0.2::gr(Ss,C,f)

not int(S),

diff (C).

student (bob) .
course (cs) .

0.2::gr(Ss,C,£f) :-
student (S), course(C),




ProblLog by example: Grading

unsatisfactory(S) :- student(S), grade(S,C,f).

excellent (S) :- student(S), not(grade(S,Cl,G) ,below(G,a)),
grade (S,C2,a).

0.4 int(S) :- student(S).

0.5 :: diff(C) :- course(C).

student (john) . student (anna) . student (bob).

course (ai) . course (ml) . course (cs) .

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(s,C,a); 0.5::gr(s,C,b);0.2::gr(Ss,C,c) :-
int(S), diff (C).
0.1::gr(s,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,£f) :-
student (S), course(C),
not int(S), not diff (C).
0.3::gr(S,C,c); 0.2::gr(S,C,£f) :-
not int(S), di%g(C).



Dynamic networks
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Can we build a model

of this world ?

Can we use it for playing
better ?

59 [Thon et al, MLJ | 1]



Activity analysis and tracking
% V|deo analy3|s

{2} #1.5 e ; AN |
@ {3}#2; * TJrack people or objects
over time? Even if
{1-0-1} #2.0 @ ] ]
5@ temporarily hidden?
<4@ +* Recognize activities?
0-0-1-1} #1- _ ,
* Infer object properties?
1-0} #1.2
G‘%)\M} AN [Skarlatidis et al, TPLP 14; [Persson et al, IEEE Trans on
v Nitti et al, IROS I3, ICRA 14, Cogn. & Dev. Sys. 19;

MLJ 16] |JCAI 20]
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Learning relational affordances

Learning relational
affordances
between

two objects
(learnt by experience)

1), an Similar to probabilistic Strips
(with continuous distributions) Moldovan et al. ICRA 12, |13, 4;Auton. Robots |8

I

<>O




Learning relational affordances

Learning relational
affordances
between

two objects
(learnt by experience)

1), an Similar to probabilistic Strips
(with continuous distributions) Moldovan et al. ICRA 12, |13, 4;Auton. Robots |8

I

<>O




Biology

Interaction network

Probabilistic Sub-network
network generation inference

~ “, v Inferred
L,_V _ sub-network

Molecular profiling Gene list

Figure 1. Overview of PheNetic, a web service for network-based interpretation of ‘omics’ data. The web service uses as input a genome wide interaction
network for the organism of interest, a user generated molecular profiling data set and a gene list derived from these data. Interaction networks for a wide
variety of organisms are readily available from the web server. Using the uploaded user-generated molecular data the interaction network is converted into
a probabilistic network: edges receive a probability proportional to the levels measured for the terminal nodes in the molecular profiling data set. This
probabilistic interaction network is used to infer the sub-network that best links the genes from the gene list. The inferred sub-network provides a trade-off
between linking as many genes as possible from the gene list and selecting the least number of edges.

e Causes: Mutations * Interaction network: * Goal: connect causes to effects
 All related to similar e 3063 nodes through common subnetwork
phenotype * Genes * = Find mechanism
« Effects: Differentially * Proteins * Techniques:
expressed genes * 16794 edges  DTProbLog
000 cause effect * Molecular interactions < Approximate inference
' * Uncertain

al., Molecular Biosystems |13, NAR 5] [Gross et al. Communications Biology, |9]



> C \ https://dtai.cs.kuleuven.be/problog/

Home

SN T 5 /)

)\ =4

=10 aid in the interpretation of gene lists, PheNetic:was built:on top of ProbLog.

Introduction.
Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities.

ProbLog is a tool that allows you to intuitively build programs that do not only encode complex interactions between a large sets of heterogenous components bt
uncertainties that are present in real-life situations.

The engine tackles several tasks such as computing the marginals given evidence and learning from (partial) interpretations. ProbLog is a suite of efficient algorithms
tasks. It is based on a conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce the inference tasks to well-s
weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature.

The Language. Probabilistic Logic Programming.

ProbLog makes it easy to express complex, probabilistic models.

0.3::stress(X) :- person(X).
0.2::influences(X,Y) :- person(X), person(Y).

smokes(X) :- stress(X).
smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y).

1BABI

Y
43




Constraints

not Friends(Anna,Bob) or Happy(Bob)

What about constraints? Do they have a probabilistic interpretation?



Markov Logic: Intuition

* Undirected graphical model

* Alogical KB is a set of hard constraints
on the set of possible worlds

* Let’'s make them soft constraints:
When a world violates a formula,
It becomes less probable, not impossible

* Give each formula a weight
(Higher weight = Stronger constraint)

P(world) o exp (E weights of formulas it satisﬁes)

De Raedt, Kersting, Natarajan, Poole: Statistical Relationat Al



A possible worlds view

Say we have two domain elements Anna and Bob as well as
two predicates Friends and Happy

- Friends(Anna, Bob)

Friends(Anna, Bob)

- Happy(Bob)  Happy(Bob)

De Raedt, Kersting, Natarajan, Poole: Statistical Relational Al slides by Pedro Domingos



A possible worlds view

Logical formulas such as
not Friends(Anna,Bob) or Happy(Bob)
exclude possible worlds

- Friends(Anna, Bob) - Friends(Anna, Bob)
v Happy(Bob)

Friends(Anna, Bob)

- Happy(Bob)  Happy(Bob)

De Raedt, Kersting, Natarajan, Poole: Statistical Relational ‘Al slides by Pedro Domingos



A possible worlds view

four times as likely that rule holds

O (- Friends(Anna, Bob) v Happy(Bob)) =1
O(Friends(Anna, Bob) n —Happy(Bob)) =0.75

-~ Friends(Anna, Bob) 1 1

Friends(Anna, Bob)

~Happy(Bob)  Happy(Bob)

De Raedt, Kersting, Natarajan, Poole: Statistical Relational Al slides by Pedro Domingos



A possible worlds view

Or as log-linear model this is:

w(®(—~Friends(Anna, Bob) v Happy(Bob)))
=log(1/0.75) =0.29

-~ Friends(Anna, Bob) 1 1

Friends(Anna, Bob)

- Happy(Bob)  Happy(Bob)

De Raedt, Kersting, Natarajan, Poole: Statistical Relationa‘ngI



A possible worlds view

Or as log-linear model this is:

w(® (- Friends(Anna, Bob) v Happy(Bob)))
=log(1/0.75) =0.29

-~ Friends(Anna, Bob) 1 1

Friends(Anna, Bob)

~Happy(Bob)  Happy(Bob)
This can also be viewed as’building a graphical model



Markov Logic

1.5
1.1

Vx Smokes(x) = Cancer(x)

Vx,y Friends(x,y) = (Smokes(x) & Smokes( y))

Suppose we have two constants: Anna (A) and Bob (B)

Cancer(B)

slides by Pedro Domingos



Markov Logic

1.5
1.1

Vx Smokes(x) = Cancer(x)

Vx,y Friends(x,y) = (Smokes(x) & Smokes( y))

Suppose we have two constants: Anna (A) and Bob (B)

Friends(A,B)

Friends(AA

Smokes(B) Friends(B,B)

Cancer(B)
Friends(B,A)

slides by Pedro Domingos



Markov Logic

1.5
1.1

Vx Smokes(x) = Cancer(x)

Vx,y Friends(x,y) = (Smokes(x) & Smokes( y))

Suppose we have two constants: Anna (A) and Bob (B)

Friends(A,B)

Friends(AA @
Friends(B,A)

Friends(B,B)

slides by Pedro Domingos



Markov Logic

1.5 |Vx Smokes(x) = Cancer(x)
1.1 |Vx,y Friends(x,y) = (Smokes(x) & Smokes( y))

Suppose we have two constants: Anna (A) and Bob (B)

Friends(A,B)

Friends(AA Smokes(B) Friends(B,B)
Cancer(B)

Friends(B,A)

slides by Pedro Domingos



Applications

= Natural language processing, Collective Classification, Social
Networks, Activity Recognition, ...

Alchemy: Open Source Al

Tutorial Welcome to the Alchemy system! Alchemy is a software package providing a series
of algorithms for statistical relational learning and probabilistic logic inference,
Mailing Lists based on the Markov logic representation. Alchemy allows you to easily develop a

wide range of Al applications, including:

Alchemy
Collective classification

Link prediction

Entity resolution

Social network modeling
Information extraction

Alchemy-announce

Alchemy-update

Alchemy-discuss

Repositories Choose a version of Alchemy:
Code
Datasets
LN Alchemy Lite
Publications Alchemy Lite is a software package for inference in Tractable Markov Logic

(TML), the first tractable first-order probabilistic logic. Alchemy Lite allows for
Related Links fast, exact inference for models formulated in TML. Alchemy Lite can be used in
batch or interactive mode.
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2. Directed vs Undirected ==
the PGM / StarAl dimension

Friends(A,B)

Friends(A,A) @ Smokes(B) Friends(B,B)
Cancer(B)
Friends(B,A)

1.5 Vvx Smokes(x) = Cancer(x)
1.1 vx,y Friends(x,y) = (Smokes(x) & Smokes(y):

0.1 ::burglary.
0.05 :: earthquake.

alarm :— earthquake.

alarm :— burglary.

0.7:calls(mary) :— alarm.

0.6::calls(john) :— alarm.

Logic is used as a template for a probabilistic
graphical model: knowledge based model
construction KBMC

55



1. Proof vs Model based
2. Directed vs Undirected

56



2. Directed vs Undirected
the NeSy dimension

g2

Two types of Neural Symbolic

Systems
Logic as a neural program Logic as a reqularizer
Directed StarAl approach and undirected StarAl approach and
logic programs (soft) constraints

Many NeSy systems are doing
knowledge based model construction KBMC
where logic is used as a template

Just like in StarAl!!

57



Logic as a neural program

directed StarAl approach and logic programs

e KBANN (Towell and Shavlik Ald 94)

* Turn a (propositional) Prolog program into a neural
network and learn

A - B, Z. Ke A
A :-B, 2.REWRITE , . o ' P
B —_— C ’ D .ﬁ B _ B . . ﬁ A
B :-E, F, G ' unct 2 2
’ ’ . B - C, D. conjunction L
Z - Y, not X. B’ - E, F, G. /\ ‘\
v - s, T. 7 - Y, not X. unnegated B’ B’’ Y
Y - S, T. dependency ,0\ /ﬁ /O\
‘negted | C D E F G S T
dependency c — Step 1

58



Logic as a neural program

directed StarAl approach and logic programs

e — Step 3

ADD LINKS — ALSO SPURIOUS ONES HIDDEN UNIT

and then learn

iIs of activation & loss functions not mentioned)



Lifted Relational Neural Networks

directed StarAl approach and logic programs

* Directed (fuzzy) NeSy

* similar in spirit to the Bayesian Logic Programs and
Probabilistic Relational Models

* Of course, other kind of (fuzzy) operations for AND, OR
and Aggregation (cf. later)

50 [Sourek, Kuzelka, et al JAIR]



Neural Theorem Prover

directed StarAl approach and logic programs

father(Omer,Bart). - grandFather(Abe,Bart)

father(Abe,Omer). ‘

parent(X,Y) :- father(X,Y). .

grandFather(X.Y) :- father(X.2), .- father(Abe,Z), parent(Z,Bart)
parent(Z,Y) ‘ Z=0mer

.- father(Abe,Omer), parent(Omer,Bart)

.- parent(Omer,Bart)

.- father(Omer,Bart)

(o) 0



Neural Theorem Prover

directed StarAl approach and logic programs

father(Omer,Bart). - grandPa(Abe,Bart)

father(Abe,Omer). ‘

parent(X,Y) :- father(X,Y).

grandFather(X,Y) :- father(X,2, " °°
parent(Z,Y)

62




Neural Theorem Prover

directed StarAl approach and logic programs

father(Omer,Bart). - grandPa(Abe,Bart)

father(Abe,Omer).

parent(X,Y) :- father(X,Y). |

grandFather(X,Y) :- father(X,2), w ~ distance(grandPa,
oarent(Z,Y) grandFather)

.- father(Abe,Z), parent(Z,Bart)
‘ Z=0Omer

(o)



Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

from Xu et al., ICML 2018

64



Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

This constraint should be satisfied

(—031 A\ X9 N\ ZEg)\/
(_I.le A\ L9 A\ _l.ilfg)\/

(371 /\ %) N\ _ng)

from Xu et al., ICML 2018
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Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

Probability that constraint is satisfied

(1 — .2131)(1 — CUQ)CEg—-
(1 — 2131)5172(1 — 563)——
331(1 — 2132)(1 — 5133)

basis for SEMANTIC LOSS

(weighted model counting)

65




Logic as a regularizer

undirected StarAl approach and (soft) constraints

Semantic Loss:

* Use logic as constraints (very much like “propositional
MLNSs)

. Semantic loss ~ SLoss(T) o< —log » [ »i ][] (1 —pi)
X|:T reX xeX

* Used as regulariser Loss = T'raditional Loss + w.SLoss

* Use weighted model counting , close to StarAl

(o)



Semantic Based Regularization

undirected StarAl approach and (soft) constraints

F = Vd Ps(d) = A(d) Evidence Predicate
Fr = VdVd R(d,d')= ((Ad) AA(d))V (~A(d) A —A(d'))) Groundings
C = {di,do} Py(dy) =1
R(dy,d2) =1
A Output

Output Layer

____________________________________________ _lr:z'i':'_'f?_;____ e e e e e m o

P p

Quantifier Layers avg

- = = e e e e o e e e e e e e e e e e e e e e M e e e e e e M M e e e e e e e o

S S S P - - ——R . - e o = = e == = = === == = —

Input Layer Py(dy)

LIl ] L1 | ]

d, representation d, representation
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Logic Tensor Networks

undirected StarAl approach and (soft) constraints

P(x,y) — A(y), with G(x) = vand G(y) = u

G(P(v,u) - A(u)

68 Serafini & Garcez



Two types of Neural Symbolic

Logic as a neural program Logic as a reqularizer
Directed StarAl approach and undirected StarAl approach and
logic programs (soft) constraints

Also, many NeSy systems are doing -
knowledge based model construction KBMC Avcficia Igeligeas

Laogic, Probability,

where logic is used as a template ondConpti

Kristian Kersting

Just like in StarAl
69




3. Types of Logic
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3. Types of Logic

Key Messages

o Different types of logic exist

e Different types of logic enable different functionalities

71



3. Types of Logic
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Various flavours of logic

stress (ann) .

alarm :— earthquake. influences (ann,bob) .

alarm :— burglary. influences (bob,carl).
smokes (X) :- stress (X).
calls_mary :— alarm, hears_alarm_mary. smokes (X) :-

influences(Y,X),

calls_john :—alarm, hears_alarm_john. smokes (Y) .

Propositional logic First-order logic

73



Various flavours of first-order
logic

Logic programs FOL constraints
= programming language




Logic programming and Prolog

Full-fledged programming language
structured terms

/

member (X, [X]| ]).

member (X, [ |Tail]) :-
member (X, Tail).

AN

recursion
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Various flavours of first-order
logic

Logic programs
= programming language

Datalog
= Logic programs
that always terminate

. 76




Datalog

Query language for deductive databases

no structured terms
guaranteed to terminate

ancestor (X, Y) :- parent(X, Y).
ancestor (X, Y) :- parent(X, Z2), ancestor(Zz, Y).
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Various flavours of first-order
logic

Answer-set programs
= Logic programs with
multiple models that

always terminate
+ soft/hard constraints

+ preferences

Logic programs
= programming language

Datalog
= Logic programs
that always terminate

. 78



Answer-set programming

Prolog with multiple models + interesting features

choice rules

col(r). col(g). col(b). /

1 {color(X,C) : col(C)} 1]:- node(X).
:— edge(X,Y), color(X, , color (Y, .

\ constraint

79



What can it do?



What can it do?

Datalog:
database queries

. 81



What can it do?

Answer-set programming:
database queries, common-sense
reasoning, preferences

Datalog:
database queries
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What can it do?

Logic programming:
programs manipulating structured
objects, infinite domains, ...

Answer-set programming:
database queries, common-sense
reasoning, preferences

Datalog:
database queries
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3. Types of Logic

34



Logic in NeSy -




Logic in NeSy - Dataloo

JdILP, Neural Theorem
Provers, LRNN, DiffLog, ...




Logic in NeSy - Answer-satl
programming

NeurASP

JdILP, Neural Theorem
Provers, LRNN, DiffLog, ...




Logic in NeSy - oo programming

DeepProblog,
NLProlog

NeurASP

JdILP, Neural Theorem
Provers, LRNN, DiffLog, ...




Logic in NeSy - First-order logic

Logic tensor networks, NMLN,
SBR, RNM

DeepProblog,
NLProlog

NeurASP

JdILP, Neural Theorem
Provers, LRNN, DiffLog, ...




3. Types of Logic

Key Messages

o Different types of logic exist

e Different types of logic enable different functionalities

90



5. Structure vs parameter learning




5. Learning
Key Messages

Learning: finding logical formulas and estimating
probabillities

Structure learning: both formulas and probabilities
Parameter learning: only probabilities

Many flavours of learning in NeSy
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5. Structure vs parameter learning




Learning in StarAl

Obtaining models from data

94

0.7::nationality(X,Y) :-
livesin(X,Y).

0.7::nationality(X,Y) :-
livesin(X,Z), locatedIn(Z,Y).

0.9::nationality(X,Y) :-
bornin(X,Y).



StarAl learning paradigms

What is
provided?

What is the
learning goal?

@

Structure
learning

Data

Structure and
parameters

95

Parameter
learning

Data and
discrete structure

Parameters



Learning types: Parameter learning

Learning the probabilities/weights of a specified model
the goal of learning

e

0.7::nationality(X,Y) :-

I ) livesIn(X,Y).

0.7::nationality(X,Y) :-

Model (the formulas) are given

nationality(X,Y) :- livesin(X,2), locatedIn(Z,Y).
livesIn(X,Y).
nationality(X,Y) :- 0.9::nationality(X,Y) :-
livesIn(X,Z), locatedIn(Z,Y). bornin(X,Y).

nationality(X,Y) :-
bornin(X,Y).
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Learning types: Parameter learning

Learning the probabilities/weights of a specified model
Model (the formulas) are given

Learning principles: identical to learning parameters of any parametric

model
e gradient descent [Lowd & Domingos, 2007]
* |least squares [Gutmann et al, 2008]
e Expectation Maximisation [Gutmann et al, 2011]

@



Learning types: Structure learning

Finding the clauses/logical formulas of a model

the goal of learning

e

0.7::nationality(X,Y) :-
livesin(X,Y).

H 0.7::nationality(X,Y) :-

livesin(X,2), locatedIn(Z,Y).

0.9::nationality(X,Y) :-
bornin(X,Y).

98



Learning types: Structure learning

Two types of structure learning

Discriminative Generative
* specific target relation * no specific target relation
* separate background * learning generative process
knowledge behind data

@



Learning types: Structure learning

Learning by searching

( N
Create/refine

candidates
\_ Y,

AN

~ ) 4 )
Learn
Evaluate

<
parameters
- W, - W,
QBABI
Gﬁ Y




Learning types: Structure learning

Learning by searching

g

)BABI

/

Combinatorial enumeration

~

Evaluate

\_

Create/refine
candidates

~

J

—

N\

need to control
how complex this
space Is

-

100

Learn
parameters
\

J




Learning via enumeration - Probfoll+

[De Raedt et al, 2015]

grandparent(abe,lisa).
grandparent(abe,bart).
grandparent(jacqueline,lisa).
grandparent(jacqueline,maggie.)
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Learning via enumeration - Probfoll+

[De Raedt et al, 2015]

Model: {1

‘ QBABI
' Y
102



Learning via enumeration - Probfoll+

[De Raedt et al, 2015]

Model: {1

Learn one rule: p: grandparent(X,Y) < true

‘ O BABI
' Y
102



Learning via enumeration - Probfoll+

[De Raedt et al, 2015]

Model: {}

If not good enough, refine!
Learn one rule:  p:grandparent(xy)«—true
.. grandparent(X,Y) < mother(X,Y)
.. grandparent(X,Y) < mother(Y,X)
.. grandparent(X,Y) < mother(X,2)
.. grandparent(X,Y) « father(X.,Y)

X X X X
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Learning via enumeration - Probfoll+

[De Raedt et al, 2019]

Model: {}

If not good enough, refine!
Learn one rule:  p:grandparent(ty)«—trwe

p:.:.grandparent(X,\O <« mother(X,Y),father(X,2)

p:: grandparent(X,Y) < mother(X,Z),father(Z,Y)
p:: grandparent(X,Y) < mother(X,Z),mother(Z,Y)
p:: grandparent(X,Y) < father(X,Y),mother(X,Y)

..... 102




Learning via enumeration - Probfoll+

[De Raedt et al, 2015]

Model: {1.0:: grandparent(X,Y) < mother(X,2), father(Z,Y)}

If not good enough, refine!
Learn one rule:  p:grandparent(ty)«—trwe

p:.:.grandparent(X,\O <« mother(X,Y),father(X,2)

p:: grandparent(X,Y) < mother(X,Z),father(Z,Y)
p:: grandparent(X,Y) < mother(X,Z),mother(Z,Y)
p:: grandparent(X,Y) < father(X,Y),mother(X,Y)

..... 102




Learning via enumeration - Probfoll+

[De Raedt et al, 2015]

Model: {1.0:: grandparent(X,Y) < mother(X,2), father(Z,Y)}

start again with a single rule!
Learn one rule:  p:: grandparent(x,Y) < true

<
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Learning via random walks

[Kok & Domingos, 2009]

'-.'... .'.'.'
'''''

103



Learning via random walks

[Kok & Domingos, 2009]

“Lift” a knowledge graph by identifying
nodes with the same role

Book Professor Book
2 i
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Learning via random walks

[Kok & Domingos, 2009]

“Lift” a knowledge graph by identifying
nodes with the same role

Student Student’

Book Professor Book’
@D--d2] () (82
3 s T % B
2 Qo

Traverse the lifted knowledge graph
and
turn every path into a clause/rule
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Learning in StarAl - overview

Structure learning Parameter learning

& Starts directly from data & Learning is easier
& Scales better

@ Combinatorial problem @ An expert needs to provide the rules

@ User needs to design a language @ Sensitive to the choice of rules

<
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5. Structure vs parameter learning




Spectrum of learning paradigms

DATA and
STRUCTURE

Structure learning Parameter learning

(oo



Spectrum of learning paradigms

Soft patterns

Neural generation Structure via
parameter learning

Neurally-guided
learning Program sketching

DATA and

STRUCTURE

Structure learning Parameter learning

(oo



DeepCoder

[Balog et al, 2017]

O
e e
/‘\ /‘\ /‘\ /'\
O O O O O O O O

StarAl techniques search for clauses/rules systematically

>
107




DeepCoder

[Balog et al, 2017]
Preferences of learning ‘primitives’

/\
0\ O O

rd N
o O O

Explore the subpart of the space with
primitives that are likely to solve the problem

likely to solve a problem = learned from data

l DATA and
STRUCTURE
108



DeepCoder

[Balog et al, 2017]
Preferences of learning ‘primitives’

) a+ [int] An input-output example:
| earn from pairs b « FILTER (<0) a Input:
c — MAP (x4) b (-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11]
(examples, program) d ¢ SORT ¢ Output:
e < REVERSE d [-12, -20, -32, -36, -68]

Given examples, predict

which functions to use g(functions | examples)

DATA and

STRUCTURE

109




DeepCoder

[Balog et al, 2017]
Preferences of learning ‘primitives’

) a+ [int] An input-output example:
| earn from pairs b « FILTER (<0) a Input:
c — MAP (x4) b (-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11]
(examples, program) d ¢ SORT ¢ Output:
e < REVERSE d [-12, -20, -32, -36, -68]

Given examples, predict
which functions to use

DATA and

STRUCTURE

109




DeepCoder

[Balog et al, 2017]
Preferences of learning ‘primitives’

i a<+ [int] An input-output example:
| earn from pairs b « FILTER (<0) a Input:
c + MAP (x4) b [-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11]
(examp|es, program) d ¢ SORT ¢ Output:
e < REVERSE d [-12, -20, -32, -36, -68]

o | SCANL] e

—_ = s
— o L T =
1o = & o @ E 5 2 =
— o~ * m M <t = ° ° wi < - o o Q = < (@) = <
20 @ £ £ ¥ 2 F 2 A A2 E S s £ 3 &2 38 2K + «x = = O = = @
0 0 1 0 0 0 .0 .o..o .o..o > 0 .o_.o 1 0 4 6o 1 0 2 1 0 0 0 0

DATA and

STRUCTURE
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DreamCoder

[Ellis et al, 2018]

Distribution of primitives defines a generative model of programs

g(programs | examples)

Neural network outputs the posterior distribution over programs
likely to solve a specific task

l DATA and
STRUCTURE
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Neural Markov Logic Networks

[Marra et al, 2020]

MLNs can be interpreted as log-linear models

..FriendS(A,B) P(X — X) — lH ¢(x{ })nl(x)
l l
2
.m ..Cancer(B) ‘

potentials come from formulas
provided by the expert
(cliques in Markov network)

l DATA and
n STRUCTURE



Neural Markov Logic Networks

[Marra et al, 2020]

Learn neural potentials from fragments of data

1
® P =2 =2 [ [l
\ i
potentials come from fragments
¢3 of data (knowledge graph)

l DATA and
STRUCTURE
112



Neural Generation

[INye et al, 2020]

Neural model generates discrete structure

Grammar proposals: Symbolic application

. - Counterexample: on query set
run twice

support examples > run -> RUN

— ,' look -> LOOK
-~ ~N . RUN RUN RUN
run twice 1 x twice -> [x][x][x] G.apply( look twice’)
' X thrice -> [x1[x] ) = LOOK LOOK
RUN RUN !
. J ! G = Counterexample:
'
~ ’ run -> LOOK run twice
look thrice Neural Model - € = = = P Jook -> RUN
\ X twice -> [x][x] LOOK LOOK
&LOOK LOOK LOOKJ \| x thrice -> [x][x][x]
[
1 e
— 1

'\ irun -> RUN . satisfies all
S ) look -> LOOK —3» support
'x twice -> [x][x] ; examples

\x thrice -> [x][x][x]).

_________________________

l DATA and
STRUCTURE
113




Program sketching

[Bosnjak et al, 2018; Manhaeve et al, 2018]
Provide partial code

Fill in the missing functionality with neural networks

target_function(input_array):

Examples: rarray = ]

element in input_array:

[1,4,5] = [1,16,25] rarray.append(??(element))

[2,2,5,1] — [4,4,25,1]
return rarray (

partial functionality
l that needs to be learned

DATA and
STRUCTURE
114



Structure learning via parameter
learning

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

grandparent(abe,lisa).
grandparent(abe,bart).
grandparent(jacqueline,lisa).
grandparent(jacqueline,maggie.)

DATA and
STRUCTURE
115




Program sketching

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates
TX,Y) < P(X,Y).
T(X,Y) <« P(Y,X).
T(X,Y) < P(X,2), Q(Z,Y).

Target: grandparent

Other predicates: father, mother

l

DATA and

STRUCTURE
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Program sketching

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates

TX,Y) < P(X.Y).
TX,Y) < P(Y.X).
T(X,Y) < P(X,2), QZ,Y).

Target: grandparent

Other predicates: father, mother

DATA and
- STRUCTURE




Program sketching

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

grandparent(X,Y) « father(X,Y).

Program templates
grandparent(X,Y) < mother(X,Y).

TX,Y) < P(X.Y).
TX,Y) < P(Y.X).
T(X,Y) < P(X,2), QZ,Y).

Target: grandparent

Other predicates: father, mother

DATA and
- STRUCTURE




Program sketching

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates ‘ grandparent(X,Y) < father(X,Y).
/ grandparent(X,Y) < mother(X,Y).
T(X,Y) < P(X)Y).

T(X,Y) < P(Y,X). | grandparent(X,Y) « father(Y,X).
TX,Y) < P(X,2), QZ,Y). ‘ grandparent(X,Y) < mother(Y,X).

Target: grandparent

Other predicates: father, mother

DATA and
STRUCTURE
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Program sketching

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

grandparent(X,Y) « father(X,Y).
grandparent(X,Y) < mother(X,Y).

Program templates
T(X,Y) < P(X,Y).

T(X,Y) < P(Y,X). grandparent(X,Y) « father(Y,X).
TX,Y) < P(X,2), QZ,Y). grandparent(X,Y) < mother(Y,X).

grandparent(X,Y) < mother(X,Z), mother(Z,Y).
grandparent(X,Y) < mother(Y,X), father(Z,Y).

Target: grandparent

Other predicates: father, mother

DATA and
= STRUCTURE




Neural guidance

Soft patterns

Neural generation

Sketching

Structure via params

Pros

makes discrete search
tractable

efficient learning

focused combinatorial
search

reduces combinatorial
search

removes combinatorial
search

118

cCons

lots of training data

no explicit structure

lots of training data

significant user effort

spurious interactions



5. Learning
Key Messages

Learning: finding logical formulas and estimating
probabillities

Structure learning: both formulas and probabilities
Parameter learning: only probabilities

Many flavours of learning in NeSy

119
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6. Semantics
Key Messages

* StarAl and NeSy share the same underlying semantics
* Semantics can be described in terms of parametric circuits
* Differentiable semantics/circuits allows an easy integration

* NeSy models can be seen as neural reparameterization of
StarAl models

121



Semantics

* In Logic, semantics is connected to the interpretations of
logical sentences

* An interpretation assigns a denotation or a value to each
symbol in that language.

“human(socrates)”
“47(42)”



Semantics

* In Logic, semantics is connected to the interpretations of
logical sentences

* An interpretation assigns a denotation or a value to each
symbol in that language.

“human(socrates)” = True



Semantics

* \We are interested in answering the following family of
questions:

Given a sentence of a propositional (or propositionalized through
grounding) language, what is its value?

The nature of what value is differs in the different semantics.



Semantics

For simplicity,

* |labelling function is the function fS that assigns, to the
sentence Q, the value v according to semantics S.

?/ﬂs(Q) =V

We are interested in the algebraic (differentiability!) and computational
properties of such labelling functions!



6. Semantics

Boolean logic

126



Semantics in Boolean Logic

* Defining a semantics for a propositional language L is about
assigning a truth value to all the sentences of the logic

 Boolean truth values:

{True, False}

Three steps:

1. Truth values for propositions
2. Truth values for operators

3. Labelling formulas



Semantics in Boolean Logic

1. Providing the labels for propositions
L = {burglary, earthquake, hears alarm(john)}

£ p(burglary) = True
. p(earthquake) = False

. p(hears_alarm(john)) = True

This is a model or a possible world, a “potential” assignment of
truth values to all the propositional variables in the language.

128



Semantics in Boolean Logic

2. Providing the semantics for operators

P q PAQ P q pP—Qq
T T T T T T
T F F T F F
F T F F T T
F | F F F | F T
—
£ 5
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Semantics in Boolean Logic

3. The labels of formulas are defined recursively on the semantics
of its components

¢ g(earthquake A burglary) = (¢ g(earthquake), € 5(burglary))

This recursive evaluation of formulas is said to be extensional
approach.



Semantics in Boolean Logic

* Consider: (burglary V earthquake) — alarm

.
-

o
X




Semantics in Boolean Logic

 Boolean semantics is not differentiable, thus it is hard to
connect to a learning component (goal of both StarAl and
NeSy)

* How to solve?
* Alternative logic semantics -> Fuzzy Logic
* Additional layer of semantics -> Probabilistic Logic



6. Semantics

Fuzzy logic

133



Semantics in Fuzzy Logic

* There are many fuzzy logics

* Here we are interested in a subclass, in particular t-norm fuzzy
logic



Semantics in Fuzzy Logic

* Defining a semantics for a propositional fuzzy language L is
again about assigning a truth degree to all the sentences of the
logic

* Fuzzy truth degrees:

£ p: L — [0,1]
Three steps:
1. Labels for propositions
2. Labels for operators
3. Labels for formulas




Semantics in Fuzzy Logic

1. Providing the labels for propositions
L = {burglary, earthquake, hears alarm(john)}

£ (burglary) = 0.9
£ (earthquake) = 0.1
£ (hears_alarm(john)) = 0.8

Note: £ (earthquake) = 0.1 -> very mild earthquake,
(;'é probability of earthquake = 0.1)

fuzzy is a measure of intensity/vagueness not of uncertainty
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Semantics in Fuzzy Logic

2. Providing the labels for operators: t-norm theory

* A t-norm is a binary function that extends the conjunction to
the continuous case

t: 10,11 x[0,1] — [0O,1]
* There are 3 fundamental t-norms:

- Lukasiewicz t-norm: #; (x, y) = max(0,x +y — 1)
» Goedel t-norm: f(x, y) = min(x, y)

e Product t-norm: tp(xa y)=Xx-Yy
They are the continuous version of truth tables!!
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Semantics in Fuzzy Logic

* All the other operators can be derived from the t-norm (and its
residuum)

Product tukasiewicz Godel
XAy Xy max(0,x + y—1) | min(x, y)
XVy X+y—x-y min(1l, x + y) max(x, y)
—X 1 —x ] —x l —x
x=>y (x>y) y/x min(l,1 —x+ y) y

They are the continuous version of truth tables!!
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Semantics in Fuzzy Logic

3. The labels of formulas is defined recursively on the semantics
of its components

£ (burglary — alarm) = ¢ (£ .(burglary), ¢ .(alarm))

This recursive evaluation of formulas is said to be extensional
approach.

e.g.
F(burglary) = 0.9, fr(alarm) = 0.3,
7 =min(l,l —x+y)=min(l,1 —0.9 +0,3) =

139



Semantics in Fuzzy Logic

* Consider: (burglary V earthquake) — alarm

.
-

a
.




Fuzzy Logic Semantics

* Most common t-norms are:
« Continuous

 Differentiable -> This turns to be one of the reason of their
adoption in NeSY

* Convex fragments of the logic can be defined (Giannini et al,
2019)

» But, £ (human(Socrates)) = 0.8 22?7



Fuzzy vs Boolean

* Fuzzy and Boolean have different properties

* When fuzzy is used as a “relaxation” (fuzzification) of Boolean
undesired effects can happen.

e Suppose: AVBVCVDVE=1

e Satisfying assignments (Lukasiewicz)
e A=B=C=D=FE =1 (all true)
e A=1, B=C=D=EFE =0 (at least one true)
e A=B=C=D=E=0.2
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Semantics

Probabilistic logic

143



Probabilistic Logic Semantics

Given a proposition language L, the basic idea is to introduce a
probability function p :

p:L—[01]

B OBABI
X LITY



Probabilistic Logic Semantics

Two steps:

e Define a probability distribution over interpretations /
worlds (i.e. boolean semantics)

p(Cp(xy), ..., Cp(x,))

(E.g. p(€g(burglary) = True, ¢ g(earthquake) = False, . ..)

e Define a the probability of sentence Q of L:

p@ = D psx).....E5x))

Cp(x)),...,Cg(x,)FQ
B OBABI
X LITY



Probabilistic Logic Semantics

Problog

0.1 ::burglary. (B)

0.05 ::earthquake. (E)

0.6 ::hears_alarm(john). (H)

alarm :— earthquake.

alarm :— burglary.

calls(john) :- alarm, hears_alarm(john)

psx). ... )= || pey ]| O -p@)

1:0g(x))=True 1:0g(x)=False

parameters = the labels for propositions (i.e. probabilistic facts)

(oo




Probabilistic Logic Semantics

Problog

_ 0.1 ::burglary. (B)
e.g. in ProblLog: 0.05 ::earthquake. (E)
0.6 ::hears_alarm(john). (H)

alarm :— earthquake.
“ﬂ“ alarm :— burglary.

F F F 0.342 calls(john) :- alarm, hears_alarm(john)
F F T 0.513

F T F 0.018

F T T 0.027

T F F 0.038

T F T 0.057

T T F 0.002 0.1 x0.05 x (1- 0.6)

T T T 0.003

ROBABI

LITY
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Probabilistic Logic Semantics

Markov Logic

calls(Mary) <- hears_alarm(Mary), alarm
2.0 : alarm <- earthquake
0.5 : alarm <- burglary

1if a is True otherwise 0

£ £ _ ! £
p(En(x)), ..., Cg(x,)) = Eexp( Za:wa B(a)>

B OBABI
X LITY
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Probabilistic Logic Semantics

Markov Logic

: calls(Mary) <- hears_alarm(Mary), alarm
2.0 : alarm <- earthquake
0.5 : alarm <- burglary

“ﬂ““-n
0.05 xexp(l.5+2.0+0.5)
T F T T F 0.01 xexp(0 +2.0+0.5)

LOGICw | 11y
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Probabilistic Logic Semantics

Given any sentence Q of the propositional language L, with

variables x, ..., X,

Q)= ) P, ... £hx,)

Cp(X1)s. . L p(X,)FQ

WMC - Weighted Model Counting
(for both ProbLog and Markov Logic)

B OBABI
X LITY



Probabilistic Logic Semantics

0.1 ::burglary. (B)

0.05 ::earthquake. (E)

0.6 ::hears_alarm(john). (H)
For example: alarm :— earthquake.

alarm :— burglary.

“ﬂ“ p(B,E,H) calls(john) :- alarm, hears_alarm(john)

Query = burglary ” hears_alarm(john)

O=BAH

T F T 0.057

p(Q) = 0.06
T T T 0.003

ROBABI
X LITY
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Probabilistic Logic Semantics

Probabilistic Semantics is different from a pure logic semantics

1. Itis built on top of a logical semantics; p(£5(x,), ..., £ 5(x,)).

2. Probability is NOT extensional, the probability of a formula

A. cannot be defined recursively by the probabilities of its
arguments

B. requires WMC

B OBABI
X LITY



Probabilistic Logic Semantics

(alarm A hears_alarm) — calls

‘— " -

 Consider:




Probabilistic Logic Semantics

Q)= D, pEpx) .. Ch5)

Cp(x)),....0g(x,)EQ

I I
—IIA -I l—Ip(A) -I

| | | | | |
o Y

| | | | | |

o I

| | | | | |
B C p(B) p(C)

* Consider:

\/

Knowledge Compilation
ROBABI I . s
&N Ty The probabilistic structure is now explicit in
the compiled formula. .,



Probabilistic Logic Semantics

* Consider:

I
of BT
.
= [

B C p(B) p(C )

The circuit is differentiable!
BEROBABI
LITY
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Probabilistic Logic Semantics

« WMC:

p@ = D pEsx)....L5x))

Cp(x)),...,Cg(x)FQ

e Another important inference task in MPE inference (connected
to maxSAT)

£r(x), .., C5(x,) = max p(€p(x)), ..., Cp(x))

£p(x1),...,05(x,)FQ
B OBABI
X LITY



Boolean vs Fuzzy vs Probability

* Boolean and Fuzzy logic are two alternative logical semantics

* Probability is a semantics that is built on top of a logical one

(i.,e. “which is the probability of a given truth assignments /
world?”)

* Can we have a probabilistic fuzzy logic as well?



Probabillistic Soft Logic (PSL)

Bach, Stephen H., et al. JIMLR 2017

* Let’s start by an example of a Markov Logic Network:

% £ _ ! %
p(Cp(x)), ..., Cg(x,)) = Eexp( gwa B(a)>

- In PSL, we relax the Boolean semantics ¢’ to a fuzzy
semantics £ .

£ £ _ ! £
(X)), s (X)) = Eexp( Za:wa F(a))

Each formula contributes
ROBABI with a value in [0,1]
e
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Probabillistic Soft Logic (PSL)

s QL%

a . burglary —

m )
[ |

(o) = min(1,1-7,(burglary + )
MPE:
max W £ @) Thls IS soft SAT
¢ (burglary), using fuzzy IOglC
ow,C (a)

2 b [ =¢(b [ - A
rburglary) plourglary) 0¢ p(burglary)

: ROBABI
LITY
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Probabilistic vs Fuzzy

* Fuzzy is an alternative logical semantics and it can still coupled
with the probabilistic ones

* Fuzzy logic is sometimes used as an approximation of MPE In
probabillistic logic

* Fuzzy logic is sometimes used to solve satisfiability faster

* However, it does not guarantee solutions coherent with the
Boolean logic theory.

 (RememberA =B=C=D =FE=0.2)



6. Semantics

Neural Symbolic

161



Neural Symbolic

How to carry over concepts from the semantics of StarAl to
neural symbolic?

£(Q)

Labelling functions = Parametric circuit

(semantics)

| | The query Q determine
r F(C) the structure (potentially

C((AAB) = CO)
after knowledge

| | | compilation)

c{(A)  Cp(B)
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Neural Symbolic

How to carry over concepts from the semantics of StarAl to
neural symbolic?

£(Q)

Labelling functions = Parametric circuit

(semantics)

' The leaves
£H{(ANB) - C) fF(C) represent the
scalar parameters

c{(A)  Cp(B)
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Neural Symbolic

How to carry over concepts from the semantics of StarAl to
neural symbolic?

« Atomic labels are just

0.1 ::burglary. (B) L p
0.05 ::earthquake. (E) Burglary  |0.1
0.6 ::hears_alarm(john). (H) Earthquake|0.05
alarm :— earthquake.
alarm :— burglary.




Neural Symbolic

How to carry over concepts from the semantics of StarAl to
neural symbolic?

! :burglary (e )

! :earthquake. ()

! ::hears_alarm(john). ?
alarm :— earthquake.

alarm :— burglary.



Neural Symbolic

How to carry over concepts from the semantics of StarAl to
neural symbolic?

- What if atomic labels are just neural networks

? :burglary (e )

! ::earthquake. (- )

) ::hears_alarm(john). o —
alarm :— earthquake. —0
alarm :— burglary.
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StarAl to Neural Symbolic

— KO StarAl
£r(A)  Zr(B)
Cp(B) ¢p(C)
& REPARAMETERIZATION &

| B '_I_|
@ ma - %n
24(A) 2F<B) m NeSy -
— Cp(B) ¢p(C)

me~  Eog

I




Fuzzy Reparameterization

a : burglary —

|
[ |
¢ p(burglary)

Semantic Based
Regularization (Diligenti

et al, Al 2017)

Logic Tensor Network

(Donadello et at, IJCAI NN smokes
201 7) ealarm

NN stress

Hbui‘gl ary

StarAl (PSL)

max w, ()
£ p(stress(X)),

NeSy (SBR, LTN, DLM)

max w, Q)
0

Qburglary’ alarm

Parameters of
the neural nets



Probabilistic Reparameterization

* ProblLog:

p(Csx). ... ) =[] I a-

1:0p(x;)=True i:0p(x;)=False

* Markov Logic:

4 A = : 4
P, ..., C5(x,)) = Eexp(Za‘, B(a))

WMC

£p(x)),...,Cg(x,)FQ
169

p@= )  pEyx)...

L Cp(x,)) —

[l Probabilistic parameters

S —

——
O8N

l—|—|

1 — £,(B)

p(B)  £p(C)



Probabilistic Reparameterization

B Neural parameters
* DeepProbLog (Manhaeve et al, NeurlPS (2018))

pCsx). .t =[] pe ] A-pGo)

1:0p(x;)=True i:0g(x;)=False

* Relational Neural Machines (Marra et al, ECAI 2020) -

oy

l—|—|
mm s
l—|—|
x
l—|—|

fP(B) fP(C)

% % _ 1 %
p(Ep(x)), ..., Chx,)) = Eexp( Za: w, B(a))

WMC

p@Q = ) P, ... Chx,)

Cp(x)),...,Cg(x,)FQ
170




Probabilistic Reparameterization

° DeepProbLog (Manhaeve et al, NeurlPS (2018))

e Probabilistic fact
I — ..
o - :: burglary.
[ | -
O8N
X i
1= 44(B) _
—— Neural Predicate
8 @9 |nterface
— — < nn(mnist_net, [X], Y, [0 ... 9] ) :: digit(X,Y).

g1

171



Conclusions




Key Message

Luc de Raedt

Kristian Kersting

Sriraam Natarajan

David Poole

SYNTHESIS LECTURES ON ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING
Ronald ). Beachaman, Willam W. Cohen, and Peter Stone,

StarAl and NeSy share similar problems
and thus similar solutions apply

See also [De Raedt et al., IJCAI 20]
erc



The Seven Dimensions

1.
2.
3.
4.
5.
6.
/.

Proof vs Model based

Directed vs Undirected

Type of Logic

Symbols vs Subsymbols
Parameter vs Structure Learning
Semantics

Logic vs Probability vs Neural
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Many questions to ask

* What properties should integrated representations satisfy
* Should one representation take over ?

* (As iIn most approaches to NeSy — push the logic inside
and forget about it afterwards)

* Should one have the originals as a special case ?

* Should one build a pipeline (e.g. first neural then logic) or a
bi-directional interface between the integrated
representations?

* Can neural and logic features be intermixed more closely?



Many questions to ask

* Which learning and reasoning techniques apply ?
* Can you still reason logically / probabilistically ?

* Can you still apply standard learning methods (like gradient
descent) ?

* |s everything explainable / trustworthy ?



Challenges

* For NeSy,
* Better understanding
* scaling up
* which models to use
* real life applications
* peculiarities of neural nets
* |ogical inference can be expensive
* This is an excellent area for starting researchers / PhDs

177



THANKS
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