
From Statistical Relational AI to
Neural Symbolic Computation

Luc De Raedt, Sebastijan Dumancic, Robin Manhaeve, Giuseppe Marra
firstname.lastname@kuleuven.be

reusing some slides from previous tutorials with

Angelika Kimmig, Kristian Kersting, David Poole, and Sriraam Natarajan

mailto:firstname.lastname@kuleuven.be

You will find a version of this tutorial and additional
content at  

  
https://dtai.cs.kuleuven.be/tutorials/nesytutorial

(after the tutorial)
See also

De Raedt, Dumancic, Marra, Manhaeve
From Statistical Relational to Neuro-Symbolic Artificial Intelligence

IJCAI 20, and long version on AIJ 24

https://dtai.cs.kuleuven.be/tutorials/nesytutorial

Introduction

3

Learning and Reasoning

both needed

• System 1 - thinking fast - can do things like 2+2 = ? and
recognise objects in image

• System 2 - thinking slow - can reason about solving complex
problems - planning a complex task

• alternative terms — data-driven vs knowledge-driven, symbolic
vs subsymbolic, solvers and learners, neuro-symbolic…

• A lot of work on integrating learning and reasoning, neural
symbolic computation to integrate logic / symbols
reasoning with neural networks

•

4

see also arguments
by Marcus, Darwiche, Levesque, Tenenbaum, Geffner,
Bengio, Le Cun, Kautz, …
see also AI Debates

Real-life problems involve two
important aspects.

5

Who can go first ?

A. The red car

https://www.theorie-blokken.be/nl/gratis-proefexamen

B. The blue van
C. The white car

https://www.theorie-blokken.be/nl/gratis-proefexamen

Real-life problems involve two
important aspects.

6

Who can go first ?

A. The red car

https://www.theorie-blokken.be/nl/gratis-proefexamen

B. The blue van
C. The white car

Reasoning
Sub-symbolic perception

https://www.theorie-blokken.be/nl/gratis-proefexamen

Thinking fast

7

NEURAL

MAIN PARADIGM in AI
Focus on Learning

PROBABILITY

LOGIC

TWO MAIN PARADIGMS in AI

Their integration has been well studied in
Probabilistic (Logic) Programming and Statistical Relational AI (StarAI)

Thinking slow = reasoning

8

Learning

9

PROBABILITY

LOGIC NEURAL

How to integrate these three paradigms in AI ?

A lot of ML

10

PROBABILITY

Well studied from a LEARNING perspective
in Deep Learning

NEURAL

PROBABILITY

LOGIC

TWO MAIN PARADIGMS in AI

Their integration has been well studied in
Probabilistic (Logic) Programming and Statistical Relational AI (StarAI)

Thinking slow = reasoning

11

State of the Art

12

LOGIC

Being studied from a LEARNING perspective
in Neuro Symbolic Computation

NEURAL

StarAI and NeSy share similar problems
and thus similar solutions apply

See also
De Raedt, Dumancic, Marra, Manhaeve

From Statistical Relational to Neuro-Symbolic Artificial Intelligence
IJCAI 20, and long version on AIJ 24

Key Message

LOGICLOGICLOGICNEURALLOGIC
PROBABI

LITYFROM TO

WARNING!
TALK MAY NOT COVER ALL of

NESY

13

Applications

Alpha Geometry

(New) Game Playing

16

https://challenge.nukk.ai/

The NeSy NooK system  
defeats eight  

world bridge champions  
in Paris (2022)

Addition

Learn to add the sum of lists of MNIST images

Assume you do not know how to map MNIST images to
numbers, but do know the rules of addition. Can you lean from
these examples how to map MNIST to numbers ?

 + = ?

17

PROBABI
LITY

LOGICLOGICLOGICNEURAL

35 962

example multi-addition predicate

DeepProbLog, Manhaeve et al, NeurIPS 2018

Emerging applications

18

From Suchan, Bhatt and Varadarajan, AIJ 21

ROAD-R: The autonomous driving dataset with
logical requirements

19

Giunchiglia, Eleonora, Mihaela Cătălina Stoian, Salman Khan, Fabio Cuzzolin, and Thomas
Lukasiewicz. "ROAD-R: The autonomous driving dataset with logical requirements." Machine
Learning (2023): 1-31.

ROAD-R: The autonomous driving dataset with
logical requirements

Giunchiglia, Eleonora, Mihaela Cătălina Stoian, Salman Khan, Fabio Cuzzolin, and Thomas
Lukasiewicz. "ROAD-R: The autonomous driving dataset with logical requirements." Machine
Learning (2023): 1-31.

• Task: road event-
detection
multi-label classification
with constraints

• Solution: neuro-
symbolic AI
Calculate most probable
explanation
given constraints and
neural outputs

20

Light is both red and
green?

Who is moving
away?

Relational Affordances

● Object Affordance:
	What can one do with
	particular object?

● Relational Affordance:
	in a particular context?

	with multiple objects and 	 	 	 	 	
relations among them

● Use of statistical relational learning,
probabilistic programming for
learning, reasoning and planning !

Constrained output of LLMs

22

Zhang, Honghua, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. "Tractable control for
autoregressive language generation." In International Conference on Machine Learning, pp.
40932-40945. PMLR, 2023.

Probabilistic Logic Shield for Reinforcement Learning

π(𝚊𝚌𝚌𝚎𝚕𝚎𝚛𝚊𝚝𝚎 |s) = 0.5
π(𝚕𝚎𝚏𝚝 |s) = 0.3
π(𝚛𝚒𝚐𝚑𝚝 |s) = 0.2

Shield
Assuming noisy
sensors

𝟶 . 𝟻 :: 𝚊𝚌𝚝(𝚊𝚌𝚌𝚎𝚕);
𝟶 . 𝟹 :: 𝚊𝚌𝚝(𝚕𝚎𝚏𝚝);
𝟶 . 𝟸 :: 𝚊𝚌𝚝(𝚛𝚒𝚐𝚑𝚝)

P(𝚜𝚊𝚏𝚎 |a, s) =

What is a safer policy ?π+

π+(𝚊𝚌𝚌𝚎𝚕𝚎𝚛𝚊𝚝𝚎 |s) = 0.24
π+(𝚕𝚎𝚏𝚝 |s) = 0.48
π+(𝚛𝚒𝚐𝚑𝚝 |s) = 0.28

Will stay undamaged?

Pπ(𝚜𝚊𝚏𝚎 |s) = 0.576

𝚊𝚌𝚌𝚎𝚕𝚎𝚛𝚊𝚝𝚎 → 0.28
𝚕𝚎𝚏𝚝 → 0.92
𝚛𝚒𝚐𝚑𝚝 → 0.8

Probability of staying

safe if following ?π

𝟶 . 𝟾 :: 𝚘𝚋𝚜𝚝𝚌(𝚏𝚛𝚘𝚗𝚝) .
𝟶 . 𝟸 :: 𝚘𝚋𝚜𝚝𝚌(𝚕𝚎𝚏𝚝) .
𝟶 . 𝟻 :: 𝚘𝚋𝚜𝚝𝚌(𝚛𝚒𝚐𝚑𝚝) .

𝟶 . 𝟿 :: 𝚌𝚛𝚊𝚜𝚑:− 𝚘𝚋𝚜𝚝𝚌(𝚏𝚛𝚘𝚗𝚝), 𝚊𝚌𝚝(𝚊𝚌𝚌𝚎𝚕) .
𝟶 . 𝟺 :: 𝚌𝚛𝚊𝚜𝚑:− 𝚘𝚋𝚜𝚝𝚌(𝚕𝚎𝚏𝚝), 𝚊𝚌𝚝(𝚕𝚎𝚏𝚝) .
𝟶 . 𝟺 :: 𝚌𝚛𝚊𝚜𝚑:− 𝚘𝚋𝚜𝚝𝚌(𝚛𝚒𝚐𝚑𝚝), 𝚊𝚌𝚝(𝚛𝚒𝚐𝚑𝚝) .
𝚜𝚊𝚏𝚎:− ¬𝚌𝚛𝚊𝚜𝚑 .

DeepProbLog Theory
(Manhaeve et al. AIJ)

Wen-chi Yang et al, IJCAI 23 Distinguished paper award

Visual Reasoning and Question
Answering

NS-VQA, Yi et al , NeurIPS 201924

Adding a reasoning component on top of
the perception can improve performance.

Semantic Image Interpretation

25

LOGICLOGICLOGICNEURAL
LTN, Serafini et al , NeSY@HLAI 2016

(New) Dialog Systems

26

Andreas, Jacob, et al. ACL, 2020

Dialogues represented 
 as symbolic programs  
(e.g. dataflow graphs)

Emerging applications

27

Figure 1: A technical drawing with highlights indicating the
2D CAD drawing and the tabular data

Figure 2: Overview of the technical drawing similarity pro-
posal system.

large amounts of training data. While such data are not al-
ways available, an expert might be capable of summariz-
ing part of the knowledge in just a few abstract concepts.
To exploit this expert knowledge, we also utilize reasoning-
based methods such as inductive logic programming (ILP)
(De Raedt et al. 2008). Such a hybrid approach that com-
bines data-driven methods with knowledge-driven methods
is gaining in popularity since real-world tasks such as pars-
ing technical designs tend to require Hybrid AI (Manhaeve
et al. 2018; Mao et al. 2019). We have developed and de-
ployed this system for learning to parse and search technical
designs for internal use at Saint-Gobain Engineered Com-
ponents (Seals) as part of their Digital Engineer project that
ran from 2017-2019.

Its modular design is explained in more detail in the fol-
lowing sections. This work presents five contributions that
enabled us to surpass the state-of-the-art in parsing technical
designs: First, we introduce the use of ILP to learn parsers
from both data and expert knowledge to interpret technical
drawings. Second, we introduce a novel bootstrapping learn-

ing strategy for ILP that speeds up learning and increases ac-
curacy (Section 3). Third, we propose the use of a siamese
deep learning architecture to meaningfully summarize CAD
drawings (Section 4). Fourth, we introduce a similarity mea-
sure to find related technical drawings in a large database
(Section 5). Finally, the efficacy of this method is demon-
strated in a number of experiments on a real-world data set.
As seen in Figure 2, these contributions are reflected in the
modular structure of our implementation.

2 Identify elements in a technical drawing

The first action is to identify the different elements in a draw-
ing, thus tables and CAD drawings. To design and test the
system, we have access to 5000 archived technical drawings
that need interpreting. Archived technical drawings are dig-
itized to varying degrees. Because of this, we consider the
case where the technical drawing is represented as a bitmap
image (⇡ 3300⇥2300 pixels)

2.1 Segment the image

Segmenting the design into its different elements is achieved
using conventional computer vision methods. The image is
partitioned into its main segments using DBSCAN with ✏ =
30 and minimum points set to 0.001% of total pixels, thus
⇡ 75 points (Ester et al. 1996). Since a technical drawing
employs white space to distinguish central layout elements,
such a density-based method is highly effective. No errors
were observed in the segmentation of the drawings.

2.2 Recognize image segments

Next, the system recognizes what each image segment rep-
resents by classifying them as one of three possible classes:
‘tables’, ‘two-dimensional CAD drawings’, and ‘irrelevant’
segments. Since the classes are visually distinct high pre-
dictive accuracy can be achieved with a small CNN classi-
fier. This classifier is constructed using the PyTorch library
(Paszke et al. 2017) and consists out of three convolution
layers and three fully connected layers. It was trained against
318 randomly selected technical drawings that were anno-
tated by an expert, for a total of 3000 image segments (318
tables, 372 CAD drawings, 2310 irrelevant segments). No
classification errors were made on a randomly selected test
set of 53 technical drawings containing 500 segments.

In case a table is recognized, we additionally identify the
cells by applying a contour detection algorithm provided by
the OpenCV library (Suzuki and Abe 1985). All cells are
then passed to the parser learning-module (see Section 3).
In case a two-dimensional CAD drawing is recognized, the
image data is passed on to the CAD property extraction-
module (see Section 4).

3 Extract properties in tables

The data contained in a technical drawing is laid out in a
manner that facilitates human interpretation. Tabular data in
particular tends to be organised both spatially and through
explicit annotation. Common examples of spatial structuring
involve assigning related cells to common rows or columns,
while positioning unrelated cells further from one another.

automated engineering assistant (IAAI 21)

 interpret and correct designs and maps

Intelligent OCR for chemical structures (ICLR 23)

and forms reasoning and mathematical problem solving JAIR 23,

IJCAI 2017, EMNLP 21)

planning, reinforcement learning and shielding (AAAI
24, IJCAI 23 distinguished paper award)

• Structured environments

• objects, and

• relationships amongst them

• and possibly

• using background knowledge

• cope with uncertainty and/or perception

• learn from data and reason with knowledge

Both StarAI and NeSy

28

Po
wer

 o
f L

og
ic

of
Pr

og
ra

ms

The Seven Dimensions

29

1. Proof vs Model based

2. Directed vs Undirected

3. Type of Logic

4. Symbols vs Subsymbols

5. Parameter vs Structure Learning

6. Semantics

7. Logic vs Probability vs Neural

1. Proof vs Model based

30

LOGIC
PROBABI

LITYLOGIC LOGICLOGICLOGICNEURAL

1. Proof vs Model based

31

LOGIC

• Model- vs proof-based

• First order / relational vs propositional

• Grounding

• Differences important for both StarAI and NeSY

32

1. Proof vs Model based
the logic dimension

Logic Programs

33

burglary.
hears_alarm_mary.

earthquake.
hears_alarm_john.

alarm :– earthquake.

alarm :– burglary.

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john.

Propositional logic program
as in the programming language Prolog

LOGIC

facts :
burglary = true

Logic Programs

34

burglary.
hears_alarm_mary.

earthquake.
hears_alarm_john.

alarm :– earthquake.

alarm :– burglary.

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john.

Propositional logic program
as in the programming language Prolog

LOGIC

rule:
calls_mary =true IF alarm = true AND hears_alarm_mary = true

Logic Programs

35

burglary.
hears_alarm_mary.

earthquake.
hears_alarm_john.

alarm :– earthquake.

alarm :– burglary.

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john.

Propositional logic program Two proofs (by refutation)

:- calls_mary.

:- alarm, hears_alarm_mary.

:- earthquake, hears_alarm_mary.

 []

:- hears_alarm_mary.

:- burglary, hears_alarm_mary).

:- hears_alarm_mary.

 []

as in the programming language Prolog

A proof-theoretic view

LOGIC
backward chaining

Logic as constraints

36

calls(mary) hears_alarm(mary) ∧ alarm←

calls(john) hears_alarm(john) ∧ alarm←

alarm earthquake v burglary←

Propositional logic Model / Possible World

{ burglary,

hears_alarm(john),

alarm,

calls(john)}

as in SAT solvers

A model-theoretic view
LOGIC

the facts that are true
in this model / possible world

IF AND

OR

SAT: Find a model / possible world that satisfies all the constraints
SAT SOLVERS

Relational/First Order Logic

37

LOGIC

burglary.
hears_alarm(mary).

earthquake.
hears_alarm(john).

alarm :– earthquake.

alarm :– burglary.
calls(X) :– alarm, hears_alarm(X).

burglary.
hears_alarm(mary).

earthquake.
hears_alarm(john).

alarm :– earthquake.

alarm :– burglary.
calls(mary) :– alarm, hears_alarm(mary).
calls(john) :– alarm, hears_alarm(john).

Introduce Variables and Domains
The meaning of this is always the GROUNDED theory

allows to exploit symmetries / templates …

Variable X
Domain = {mary, john} Grounded Theory

BOTH for model and proof-based appraoch

Logical Theory

38

stress(ann).
influences(ann,bob).
influences(bob,carl).

smokes(X) :- stress(X).
smokes(X) :-
 influences(Y,X),
 smokes(Y).

stress(ann).
influences(ann,bob).
influences(bob,carl).

smokes(ann) :- stress(ann).
smokes(bob) :- stress(bob).
smokes(carl) :- stress(carl).

smokes(ann) :- influences(ann,ann), smokes(ann).
smokes(ann) :- influences(bob,ann), smokes(bob).
smokes(ann) :- influences(carl,ann), smokes(carl).

smokes(bob) :- influences(ann,bob), smokes(ann).
smokes(bob) :- influences(bob,bob), smokes(bob).
smokes(bob) :- influences(carl,bob), smokes(carl).

smokes(carl) :- influences(ann,carl), smokes(ann).
smokes(carl) :- influences(bob,carl), smokes(bob).
smokes(carl) :- influences(carl,carl), smokes(carl).

GROUNDING OUT

IF INTERESTED ONLY IN
CERTAIN QUERIES,

CLEVER TECHNIQUES EXIST
TO AVOID GROUNDING OUT

COMPLETELY

Logical Reasoning:  
Model Theoretic

39

stress(ann).
influences(ann,bob).
influences(bob,carl).

smokes(X) :- stress(X).
smokes(X) :-
 influences(Y,X),
 smokes(Y).

stress(ann).
influences(ann,bob).
influences(bob,carl).

smokes(ann) :- stress(ann).
-> infer smokes(ann)

smokes(bob) :- influences(ann,bob), smokes(ann)
-> infer smokes(bob)

smokes(carl) :- influences(bob,carl), smokes(bob).
-> infer smokes(carl).

FINDING A MODEL

FINDING A MODEL
here — the least Herbrand model as in Prolog using the Tp Operator (forward reasoning)

Logical Reasoning:  
Model Theoretic

40

stress(ann).
influences(ann,bob).
influences(bob,carl).

smokes(X) :- stress(X).
smokes(X) :-
 influences(Y,X),
 smokes(Y).stress(ann).

influences(ann,bob).
influences(bob,carl).

smokes(ann) <-> stress(ann)
 v influences(ann,ann), smokes(ann)
 v influences(bob,ann), smokes(bob)
 v influences(carl,ann), smokes(carl)

smokes(bob) <-> stress(bob)
 v influences(ann,bob), smokes(ann)
 v influences(bob,bob), smokes(bob)
 v influences(carl,bob), smokes(carl)

smokes(carl) <-> stress(carl)
 v influences(ann,carl), smokes(ann)
 v influences(bob,carl), smokes(bob)
 v influences(carl,carl), smokes(carl)

Clark’s completion AND call a SAT Solver

Clark’s completion’s as a
grounding is incorrect

for Prolog when there are cycles

but it is too hard to explain why
here

Logical Reasoning

Proofs

stress(ann).
influences(ann,bob).
influences(bob,carl).

smokes(X) :- stress(X).
smokes(X) :-
 influences(Y,X),
 smokes(Y).?- smokes(carl).

?- stress(carl). ?- influences(Y,carl),smokes(Y).

?- smokes(bob).

?- stress(bob). ?- influences(Y1,bob),smokes(Y1).

?- smokes(ann).

?- influences(Y2,ann),smokes(Y2).?- stress(ann).

facts used in successful derivation:
influences(bob,carl)&influences(ann,bob)&stress(ann)

Y=bob

Y1=ann

41

• Model- vs proof-based

• First order / relational vs propositional

• Grounding

• Differences important for both StarAI and NeSY

42

1. Proof vs Model based
the logic dimension

1. Proof vs Model based
2. Directed vs Undirected

43

LOGIC
PROBABI

LITYLOGIC

0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake.

alarm :– burglary.

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm.

alarm

burglary. earthquake.

calls(mary) calls(john)

Markov LogicProbabilistic Logic Programs
ProbLog

undirected
Markov Net

model theoretic
directed

Bayesian Net

LOGIC
PROBABI

LITY key representatives

2. Directed vs Undirected
the PGM / StarAI dimension

Bayesian Net
B

A

E

R

P(A|B,E)

alarm (= true) Burglar Earthquake
0.9999 true true
0.99 true false
0.99 false true

0.0001 false true

P(R|E)

radio Earthquake
1 true
0 false

The remaining tables are P (b) = 0.01 and P (e) = 0.000001. The tables and
graphical structure fully specify the joint distribution P(A,R,E,B).

<latexit sha1_base64="hcLPJXbSnFgoKId1kKqCyJhmnZY=">AAAdgHiczVnrb9s2EHcfe1R7tduXAUMAZkm6ZFM9y1m2boWHNUOAfeyCdhsQGQUlUTYXvUZSSVxV/8P+u2F/yb7uSEqJRDlunKZFHbQmeb873h3vjg97WUS5GAz+vXb9xs233n7n3VvWe+9/8OFHt+98/BtPc+aTJ34apewPD3MS0YQ8EVRE5I+MERx7EfndO/xZ0n8/IozTNHksZhkZx3iS0JD6WMDQ0zs3/nY9MqFJ4ZNEEFZaLvdxRLz0pBj0vx+WRUUW9PBZRn2RM1IeBBOGs+nYcpM0IAd+mogx2tzdQligzYHtbKFifXe9fNCmP9R0xx5I+sMOfU/Th5p/r0Pf1/Rtzb+v6AHDx3Lie/ek/Ae6vze/v78FDCQJWqaUeujU+CN+SLNBf9uPLdeLM/DBjiuOgTCVhKEkoHU323z4fNfe21q3TOdVzsJeHmFWFs999Vdat9ypXCGEYThGmyMkWE620F20m7MJjCFo7mEmpn/l+JAg10WnLLAM8AG6ZKm+LAA0yGfEEEdcsbeperhCNamDwcCp6ZZJr9xVGWN4isTZfBd9U7lo//kyDqo0YjigKSjUdEZDYWeODQ2rrYvqnZBjBbRuPZ7CpCTGNKHJBAFPRDjCjKD1R5veFhpJHznrCCeBHCFbI+Uz8Np6HwGvVXMAXSUFJFaEOOio4guFeRTNEM+IT8MZEjDZnylNBAogsxn1cpmEOqDsfXvP3t1a7z+9vVbNMUDdhlM11nrV59HTO5/+4wapn8dgoh9hzg+cQSbGBXiQ+hEBm3NOMuwf4gk5gGaCY8LHhaodJdqAkQCFKYN/oJgabXIUOOZ8FnuAjLGYcpMmB+fRDnIR3h8XNMlyQRJfTwTuQCJFshCBCxjxBXgnoNhnFHRF/hQz7MM6cas1jcxYbYZsRdRjmM3APpYecztLOZVuhPUrUfVpcZOMh7b8j05snnvwBStjB1za23JOUa3giX3CYYjYyhm2jxOfRCWoFJDQ9WnhZoRl7qr6k81SUwKSFa5Iawq0ShVpfhrHEB8FsCaAKQ+2x8WaAwifuqtrQwWOaQDtbZOhAYcmWgiuhA9bwg0MIBoQ6GlMG5SVReHK9fRC9Kg0qfFswghJYGNQ3il0D1CWKxeHi1lECg8cOmFprrKCBuXoQFZiG3kREFZ3BjYXJBv1HT8eWxsNPr2xAPzej/aPowgLcvKFjVSeH9NATEdOfwdC2zqHZTEyr5EXQAkIg0OANiVuS2QTGkKsAiakUWTHUEDiPEacPiNSahzbDdZhJsAeMBpHYtoWIne3IUjxKYNktaWfRqdughjSGTk6nlJBbLSBMOJTKJKyWE1hP6QcKZLcG2V5AY5+v295qRBpXPHClg+lAYPAVS15CJKlgW2tv23r7LR0RjC1VJUmeZpzhOTO3LGDkcAzTIGhhhWydzkbgPNF+t/vO0tbYBgwI1GUHps26NGGGdXA5SzRzK/BGC/KiWmKHGsYorqXM0OytoxAV2TFnKB6RTGlc+pKMmFjSaWXTOeNV6X33Ph/A8L/pS2R4fni2F+9X6sBxfZlgmhe8L+0DXprbRuhxhpWqP6bbYYSbZihp3s9U5s18GJzf2fu4cvPXu27xvTVaGMN65HXWcVMXfGzZzmcpw1dq9GGrvXIa9XVVPZMS6TOlRfV5ZUcerpb7JUe3gLMDnWSd0smTRLCENxfRnDhu9qdN638DNWaZrxRQZVl8/148exQdrRX0vDdC1dquNymnGF2Npc6sUckFIoPSHAjhltnV8/0CEdLOuGiLp83lbfEXMvVJ3O2gHIfJpM3cJxMornTGbJNS9UUUg4D33XN8Xh1NdJS65hVXEAk7IgE3bCTDPrspFjlqX8Bp8FY75eKVefMxZiznJH2rIvxXGC1o525r6GtYlWIFkvDIVo1Z6ehGid/5XIPkK9F59t42ftmQ8YRZpUYVTkvKwZqTjd8zu6Z5yTH4pAJiGiuO/jHkK/vgAtlyzSWFC6fkzrRBeSpfo2gOE6T4HJiEcgISNIVLz3nwRLWa3Tvy9YEC58d5NVZs8ZQ8Edf2vILpZl82eKj4tQrIKeWWWqM0nTQEaiC7IUi652lcbhcLFb7r1GzG0EMHkkW5HZA5pScizjfp/Lni0685IJGVMyWX86Kce6ZTStpXhvOBJ5VNGdgpEq3ZiAcym0Fn9pguONqLLCkjzKSQEwKpGRz0ypZfL4a6V9SzqHB19jcISqSbJ5HU2xG4ZexOUfiGUUWWONZcUpwUB4448I9Um+vxTCOS3fK8oi0Rk6f1os1p3Td7utkfeiu3yfrfmkC1Q2xRqlOB6JzKJQ/goUV8PQ4BuiNhQ+jTaQBlG6oYbLdAVT38BpTdTswfbOqUbo3x044UzUMlT0D5MWZ9r3+dUaGXAZuK6WPDSgBaKF+UTlFGQgh9RbkRKjEACIjTXKIYxrNAhLiPBKA5GHdtlz5Iq/pRXYErE9vrznmDx/dxm/DvvNNf+fX4dpPu9WPIu/2Put93tvsOb3vej/1fuk96j3p+Tf+u7ly8+7NL1aur2yufL3iaOj1axXPJ73WZ+WH/wFVOIP8</latexit>

Queries

B

A

E

R

P (b|a) = P (b, a)

P (a)
=

P
e,r P (b, e, a, e)

P
b,e,r P (b, e, a, r)

=

P
e,r P (r|b, e)P (b)P (e)P (r|e)

P
b,e,r P (a|b, e)P (b)P (e)P (r|e) ⇡ 0.99

<latexit sha1_base64="Fy5zAEGwfxo+gZ37+oBIlvbTalo=">AAAcC3iczVndc9w0ED/C9/HVwgszeVEIgaS4N+crhULnOlCmMzyGDqWdiW8ysi3faSJ/IMlJrq5feOf/4BV4Y3jlb2D4b1hJdmLL12suTTt1JmdJ+9vV7mq1+rCfMSrkcPjfS2svv/Lqa6+/8Wb/rbffefe9S5ff/0mkOQ/IvSBlKX/gY0EYTcg9SSUjDzJOcOwzct8/+E7R7x8SLmia/CjnGZnEeJrQiAZYQtP+5bX1LU+SY+lHBU2opJghckhDkgTkayRnBGGGeYyoQNBlEtJkWvY9n0xpUgQkkYRDVQSYET89LoaDr0ZlUZElPXiY0UDmnJR74ZTjbDbpe0kakr0gTeQEbd/eQVii7aHj7qDi49sflzcbdE5CgHxrIK4zVJBv2xCg3zH0kRFxp0O/a+jXDP9dTQ85PlJ9X72q5N809TuL63d3gIEkYcua0jTV9tf+wIxOkytlf3fbf4R30Cdj5EUcBwXUHbxTwht+0dg0eiKP9wvi8BIpOnGwQwBjmlWda0GawHdKz+t/0uHc3eaPALEDOPhXb/7IFgKdLsJ4OMt4etyHEfvKWFNr7x2KDAekcMlxuX9pczgY6gd1C25V2OxVz+7+5Q//9cI0yGNwTcCwEHvuMJOTAnNJA0ZAei4IiD/AU7IHxQTHREwKHcYl2oKWEEUph/9EIt3a5ChwLMQ89gEZYzkTNk01LqLt5TK6MYH4znIJgW06inKGZIrUnEAh5SSQbA4FHHCYBQEKZhicDeMr+q1uVBwYM1SJUZ9jPgf7eHoknCwVVE0rNUtQ9bS4SSYiR/3QqSNyH14QT04olL0t5xR6vtDg2DnWw+FoZzgBhnnJVMiFJPICWngZ4Zm3of9UsTSUkGSFJ9OaAiUgJOQoSOMYw2ADawKYcu/apNh0ARFQb2NzpMExDaF8zWZowKGIloIr4aOWcAsDiAYEagbTBmVlUXhqPP0I7ZY2NZ5POSEJBLz2TmFqgOp7anCEnDNS+ODQKVe5C005DcvxnprfDvIZEDauDx0hSTYeuEE86W81+EzGAvjVW86tMcOQJD91kEqz6IiGcjZ2B9chtPuPYVmOzGvkGVASwuAAoE2J1xSyCY0gVgETUcacGBJ5nMdI0IdESY1jp8E6yiTYA0ZjJmdtISpnjkBKQDlMVkf5aXziJoghMyPHRzMqiYO2EEZihtWSAAsFZFlYIzRJZVy1cgDHYDDo+6mUaVzxwuoDqQGDwA0jeQSSlYFtrb9o6+y2dEbQtVKVJnmaC4RUvu/YAcuHb5kCTQ0rVO18NgDnk/S/MXBXtsAyYE4YS49sG0xrw4yq4XyWGObnYIzPcmKbotoahujq+cxQrC0j0AVZsSConlFMmTl1ITNha0WlV5zOW89K74Xx/wKE/1NbosLzybG/caNWA5Lt0wTRouB/ahvM0to2Qrc1rND1F9sMLdoyw3T3fLq2c+DZ+v7SXsNX771ad63uq9bGGNYtzzOL2brihw9z2E9bulatDV3rlueqq63sqZZI7yvPqssz2fR0l9gL3byFmB+YSd5NmTRJCEdwfhnDge9iV9608jNka5qJRgbVli3249lnh7ajPZKW7544UqPVFuUM89O+9I6dkUhqPiDBiRhOnV0900PMVnTCWV2+qCt/hb5Wy092byEVAXSmTuA4mbKF3VmybUt1F0oOB991zfFFdTQyUuuY1VxAJPyQhN2wUwxm76RZ1a5/CafFWK+XmtXMmbMxZzkn7V6X44XEekU7dV9DW82qES2WhkOMau71hmqC/JyrNYCx+RIbz3vebMg4xLwSozPnecVAzumGz+k58zGTY3nIhEQ2xx38Y8k3Z8ClstU0VhShrpM60QXkmbmNoDhOk/B8YhHICEnSFa8858MQ1mN09Uqrg6XXDurobFhjSPjjK456oTRTN1tiXJx4BeTUMkuD0ZoOOwJ1kD1RZL2yNDaXy8Ua/zVydiOIwSPJkrkdkgUp5yzOD6i6Se/ESy4po3K++nBWjAv3bEZJ+9hwKvA0o7lDa6p0cwbCkVpW8IkNljsuxoK+8lFGEohJibRsYVulks9nY3M//xgavCb2ClGRVPFxNM1mJX4VmwsknlJUgrWuFWcEh+WeOynqq/BRHJfejOeMtFqE5Ln+IFBsuqXndW8n6013fT9Z10sbqE+INUpXOhAzhyL1dSWqgCfbMUBvLb0YbSItoHJDDVPlDqA6h9eYqtqBmZNVjTK1BXbCnqphqKpZID/OjO/NNxUVchm4rVQ+tqAEoIX+dnGCshBS6a2+bumJAUROmuQIx5TNQxLhnEn12SSqy31P3cgbepEdAuv+pU3X/vDRLfw0GrifD67/MNr85nb1UeSN3nrvo952z+192fum931vt3evF6z9svbb2u9rf6z/uv7n+l/rfxvo2ksVzwe91rP+z//sVg/8</latexit>

Initial evidence: The alarm is sounding

Logic Programs

47

burglary.
hears_alarm(mary).

earthquake.
hears_alarm(john).

alarm :– earthquake.

alarm :– burglary.

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john).

Propositional logic program Two proofs (by refutation)

:- calls(mary).

:- alarm, hears_alarm(mary).

:- earthquake, hears_alarm(mary).

 []

:- hears_alarm(mary).

:- burglary, hears_alarm(mary).

:- hears_alarm(mary).

 []

as in the programming language Prolog

A proof-theoretic view
LOGIC

Probabilistic Logic Programs

48

0.1 :: burglary.
0.3 ::hears_alarm(mary).

0.05 ::earthquake.
0.6 ::hears_alarm(john).

alarm :– earthquake.

alarm :– burglary.

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john).

Propositional logic program

Probabilistic facts

Key Idea (Sato & Poole)
the distribution semantics:

 unify the basic concepts in logic
and probability:

random variable ~ propositional
variable

an interface between logic and
probability

as in the probabilistic programming language ProbLog

LOGIC
PROBABI

LITY

0.1 :: burglary.
0.3 ::hears_alarm(mary).

0.05 ::earthquake.
0.6 ::hears_alarm(john).

alarm :– earthquake.

alarm :– burglary.

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john).

Propositional logic program Two proofs (by refutation)

:- alarm

 []

:- burglary. :- earthquake.

 []

Probabilistic Logic Programs

P=0.1 P=0.05

Probability of one proof : ∏
f:fact∈Proof

Pf

49

as in the probabilistic programming language ProbLog

LOGIC
PROBABI

LITY

Probabilistic Logic Programs

50

0.1 :: burglary.
0.3 ::hears_alarm(mary).

0.05 ::earthquake.
0.6 ::hears_alarm(john).

alarm :– earthquake.

alarm :– burglary.

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john).

Propositional logic program Disjoint sum problem

:- alarm

 []

:- burglary. :- earthquake.

 []

P=0.1 P=0.05

Probability of one proof : ∏
f:fact∈Proof

Pf

P(alarm) = P(burg OR earth)
= P(burg) + P(earth) - P(burg AND earth)

=/= P(burg) + P(earth)

as in the probabilistic programming language ProbLog

LOGIC
PROBABI

LITY

Probabilistic Logic Program
Semantics

51

[Vennekens et al, ICLP 04]

probabilistic causal laws

earthquake
alarm

alarm alarm

no alarm

no alarm no alarm

burglary burglaryno burglary no burglary

1.0

0.6 0.4

0.050.05
0.95 0.95

0.80.8
0.20.2

P(alarm)=0.6×0.05×0.8+0.6×0.05×0.2+0.6×0.95+0.4×0.05×0.8

earthquake.

0.05::burglary.

0.6::alarm :– earthquake.

0.8::alarm :– burglary.

0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake.

alarm :– burglary.

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm.

Propositional logic program Bayesian Network

alarm

burglary. earthquake.

calls(mary) calls(john)

Bayesian net encoded as Probabilistic Logic Program
PLPs correspond to directed graphical models

LOGIC
PROBABI

LITY ProbLog has both (directed) probabilistic graphic models,
the programming language Prolog (and probabilistic databases) as special case

Probabilistic Logic Program
Semantics

52

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI

Flexible and Compact Relational
Model for Predicting Grades

53

“Program” Abstraction:
• S, C logical variable representing students, courses

• the set of individuals of a type is called a population

• Int(S), Grade(S, C), D(C) are parametrized random variables

Grounding:

• for every student s, there is a random variable Int(s)

• for every course c, there is a random variable Di(c)

• for every s, c pair there is a random variable Grade(s,c)

• all instances share the same structure and parameters

ProbLog by example:
Grading

Shows relational structure

• grounded model: replace variables by constants

Works for any number of students / classes (for 1000 students
and 100 classes, you get 101100 random variables); still only few
parameters

With SRL / PP

• build and learn compact models,

• from one set of individuals - > other sets;

• reason also about exchangeability,

• build even more complex models,

• incorporate background knowledge

54

ProbLog by example:
Grading

Shows relational structure

• grounded model: replace variables by constants

Works for any number of students / classes (for 1000 students
and 100 classes, you get 101100 random variables); still only few
parameters

With SRL / PP

• build and learn compact models,

• from one set of individuals - > other sets;

• reason also about exchangeability,

• build even more complex models,

• incorporate background knowledge

55

ProbLog by example:
Grading

56

0.4 :: int(S) :- student(S).
0.5 :: diff(C):- course(C).

student(john). student(anna). student(bob).
course(ai). course(ml). course(cs).

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::gr(S,C,c) :-
 int(S), diff(C).
0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-
 student(S), course(C),
 not int(S), not diff(C).
0.3::gr(S,C,c); 0.2::gr(S,C,f) :-
 not int(S), diff(C).

ProbLog by example: Grading

57

unsatisfactory(S) :- student(S), grade(S,C,f).

excellent(S):- student(S), not(grade(S,C1,G),below(G,a)),
 grade(S,C2,a).

0.4 :: int(S) :- student(S).
0.5 :: diff(C):- course(C).

student(john). student(anna). student(bob).
course(ai). course(ml). course(cs).

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::gr(S,C,c) :-
 int(S), diff(C).
0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-
 student(S), course(C),
 not int(S), not diff(C).
0.3::gr(S,C,c); 0.2::gr(S,C,f) :-
 not int(S), diff(C).

Dynamic networks

Travian: A massively multiplayer real-
time strategy game

Can we build a model

of this world ?

Can we use it for playing

better ?

[Thon et al, MLJ 11]58

border

border

border

border

Alliance 2

Alliance 3

Alliance 4

Alliance 6

P 2

1081

895
1090

1090

1093

1084

1090

915

1081

1040

770

1077

955

1073

8041054

830

9421087

786

621

P 3

744

748
559

P 5

861

P 6

950

644

985

932

837
871

777

P 7

946

878

864 913

P 9

border

border

border

border

Alliance 2

Alliance 4

Alliance 6

P 2

904
1090

917

770

959

1073

820

762

9461087

794

632

P 3

761

961

1061

607

988

771

924

583

P 5

951

935

948

938

867

P 6

950

644

985

888

844
875

783

P 7

946

878

864 913

border

border

border

border

Alliance 2

Alliance 4

Alliance 6

P 2

918
1090

931

779

977

835

781

9581087

808

701

P 3

838

947

1026

1081

833

1002
987

827

994

663

P 5

1032

1026

1024

1049

905

926

P 6

986

712

985

920

877

807

P 7

895

959

P 10

824

border

border

border

border

Alliance 2

Alliance 4

Alliance 6

P 2

923
1090

941

784

983

844

786

9661087

815

711

P 3

864

986

842

1032

1083

868

712

1002
1000

858

996

696

P 5

1039

1037

1030

1053

826

933

P 6

985

807

P 7

894

963

P 10

829

781
828

border

border

border

border

Alliance 2
Alliance 4

Alliance 6

P 2

938
1090

949

785

987

849

789

9761087

821

724

P 3

888

863

868

1040

1083

896

667

1005
994

883

1002

742

P 5

1046

1046

1040

985

894

1058

879

938

921

807

P 6
P 7

P 10

830

782
829

border

border

border

border

Alliance 2

Alliance 4

P 2

948

951

786

990

856

795

980

828

730

P 3
898

803

860

964

1037

1085

925

689

1005
1007

899

1005

760

P 5

1051

1051

1040

860

774

1061

886

944

844

945

713

P 10

839

796
838

LOGIC
PROBABI

LITY

Activity analysis and tracking
video analysis

• Track people or objects
over time? Even if
temporarily hidden?

• Recognize activities?

• Infer object properties?

Fig. 4. Tracking results from experiment 2. In frame 5, two groups are
present. In frame 15, the tracker has correctly split group 1 into 1-0 and 1-1
(see Fig. 3). Between frames 15 and 29, group 1-0 has split up into groups
1-0-0 and 1-0-1, and split up again. New groups, labeled 2 and 3, enter the
field of view in frames 21 and 42 respectively.

Six frames of the current best hypothesis from experiment
2 are shown in Fig. 4, the corresponding hypothesis tree is
shown in Fig. 3. The sequence exemplifies movement and
formation of several groups.

A. Clustering Error

Given the ground truth information on a per-beam basis we
can compute the clustering error of the tracker. This is done
by counting how often a track’s set of points P contains too
many or wrong points (undersegmentation) and how often P
is missing points (oversegmentation) compared to the ground
truth. Two examples for oversegmentation errors can be seen
in Fig. 4, where group 0 and group 1-0 are temporarily
oversegmented. However, from the history of group splits
and merges stored in the group labels, the correct group

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.5 1 1.5 2 2.5 3 3.5

E
rr

o
r

ra
te

s
 p

e
r

tr
a

c
k
 a

n
d

 f
ra

m
e

Clustering distance threshold dP (m)

w/o tracking

Overs. + Unders.
Oversegm.

Undersegm.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20

A
v
g

.
c
y
c
le

 t
im

e
 (

s
e

c
)

Number of people in ground truth

Group tracker
People tracker

Fig. 5. Left: clustering error of the group tracker compared to a memory-
less single linkage clustering (without tracking). The smallest error is
achieved for a cluster distance of 1.3 m which is very close to the border of
personal and social space according to the proxemics theory, marked at 1.2
m by the vertical line. Right: average cycle time for the group tracker versus
a tracker for individual people plotted against the ground truth number of
people.

relations can be determined in such cases.
For experiment 1, the resulting percentages of incorrectly

clustered tracks for the cases undersegmentation, overseg-
mentation and the sum of both are shown in Fig. 5 (left),
plotted against the clustering distance dP . The figure also
shows the error of a single-linkage clustering of the range
data as described in section II. This implements a memory-
less group clustering approach against which we compare
the clustering performance of our group tracker.

The minimum clustering error of 3.1% is achieved by the
tracker at dP = 1.3 m. The minimum error for the memory-
less clustering is 7.0%, more than twice as high. In the
more complex experiment 2, the minimum clustering error
of the tracker rises to 9.6% while the error of the memory-
less clustering reaches 20.2%. The result shows that the
group tracking problem is a recursive clustering problem that
requires integration of information over time. This occurs
when two groups approach each other and pass from opposite
directions. The memory-less approach would merge them
immediately while the tracking approach, accounting for the
velocity information, correctly keeps the groups apart.

In the light of the proxemics theory the result of a minimal
clustering error at 1.3 m is noteworthy. The theory predicts
that when people interact with friends, they maintain a range
of distances between 45 to 120 cm called personal space.
When engaged in interaction with strangers, this distance is
larger. As our data contains students who tend to know each
other well, the result appears consistent with Hall’s findings.

B. Tracking Efficiency

When tracking groups of people rather than individuals,
the assignment problems in the data association stage are
of course smaller. On the other hand, the introduction of
an additional tree level on which different models hypoth-
esize over different group formation processes comes with
additional computational costs. We therefore compare our
system with a person-only tracker which is implemented by
inhibiting all split and merge operations and reducing the
cluster distance dP to the very value that yields the lowest
error for clustering single people given the ground truth. For

59

[Skarlatidis et al, TPLP 14;
Nitti et al, IROS 13, ICRA 14,

MLJ 16]

LOGIC
PROBABI

LITY

[Persson et al, IEEE Trans on
Cogn. & Dev. Sys. 19;

IJCAI 20]

Learning relational affordances

60

Shelf

push

Shelf

 tap

Shelf

 grasp

Moldovan et al. ICRA 12, 13, 14; Auton. Robots 18

LOGIC
PROBABI

LITY

(a) Disparity image (b) Segmented image with landmark points

Clip 7: Illustration of the object size computation. Left-hand image shows the disparity map

of the example shown in Figure 5. The orange points in the right-hand image show the points

that intersect with the ellipse’s major axis. The orange points are mapped onto 3D using their

associated disparity value, and the 3D distance between each pair is defined as the object size.

To learn an a↵ordance model, the robot first performs a behavioural babbling
stage, in which it explores the e↵ect of its actions on the environment. For
this behavioural babbling stage, for the single-arm actions the robot uses its
right-arm only. For these actions a model of the left-arm will be later built by
exploiting symmetry as in [3]. We include the simultaneous two-arm push on
the same object in the babbling phase, allowing for a more accurate modelling
of action e↵ects for the iCub.4

The babbling phase consists of placing pairs of objects in front of the robot
at various positions. The robot executes one of its actions A described above on
one object (named: main object, OMain). OMain may interact with the other
object (secondary object, OSec) causing it to also move. Figure 8 shows such
a setting, with the objects’ position before (l) and after (r) a right-arm action
(tap(10)) execution.

Clip 8: Relational O before (l), and E after the action execution (r).

4
As opposed to the two-arm a↵ordance modelling in [3], we also include in the babbling

phase the two-arm simultaneous actions whose e↵ects might not always be well modelled by

the sum of the individual single-arm actions.

15

similar to probabilistic Strips
(with continuous distributions)

• Discrete- and continuous-valued random variables

Distributional Clauses (DC)

length(Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).
stackable(OBot,OTop) :-
 ≃length(OBot) ≥ ≃length(OTop),
 ≃width(OBot) ≥ ≃width(OTop).

[Gutmann et al, TPLP 11; Nitti et al, IROS 13;
Nitti et al. MLJ]

random variable with Gaussian distribution

comparing values of
random variables

61

codes for

gene

protein

pathway

cellular
component

homologgroup

phenotype

biological
process

locus

molecular
function has

is homologous to

participates in

participates in
is located in

is related to

refers to
belongs to

is found in

subsumes,
interacts with

is found in

participates in

refers to

Biomine
database @

Helsinki

Networks of Uncertain
Information

62http://biomine.cs.helsinki.fi/

Biology

 Causes: Mutations
 All related to similar

phenotype
 Effects: Differentially

expressed genes
 27 000 cause effect

pairs

 Interaction network:
 3063 nodes

 Genes
 Proteins

 16794 edges
 Molecular interactions
 Uncertain

 Goal: connect causes to effects
through common subnetwork

 = Find mechanism
 Techniques:

 DTProbLog
 Approximate inference

[De Maeyer et al., Molecular Biosystems 13, NAR 15] [Gross et al. Communications Biology, 19]63

LOGIC
PROBABI

LITY

64

LOGIC
PROBABI

LITY

Probabilistic Programming
Languages outside LP
• IBAL [Pfeffer 01]

• Figaro [Pfeffer 09]

• Church [Goodman et al 08]

• BLOG [Milch et al 05]

• Stan & Edward & Anglican

• and many more appearing recently such

65

functional
programming

random
primitives

Church
probabilistic functional

programming

Dealing with
uncertainty

Reasoning with
relational data

Learning

(define plus5 (lambda (x) (+ x 5)))

(map plus5 '(1 2 3))

(define randplus5
 (lambda (x) (if (flip 0.6)
 (+ x 5)
 x)))

(map randplus5 '(1 2 3))

one execution

several
possible

executions

probabilistic primitives + functional program
→ distribution over possible executions

66

[Goodman et al, UAI 08]

http://probmods.org

Church vs ProbLog
(define randplus5 (lambda (x) (if (flip 0.6) (+ x 5) x)))

(map randplus5 '(1 2))

0.4::p5(N,N);0.6::p5(N,M) :- M is N+5.
lp5([],[]).
lp5([N|L],[M|K]) :-
 p5(N,M),
 lp5(L,K).

query(lp5([1,2],_)).

Church result: (1 2) with 0.4×0.4
(1 7) with 0.4×0.6
(6 2) with 0.6×0.4
(6 7) with 0.6×0.6

67

ProbLog result: (1 2) with 0.4×0.4
(1 7) with 0.4×0.6
(6 2) with 0.6×0.4
(6 7) with 0.6×0.6

0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake.

alarm :– burglary.

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm.

alarm

burglary. earthquake.

calls(mary) calls(john)

Markov LogicProbabilistic Logic Programs
ProbLog

undirected
Markov Net

model theoretic
directed

Bayesian Net

LOGIC
PROBABI

LITY key representatives

2. Directed vs Undirected
the PGM / StarAI dimension

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI

Markov Logic: Intuition

• Undirected graphical model
• A logical KB is a set of hard constraints

on the set of possible worlds

• Let’s make them soft constraints: 

When a world violates a formula, 
it becomes less probable, not impossible

• Give each formula a weight
(Higher weight ⇒ Stronger constraint)

69

()∑∝ satisfiesit formulas of weightsexpP(world)

A possible worlds view
Say we have two domain elements Anna and Bob as well as
two predicates Friends and Happy

70

),(BobAnnaFriends¬

)(BobHappy)(BobHappy¬

),(BobAnnaFriends

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI slides by Pedro Domingos

A possible worlds view
Logical formulas such as

 not Friends(Anna,Bob) or Happy(Bob)
exclude possible worlds

71

),(BobAnnaFriends¬

)(BobHappy)(BobHappy¬

),(BobAnnaFriends

)(
),(
BobHappy

BobAnnaFriends
∨

¬

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI slides by Pedro Domingos

A possible worlds view
Instead of excluding worlds, we want them to become less likely,
e.g.

72

),(BobAnnaFriends¬

)(BobHappy)(BobHappy¬

),(BobAnnaFriends

)(
),(
BobHappy

BobAnnaFriends
∨

¬

P(¬Friends(Anna,Bob)∨Happy(Bob)) = 0.8

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI

A possible worlds view
four times as likely that rule holds

73

),(BobAnnaFriends¬

)(BobHappy)(BobHappy¬

),(BobAnnaFriends

1))(),((=∨¬Φ BobHappyBobAnnaFriends
75.0))(),((=¬∧Φ BobHappyBobAnnaFriends

1 1

175.0

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI slides by Pedro Domingos

),(BobAnnaFriends¬

)(BobHappy)(BobHappy¬

Or as log-linear model this is:

),(BobAnnaFriends

29.0)75.0/1log(
)))(),(((

==

∨¬Φ BobHappyBobAnnaFriendsw

1 1

175.0

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AIThis can also be viewed as building a graphical model

A possible worlds view

74

Cancer(A)

Smokes(A) Smokes(B)

Cancer(B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic

75

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic

76

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic

77

Markov Logic

78

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic

• A Markov Logic Network (MLN) is a set of pairs (F, w) where
• F is a formula in first-order logic
• w is a real number

• An MLN defines a Markov network with
• One node for each grounding of each predicate

in the MLN
• One feature for each grounding of each formula F in the

MLN, with the corresponding weight w
• Probability of a world

79

Weight of formula i No. of true groundings of formula i in x

!
"

#
$
%

&
= ∑

i
ii xnw

Z
xP)(exp

1
)(

Possible Worlds

A vocabulary

Possible worlds
Logical interpretations

 S
m

ok
es

(A
lic

e)

 S
m

ok
es

(B
ob

)

 F
rie

nd
s(

A
lic

e,
B

ob
)

 F
rie

nd
s(

B
ob

,A
lic

e)

Slides adapted from Guy Van den Broeck

A logical theory

Interpretations that
satisfy the theory
Models

∀x,y, Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)

 S
m

ok
es

(A
lic

e)

 S
m

ok
es

(B
ob

)

 F
rie

nd
s(

A
lic

e,
B

ob
)

 F
rie

nd
s(

B
ob

,A
lic

e)

Possible Worlds

Slides adapted from Guy Van den Broeck

A logical theory

First-Order Model Counting

First-order model count
~#SAT

∑

 S
m

ok
es

(A
lic

e)

 S
m

ok
es

(B
ob

)

 F
rie

nd
s(

A
lic

e,
B

ob
)

 F
rie

nd
s(

B
ob

,A
lic

e)

∀x,y, Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)

Slides Guy Van den Broeck

• MLNs are a template for ground Markov Networks

• Probability of a world/interpretation

• If then

Markov Logic

Weight of formula i No. of true groundings of formula i in x

!
"

#
$
%

&
= ∑

i
ii xnw

Z
xP)(exp

1
)(

P (x) =
1

Z
ni = 0

1.5 ∀x,y, Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)

 S
m

ok
es

(A
lic

e)

 S
m

ok
es

(B
ob

)

 F
rie

nd
s(

A
lic

e,
B

ob
)

 F
rie

nd
s(

B
ob

,A
lic

e)

Markov Logic

Slides adapted from Guy Van den Broeck

counting only substitutions for which X =/= Y
X=Alice, Y=Bob
X=Bob, Y=Alice

1

Z
exp(1.5 ⇤ 2)

1

Z
exp(1.5 ⇤ 2)

1

Z
exp(1.5 ⇤ 1)

A Markov Logic theory

1.5 ∀x,y, Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)

 S
m

ok
es

(A
lic

e)

 S
m

ok
es

(B
ob

)

 F
rie

nd
s(

A
lic

e,
B

ob
)

 F
rie

nd
s(

B
ob

,A
lic

e)

Markov Logic

Slides adapted from Guy Van den Broeck

1

Z
exp(1.5 ⇤ 2)

1

Z
exp(1.5 ⇤ 2)

1

Z
exp(1.5 ⇤ 1)

A Markov Logic theory

Z
partition function

∑

Markov Logic

• A Markov Logic Network (MLN) is a set of pairs (F, w) where
• F is a formula in first-order logic
• w is a real number

• An MLN defines a Markov network with
• One node for each grounding of each predicate

in the MLN
• One feature for each grounding of each formula F in the

MLN, with the corresponding weight w
• Probability of a world

86

Weight of formula i No. of true groundings of formula i in x

!
"

#
$
%

&
= ∑

i
ii xnw

Z
xP)(exp

1
)(

Parameter Learning

87

No. of times clause i is true in data

Expected no. times clause i is true according to MLN

[])()()(log xnExnxP
w iwiw
i

−=
∂

∂

Has been used for generative learning (Pseudolikelihood);
Many variations (also discriminative);
applications in networks, NLP, bioinformatics, …

Applications

▪ Natural language processing, Collective Classification, Social
Networks, Activity Recognition, …

88

Why StarAI ?
• Reasoning (Probability + Logic) AND Learning

• SRL : Expressive Probabilistic Graphical Models

• First order logic results supports entities + relationships +
background knowledge — abstraction of multiple entities

• Recursion (e.g. smokers cannot be represented by a plate model)

• PP : Power of a universal Turing machine = a prog. language

• you can program in it and have builtin expressive prob. models

• PP can learn -> so bring learning to programming languages

• ProbLog fits both paradigms

89

Inference

90

LOGIC
PROBABI

LITY

Inference / Reasoning
• Most of the work in PP and StarAI is on

inference

• It is hard (complexity wise)

• Many inference methods

• exact, approximate, sampling and lifted …

• Inference is the key to learning

91

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI

Two Steps
• Logical inference -

• about a ground logical theory

• proofs or model theoretic …

• Result: Weighted Model Counting problem

• Probabilistic propositional inference —

• Knowledge Compilation

• Backtracking search — DPLL, VE, RC based

• Advanced — lifted inference

92

ProbLog Inference
Answering a query in a ProbLog program happens in four steps
1. Grounding the program w.r.t. the query
2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit
4. Evaluate the arithmetic circuit

0.1 :: burglary.
0.5 :: hears_alarm(mary).

0.2 :: earthquake.
0.4 :: hears_alarm(john).

alarm :– earthquake.

alarm :– burglary.
calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john).

calls(mary)

↔

hears_alarm(mary) ∧ (burglary ∨ earthquake)

ProbLog Inference
Answering a query in a ProbLog program happens in four steps
1. Grounding the program w.r.t. the query
2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit (knowledge compilation)
4. Evaluate the arithmetic circuit

calls(mary)

↔

hears_alarm(mary) ∧ (burglary ∨ earthquake)
AND AND

AND

OR

calls(mary)

￢earthquake

0.8

earthquake

0.2

burglary

0.1

hears_alarm(mary)

0.5

0.08 0.1

0.04

0.14

LOGIC
PROBABI

LITY

0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake.

alarm :– burglary.

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm.

alarm

burglary. earthquake.

calls(mary) calls(john)

Markov LogicProbabilistic Logic Programs
ProbLog

undirected
Markov Net

model theoretic
directed

Bayesian Net

LOGIC
PROBABI

LITY key representatives

2. Directed vs Undirected
the PGM / StarAI dimension

95

1. Proof vs Model based
2. Directed vs Undirected

96

LOGIC
PROBABI

LITYLOGIC LOGICLOGICLOGICNEURAL

Two types of Neural Symbolic
Systems

Logic as a kind of neural
program

directed StarAI approach and logic
programs

97

Logic as the regularizer
(reminiscent of Markov Logic

Networks)
undirected StarAI approach and

(soft) constraints

Just like in StarAI

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing
knowledge based model construction KBMC

where logic is used as a template

Just like in StarAI

2. Directed vs Undirected
the NeSy dimension

Logic as a neural program

98

A :− B, Z.
B :− C, D.
B :− E, F, G.
Z :− Y, not X.
Y :− S, T.

A :− B, Z.
B :− B’.
B :− B’’.
B’ :− C, D.
B’’ :− E, F, G.
Z :− Y, not X.
Y :− S, T.

REWRITE

directed StarAI approach and logic programs

LOGICLOGICLOGICNEURAL

• KBANN (Towell and Shavlik AIJ 94)

• Turn a (propositional) Prolog program into a neural

network and learn

HIDDEN UNITADD LINKS — ALSO SPURIOUS ONES

and then learn
(Details of activation & loss functions not mentioned)LOGICLOGICLOGICNEURAL

directed StarAI approach and logic programs

Logic as a neural program

99

Lifted Relational Neural Networks

100

LOGICLOGICLOGICNEURAL

[Sourek, Kuzelka, et al JAIR]

directed StarAI approach and logic programs

• Directed (fuzzy) NeSy

• similar in spirit to the Bayesian Logic Programs and

Probabilistic Relational Models

• Of course, other kind of (fuzzy) operations for AND, OR

and Aggregation (cf. later)

Neural Theorem Prover

101[Rocktäschel Riedel, NeurIPS 17; Minervini et al.]
LOGICLOGICLOGICNEURAL

the logic is encoded in the network
how to reason logically ?

directed StarAI approach and logic programs

Two types of Neural Symbolic
Systems

Logic as a kind of neural
program

directed StarAI approach and logic
programs

102

Logic as the regularizer
(reminiscent of Markov Logic

Networks)
undirected StarAI approach and

(soft) constraints

Just like in StarAI

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing
knowledge based model construction KBMC

where logic is used as a template

Just like in StarAI

2. Directed vs Undirected
the NeSy dimension

Logic as constraints

103

figures and example from Xu et al., ICML 2018
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

multi-class classification
This constraint should be satisfied

(¬x1 ^ ¬x2 ^ x3)_ (1)

(¬x1 ^ x2 ^ ¬x3)_ (2)

(x1 ^ ¬x2 ^ ¬x3) (3)

<latexit sha1_base64="XbG4kwy4F1ZEo1s2e3tSfbPsnUI=">AAACynicbVHNa9swFJe9r877SrfjLo+FQXsJdtqxHst22A47dNC0hSgYWX52RGXJSHLaYHLbX7jbjvtPJicOtM0eCH76fSC997JaCuvi+E8QPnr85OmzvefRi5evXr8Z7L+9sLoxHCdcS22uMmZRCoUTJ5zEq9ogqzKJl9n1106/XKCxQqtzt6xxVrFSiUJw5jyVDv7SDEuhWo7KoVlF53NhgWtlnWFCObBz3cgcMgTrE7YQmEdRn2FSlGoVHVCFJdymCdAbzEuE9d0T4y1xmx4dAl0gUrrrvmvstaPDzgyd+56zl3ftEFFU+fZDm8u2o3QwjEfxumAXJD0Ykr7O0sFvmmveVD7PJbN2msS1m7XMOMElriLaWKwZv2YlTj1UrEI7a9erWMFHz+RQaOOPH9+avZtoWWXtssq8s2Jubh9qHfk/bdq44mTWClU3DhXfPFQ0EpyGbq+QC4PcyaUHjBvh/wp8zgzjfgi2G0LysOVdcDEeJcejTz/Hw9Mv/Tj2yHvygRyQhHwmp+Q7OSMTwoNvQRUsgpvwR2jCZdhurGHQZ96RexX++gdFktk3</latexit>

Logic as constraints

104

multi-class classification
Probability that constraint is satisfied

(1� x1)(1� x2)x3+

(1� x1)x2(1� x3)+

x1(1� x2)(1� x3)

<latexit sha1_base64="siUg7I1JwVFi32UgItD2G0F9eAQ=">AAACoHicbZFfb9MwFMWd8G+EPyvwiCZZq5BWEFXSgdjjxF72MEQn0W2iqaob56a15jiRfYNWRf1cfA/e+DY4TWCwcaVEx+fnIzsnSamkpTD86fl37t67/2DrYfDo8ZOn271nz89sURmBE1GowlwkYFFJjROSpPCiNAh5ovA8uTxq+Pk3NFYW+gutSpzlsNAykwLIWfPe9zjBhdS1QE1o1sHYFAkkUklacVoCcVFoSwakJi4tty5mM4lpEHRBUHKhX6+Dvegtv5pHA94Ip0YD99rnb+L4GvEN4Lw19gcb6kibaeHgmgYx6vTPAe3q9z3nvX44DDfDb4uoE33WzXje+xGnhahylxcKrJ1GYUmzGgxJoXAdxJXFEsQlLHDqpIYc7azeFLzmr5yT8qww7tFNJ879O1FDbu0qT9zOHGhpb7LG/B+bVpQdzGqpy4pQi/agrFKcCt78LZ5Kg4LUygkQRrq7crEEA8KVYJsSopuffFucjYbRu+H701H/8GNXxxZ7yXbZHovYB3bIjtmYTZjwdrwj78T75O/6x/5n/7Td6ntd5gX7Z/yvvwA6xMI4</latexit>

basis for SEMANTIC LOSS
 (weighted model counting)

LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

Semantic Loss:

• Use logic as constraints (very much like “propositional

MLNs)

• Semantic loss

• Used as regulariser

• Use weighted model counting , close to StarAI

Logic as a regularizer

105

SLoss(T) / � log
X

X|=T

Y

x2X

pi
Y

¬x2X

(1� pi)

<latexit sha1_base64="dER/6fh2D1SpLgkfxgf7GKJqOOM=">AAACRnicbZDPaxNBFMffRq01/op69PKwCKnQsFuUeix6EfRQMWkD2WWZnX1Jh84vZmaLYclf58WzN08ePHnxoIhXJ0kVbf3CwJfv9z1m5lNZKXxI049J59LlKxtXN691r9+4eet2787dQ28ax2nEjTRuXDFPUmgaBREkja0jpipJR9XJ82V/dErOC6OHYW6pUGymxVRwFmJU9orum1fG+/5wG3PrjA0GdzCXZoa5b1TZjjFXpibpcbhYTdRl+xZzoXG8QFuK31muaYZ/in6GO7HcLntb6SBdCS+a7Mxs7b/knz4/2qgPyt6HvDa8UaQDl8z7SZbaULTMBcElLbp548kyfsJmNIlWM0W+aFcYFvgwJjVOjYtHB1ylf2+0THk/V1WcVCwc+/PdMvxfN2nC9GnRCm2bQJqvL5o2EiOsJVOshSMe5Dwaxp2Ib0V+zBzjIZLvRgjZ+S9fNIe7g+zx4MnrSOMZrLUJ9+EB9CGDPdiHF3AAI+DwDr7AN/ievE++Jj+Sn+vRTnK2cw/+UQd+AQojsiM=</latexit>

Loss = TraditionalLoss+ w.SLoss

<latexit sha1_base64="+S53KnNUSBsAI7yKvOjzIEBijB0=">AAACDHicbZDLSsNAGIUn9dbGW9Wlm8EiCEJIRNGNUHTjwkXF3rANZTKZtEMnF2Ymagl9ADfufYpuXCji1gdw59PoJO1CWw8MfJzz/wz/cSJGhTTNLy03N7+wuJQv6Msrq2vrxY3NughjjkkNhyzkTQcJwmhAapJKRpoRJ8h3GGk4/fM0b9wSLmgYVOUgIraPugH1KEZSWZ1iSb8MhYCnsMqRS1MPMZhZ+/DOgNcpqinTMDPBWbAmUCoXoqeb0f13pVP8bLshjn0SSMyQEC3LjKSdIC4pZmSot2NBIoT7qEtaCgPkE2En2TFDuKscF3ohVy+QMHN/byTIF2LgO2rSR7InprPU/C9rxdI7sRMaRLEkAR5/5MUMyhCmzUCXcoIlGyhAmKsuMMQ9xBGWqj9dlWBNnzwL9QPDOjSOrlQbZ2CsPNgGO2APWOAYlMEFqIAawOABjMALeNUetWftTXsfj+a0yc4W+CPt4wf0Wp1n</latexit>

LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

• Semantic Loss can be used with any logical
constraint theory

• Examples with semi-supervised learning,
where the constraint enforces that each
example should have a class

• very nice properties :

• differentiable, also monotonicity

•
if α ⊧ β then SLoss(α) ≥ SLoss(β)

106

Logic as a regularizer

Logic Tensor Networks

107 Serafini & Garcez
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

Semantic Based Regularization

108 Diligenti et al. AIJ
LOGICLOGICLOGICNEURAL

the logic is encoded in the network
how to reason logically ?

undirected StarAI approach and (soft) constraints

Two types of Neural Symbolic
Systems

Logic as a kind of neural
program

directed StarAI approach and
logic programs

109

Logic as the regularizer
(reminiscent of Markov Logic

Networks)
undirected StarAI approach and

(soft) constraints

Just like in StarAI

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing
knowledge based model construction KBMC

where logic is used as a template

Consequence :
the logic is encoded in the network
the ability to logically reason is lost

logic is not a special case

Two types of Neural Symbolic Systems

Logic as a kind of neural
program

directed StarAI approach and
logic programs

110

Logic as the regularizer
(reminiscent of Markov Logic

Networks)
undirected StarAI approach and

(soft) constraints

Just like in StarAI

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing
knowledge based model construction KBMC

where logic is used as a template

Just like in StarAI

2. Directed vs Undirected
the NeSy dimension

3. Types of Logic

111

LOGIC LOGICLOGICLOGICNEURAL

• Different types of logic exist

• Different types of logic enable different functionalities

112

3. Types of Logic
Key Messages

3. Types of Logic

113

LOGIC

Various flavours of logic

114

Propositional logic First-order logic

LOGIC

Various flavours of first-order
logic

115

LOGIC

Logic programs 
= programming language

Logic programming and Prolog

116

LOGIC

structured terms

recursion

Full-fledged programming language

Various flavours of first-order
logic

117

LOGIC

Logic programs 
= programming language

Datalog 
= Logic programs  
 that always terminate

Datalog

118

LOGIC

Query language for deductive databases

no structured terms
guaranteed to terminate

Various flavours of first-order
logic

119

LOGIC

Logic programs 
= programming language

Datalog 
= Logic programs  
 that always terminate

Answer-set programs 
= Logic programs with 
 multiple models that  
 always terminate

+ soft/hard constraints

+ preferences

Answer-set programming

120

LOGIC

Prolog with multiple models + interesting features

choice rules

constraint

What can it do?

121

LOGIC

Propositional logic: 
simple propositional reasoning

What can it do?

122

LOGIC

Datalog: 
database queries

Propositional logic: 
simple propositional reasoning

What can it do?

123

LOGIC

Datalog: 
database queries

Answer-set programming: 
database queries, common-sense 
reasoning, preferences

Propositional logic: 
simple propositional reasoning

What can it do?

124

LOGIC

Datalog: 
database queries

Answer-set programming: 
database queries, common-sense 
reasoning, preferences

Logic programming: 
programs manipulating structured 
objects, infinite domains, …

Propositional logic: 
simple propositional reasoning

Logic program vs First-order
logic

125

LOGIC

edge(1,2).
path(A,B) edge(A,B).
path(A,B) edge(A,C), path(C,B).

←
←

Logic programs always 
have one model

{edge(1,2), path(1,2)}

First-order logic can have  
many models

{edge(1,2), path(1,2)}
{edge(1,2), path(1,2), path(1,1)}
{edge(1,2), path(1,2), path(2,1)}

Issues with transitive closure in first-order logic

3. Types of Logic

126

LOGIC LOGICLOGICLOGICNEURAL

Logic in NeSy - Propositional logic

127

Semantic loss

LOGICLOGICLOGICNEURAL

Logic in NeSy - Datalog

128

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂

Logic in NeSy - Answer-set
programming

129

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂

NeurASP

Logic in NeSy - Logic programming

130

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂

NeurASP

DeepProblog,  
NLProlog

Logic in NeSy - First-order logic

131

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂

NeurASP

DeepProblog,  
NLProlog

Logic tensor networks, NMLN, 
 SBT, RNM

• Different types of logic exist

• Different types of logic enable different functionalities

132

3. Types of Logic
Key Messages

4. Symbolic vs sub-symbolic

• Entities are represented very differently in symbolic and
sub-symbolic systems, but they are complementary

• NeSy systems can be categorized by how they use
symbolic and sub-symbolic intermediate representations

134

4. Symbolic vs sub-symbolic
Key Messages

Symbolic representations
• Atoms: an, bob

• Numbers: 4, -3.5

• Variables: X,Y

• Structured terms: f(t1,...,tn)

• motherOf(an)

• [-0.1,1.2,0.5]

• [[1,2,3],[4,5,6]]

• plus(3,times(2,5))

• ...

135

LOGIC

1 2 3
4 5 6

-0,11,2 0,5

3

2 5

an bob
motherOf

Comparing symbols: unification

• Powerful mechanism for symbol matching

• basis for many logic-based AI systems

• Finds substitution θ such that both symbols match

• mother(X, bob) = mother(an, Y)

• θ = {X = an, Y = bob}

• Not useful to determine similarity

• mother(an,bob) ≈ mother(an,charlie)?

136

LOGIC

Sub-symbolic representations

137

0,1 -0,3 ...

-0,9 -0,2 ...

...

NEURAL

• Sub-symbolic systems require numerical representation

• Often, entities are already numerical in nature

• Generally, these representations are fixed in size and dimensionality

• Exceptions require special neural architectures, e.g.

• Recurrent neural networks

• Fully convolutional networks

• ...

Sub-symbols in StarAI

• It is possible to represent these sub-symbols in logic

• vectors: [0.1, -0.5, 0.6]

• matrices: [[0.2,0.4], 

 [0.3, 0.1]]

• ...

• However, they are not part of the computation mechanisms.

• i.e. we cannot learn its parameters

• They are not first class citizens.

138

LOGIC

Comparing sub-symbols

• Similarity can be determined through various metrics

• L1, L2, radial-basis function, ...

• Can only give a degree of similarity

• When is a ≠ b? When is a = b?

139

a b

||a-b||2

NEURAL

4. Symbolic vs sub-symbolic
 Translating between representations

LOGICNEURAL

Symbols to sub-symbols

141

The quick brown fox ...

NEURAL

132 32 204 ... -0,5 0,2 0,1 ...
-0,8 0,4 0,6 ...

• Encoding relations r(h,t)

• Many ways to structure embedding space

• A lot of deep learning research is on how to represent symbols

Symbols to sub-symbols

142

NEURAL

0

1

2

3

0,3 -0,5 0,2 0,1

0,6

-0,2

-0,4

0 0 0 0

1 1 0 0

1 0 0 1

1 1 0 0

0
2

30

1

2

1

3

?

• What about graphs?

• E.g. in neural network classifiers

• Turn real-valued vector into discrete classes

• Final layer with specific activation function

0,1 -0,3 ...

-0,9 -0,2 ...

...

Sub-symbols to symbols

143

0,1 -0,3 ...

-0,9 -0,2 ...

...

0,1 -0,3 ...

-0,9 -0,2 ...

...

0,1

0,6

...

-0,4

1argmax

p(0) = 0.1, p(1) = 0.5, ...
softmax

Gumbel-

softmax [1] p(0) = 0.02, p(1) = 0.95, ...

approximate

differentiable sample

NEURAL

[1] Jang et al.:"Categorical Reparameterization with Gumbel-Softmax", ICLR 2017

4. Symbolic vs sub-symbolic
Representations in NeSy

LOGICNEURAL

• StarAI

• Input = intermediate = output = symbolic representation

• Neural methods

• Input = intermediate = sub-symbolic

• Output =

• Symbolic (classifier)

• Or sub-symbolic (auto-encoder, GAN, regression, ...)

• NeSy

• Intermediate representation = symbolic or sub-symbolic

• We discern several approaches

Representation in NeSy

145
LOGICLOGICLOGICNEURAL

4. Symbolic vs sub-symbolic
Single translation step

LOGICNEURAL

Single translation step

• Symbolic input is mapped onto sub-symbols

• One-hot encoding, relational embeddings, ...

• Afterwards, all reasoning happens in sub-symbolic space

• This approach is seen in most NeSy systems

• Examples include:

• LTNs[1], SBR[2], NLMs[3], TensorLog[4]

147
LOGICLOGICLOGICNEURAL

[1] Serafini, et al.: "Logic Tensor Networks:

	 	 	 Deep Learning and Logical Reasoning from Data and Knowledge", NeSy@HLAI 2016

[2] Diligenti et al.: "Semantic based regularization for learning and inference", Artificial Intellligence 2017

[3] Dong et al.: "Neural Logic Machines", ICLR 2019

[4] Cohen et al.: "Deep Learning meets Probabilistic DBs"

Logic Tensor Network

148

LOGICLOGICLOGICNEURAL

• This translations is made explicit in Logic Tensor Networks

Luciano Serafini, Artur S. d'Avila Garcez: Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge. NeSy@HLAI 2016

Logical Theory

149

stress(ann).
influences(ann,bob).
influences(bob,carl).

smokes(X) :- stress(X).
smokes(X) :-
 influences(Y,X),
 smokes(Y).

stress(ann).
influences(ann,bob).
influences(bob,carl).

smokes(ann) :- stress(ann).
smokes(bob) :- stress(bob).
smokes(carl) :- stress(carl).

smokes(ann) :- influences(ann,ann), smokes(ann).
smokes(ann) :- influences(bob,ann), smokes(bob).
smokes(ann) :- influences(carl,ann), smokes(carl).

smokes(bob) :- influences(ann,bob), smokes(ann).
smokes(bob) :- influences(bob,bob), smokes(bob).
smokes(bob) :- influences(carl,bob), smokes(carl).

smokes(carl) :- influences(ann,carl), smokes(ann).
smokes(carl) :- influences(bob,carl), smokes(bob).
smokes(carl) :- influences(carl,carl), smokes(carl).

GROUNDING OUT

IF INTERESTED ONLY IN
CERTAIN QUERIES,

CLEVER TECHNIQUES EXIST
TO AVOID GROUNDING OUT

COMPLETELY

Logic Tensor Network

150

Encoding symbols

Sub-symbolic

computation

LOGICLOGICLOGICNEURAL

Luciano Serafini, Artur S. d'Avila Garcez: Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge. NeSy@HLAI 2016

4. Symbolic vs sub-symbolic
Alternating symbols and sub-symbols

LOGICNEURAL

Alternating symbols and sub-symbols

• Both symbolic and sub-symbolic representations are used

• Not simultaneously by one component

• Some components work on symbols, others on sub-symbols

• Indicative of systems that implement an interface

• Very natural for NeSy systems originating from a logical framework

• Examples include:

• DeepProbLog[1], NeurASP[2], ...

• ABL[3], NeuroLog[4], ..

152
LOGICLOGICLOGICNEURAL

[1] Manhaeve et al: "DeepProbLog: Neural Probablistic Logic Programming", NeurIPS 2018

[2] Yang et al: "NeurASP: Embracing Neural Networks into Answer Set Programming", IJCAI 2020

[3] Dai et al.: "Bridging Machine Learning and Logical Reasoning by Abductive Learning", NeurIPS 2019

[4] Tsamora et al. "Neural-symbolic integration: A compositional perspective"

Neural predicate

• Neural networks have
uncertainty in their predictions

• A normalized output can be
interpreted as a probability
distribution

• Neural predicate models the
output as probabilistic facts

• No changes needed in the
probabilistic host language

153

PROBABI
LITY

LOGICLOGICLOGICNEURAL

Key Idea DeepProbLog

 unify the basic concepts in logic
and neural networks:

neural predicate ~ neural net

an interface between logic and
neural nets

DeepProbLog

• DeepProbLog: interface between PLP (ProbLog) and neural networks.

• This interface takes the form of the neural predicate

• Output of neural networks represented as probabilistic facts

nn(mnist_net, [D], N, [0 ... 9]) :: digit(D,N).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

• In the logic, the images are represented as constants

• Sub-symbolic properties are used in the neural network to make predictions

• This may seem as a limitation, but isn't

Examples:
addition(, ,8), addition(, ,4), addition(, ,11), …

154

DTAI research group

DeepProbLog exemplified:
MNIST addition

Task: Classify pairs of MNIST digits with their sum

Benefit of DeepProbLog:

• Encode addition in logic

• Separate addition from digit classification

8
4
11

nn(mnist_net, [X], Y, [0 ... 9]) :: digit(X,Y).

addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

addition(, ,8) :- digit(,N1), digit(,N2), 8 is N1 + N2.

Examples:
addition(, ,8), addition(, ,4), addition(, ,11), …

Example
Learn to classify the sum of pairs of MNIST digits

Individual digits are not labeled!

E.g. (, , 8)

Could be done by a CNN: classify the
concatenation of both images into 19 classes

However:

156

 + = ?

MNIST Addition
• Pairs of MNIST images, labeled

with sum

• Baseline: CNN

• Classifies concatenation of both
images into classes 0 ...18

• DeepProbLog:

• CNN that classifies images into
0 … 9

• Two lines of DeepProblog code

157

Multi-digit MNIST
addition with MNIST

Result

158

number ([] , Result , Result) .
number ([H | T] , Acc , Result) :−

digit(H, Nr), Acc2 is Nr +10*Acc ,
number (T , Acc2 , Result) .

number (X,Y) :− number (X, 0 ,Y) .

multiaddition(X, Y, Z) :−
 number (X, X2) ,

number (Y, Y2) ,
Z is X2+Y2 .

Noisy Addition
nn(classifier, [X], Y, [0 .. 9]) :: digit(X,Y).
t(0.2) :: noisy.

1/19 :: uniform(X,Y,0) ; ... ; 1/19 :: uniform(X,Y,18).

addition(X,Y,Z) :- noisy, uniform(X,Y,Z).
addition(X,Y,Z) :- \+noisy, digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.

nn(classifier,[a],0) :: digit(a,0); nn(classifier,[a],1) :: digit(a,1).
nn(classifier,[b],0) :: digit(b,0); nn(classifier,[b],1) :: digit(b,1).
t(0.2)::noisy.

1/19::uniform(a,b,1).
addition(a,b,1) :- noisy, uniform(a,b,1).

addition(a,b,1) :- \+noisy, digit(a,0), digit(b,1).
addition(a,b,1) :- \+noisy, digit(a,1), digit(b,0).

(b) The ground DeepProbLog program.

(c) The AC for query addition(a,b,1).

Figure 4: Parameter learning in DeepProbLog. (Example 5)

Figure 5: The learning pipeline.

19

PROBABI
LITY

LOGICLOGICLOGICNEURAL

Figure 8: The accuracy on the MNIST test set for individual digits while training on (T3).

Fraction of noise
0.0 0.2 0.4 0.6 0.8 1.0

Baseline 93.46 87.85 82.49 52.67 8.79 5.87
DeepProbLog 97.20 95.78 94.50 92.90 46.42 0.88

DeepProbLog w/ explicit noise 96.64 95.96 95.58 94.12 73.22 2.92
Learned fraction of noise 0.000 0.212 0.415 0.618 0.803 0.985

Table 3: The accuracy on the test set for T4.

.

noise tolerant, even retaining an accuracy of 73.2% with 80% noisy labels.
As shown in the last row, it is also able to learn the fraction of noisy labels
in the data. This shows that the model is able to recognize which examples
have noisy labels.

6.2. Program Induction

The second set of problems demonstrates that DeepProbLog can perform
program induction. We follow the program sketching [25] setting of differentiable
Forth (@4) [8], where holes in given programs need to be filled by neural networks
trained on input-output examples for the entire program. As in their work, we
consider three tasks: addition, sorting [26] and word algebra problems (WAPs)
[27].

T5: forth_addition([4], [8], 1, [1, 3])
The input consists of two numbers, represented as lists of digits, and a
carry. The output is the sum of the numbers and the carry. The program
specifies the basic addition algorithm in which we go from right to left over
all digits, calculating the sum of two digits and taking the carry over to
the next pair. The hole in this program corresponds to calculating the
resulting digit (result/4) and carry (carry/4), given two digits and the
previous carry.

23

DeepProbLog

⨂

addition(, ,1)

0.8,
[1,0,0,0]

0.6,
[0,0,0,1]

⨂

⨁

0.1,
[0,1,0,0]

0.2,
[0,0,1,0]

0.48,
[0.6,0,0,0.8]

0.02,
[0,0.2,0.1,0]

0.5,
[0.6,0.2,0.1,0.8]

digit(,0) digit(,1) digit(,1) digit(,0)

nn(mnist_net, [X], Y, [0 ... 9]) ::
 digit(X,Y).

addition(X,Y,Z) :-
digit(X,N1),
digit(Y,N2),
Z is N1+N2.

PROBABI
LITY

LOGICLOGICLOGICNEURAL

The ACs are differentiable and
there is an interface with the
neural nets

160

Useful Semirings

•

From Kimmig, Vanden Broeck and De Raedt, 2016

Program Induction/Sketching
In Neural Symbolic methods

• Rule Induction — work with templates

P(X) :- R(X,Y), Q(Y)

• and have the “predicate” variables / slots P,Q, R determined by the NN

• Simpler form, fill just a few slots / holes

Approach similar to ‘Programming with a Differentiable Forth Interpreter’ [1] ∂4

• Partially defined Forth program with slots / holes

• Slots are filled by neural network (encoder / decoder)

• Fully differentiable interpreter: NNs are trained with input / output
examples

162

[1]: Matko Bosnjak, Tim Rocktäschel, Jason Naradowsky, Sebastian Riedel: Programming with a Differentiable Forth Interpreter.
ICML 2017: 547-556

PROBABI
LITY

LOGICLOGICLOGICNEURAL

hole(X,Y,X,Y):-
 swap(X,Y,0).

hole(X,Y,Y,X):-
 swap(X,Y,1).

bubble([X],[],X).
bubble([H1,H2|T],[X1|T1],X):-
 hole(H1,H2,X1,X2),
 bubble([X2|T],T1,X).

bubblesort([],L,L).

bubblesort(L,L3,Sorted) :-
 bubble(L,L2,X),
 bubblesort(L2,[X|L3],Sorted).

sort(L,L2) :- bubblesort(L,[],L2).

bubble sort

Example DeepProbLog

PROBABI
LITY

LOGICLOGICLOGICNEURAL

neural predicate

DeepSeaProbLog

PROBABI
LITY

LOGICLOGICLOGICNEURAL

discrete and continuous distributions [De Smet UAI 23]

length(Obj) ~ normal(dim(Obj,Image)).

large(Obj) :- length(Obj) > 100.

dim is neural net returning parameters of normal distribution.

useful for robotics and perception

determining order digits
to determine year

DeepSeaProbLog

PROBABI
LITY

LOGICLOGICLOGICNEURAL

discrete and continuous distributions [De Smet UAI 23]

generative model with variational autoencoders (see also [Misoni et al NeurIPS 22])

So far from input to output 11 so that SUM(,11) holds

In DeepSeaProblog, you can query SUM(, X, 5)

DeepProbLog:

Embeddings as symbols

succesor(,) :- 
	 cnn_embed(,e1), 
	 cnn_embed(,e2), 
	 embed(“successor”,r), 
	 add(r,e1,e3), 
	 rbf(e2,e3).

CNN

“successor”

embedding

+

RBF

Computational Graph

Idea of TransE [Bordes et al] CNN

166

2D MNIST image embeddings

4. Symbolic vs sub-symbolic
Simultaneously symbolic and sub-symbolic

LOGICNEURAL

Neural Theorem Prover

[Rocktäschel Riedel, NeurIPS 17; Minervini et al.]
LOGICLOGICLOGICNEURAL

directed StarAI approach and logic programs

Simultaneously symbolic and sub-symbolic

• Both symbolic and sub-symbolic representations are used

• All entities have both representations

• Reasoning uses both simultaneously

• Reasoning mechanism is extended

• Only used in a few systems

• E.g. NTP[1], CTP[2]

170
LOGICLOGICLOGICNEURAL

[1] Rocktäschel et al.: "End-to-end differentiable proving.", NeurIPS 2017.

[2] Minervini et al.: "Learning Reasoning Strategies in End-to-End Differentiable Proving", ICML 2020

Neural Theorem Prover

• The neural theorem prover uses both symbols and sub-
symbols simultaneously

• Symbols retain their symbolic nature

• Each symbol has a learnable sub-symbol T

• Symbol comparison:

• Normal unification

• Comparison of sub-symbols:

• sim(x,y) = exp(- ||Tx - Ty||2)

171

LOGICLOGICLOGICNEURAL

Tim Rocktäschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.

Soft unification

• Unify what can be unified

• Use similarity to compare other symbols and use it as a score

172

mother(an, bob) = parent(X, bob)

sim(mother,parent)
 an = X
 bob = bob

mother parent

θ1 = {X = an}
 θ2 = {}

LOGICLOGICLOGICNEURAL

Tim Rocktäschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.

Example

173

mother(an, bob).

r1(X,Y) :- r2(Y,X). child(bob, an)

r2(an, bob).

Unifications

1) mother(an,bob) = child(bob,an)

	 	 sim(mother,child)

	 	 sim(an,bob)

2) r1(X,Y) = child(bob,an)

	 sim(r1,child)

	 X = bob

	 Y = an

3) r2(an, bob) = mother(an, bob)

	 sim(r2,mother)

1
2

3

LOGICLOGICLOGICNEURAL

Tim Rocktäschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.

NTP

Knowledge base completion

174

LOGICLOGICLOGICNEURAL

Tim Rocktäschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.

• Entities are represented very differently in symbolic and
sub-symbolic systems, but they are complementary

• NeSy systems can be categorized by how they use
symbolic and sub-symbolic intermediate representations

175

4. Symbolic vs sub-symbolic
Key Messages

5. Structure vs parameter learning

LOGIC
PROBABI

LITY LOGICLOGICLOGICNEURAL

• Learning: finding logical formulas and estimating
probabilities

• Structure learning: both formulas and probabilities

• Parameter learning: only probabilities

• Many flavours of learning in NeSy

177

5. Learning
Key Messages

5. Structure vs parameter learning

LOGIC
PROBABI

LITY LOGICLOGICLOGICNEURAL

Spectrum of learning paradigms

179
LOGICLOGICLOGICNEURAL

DATA and
STRUCTUREDATA

Structure learning Parameter learning

Neurally-guided 
learning

Soft patterns

Neural generation

Program sketching

Structure via 
parameter learning

Structure learning via parameter
learning

180
LOGICLOGICLOGICNEURAL

DATA and
STRUCTUREDATA

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

grandparent(abe,lisa).

grandparent(abe,bart).

grandparent(jacqueline,lisa).

grandparent(jacqueline,maggie.)

Program sketching

181
LOGICLOGICLOGICNEURAL

DATA and
STRUCTUREDATA

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates
T(X,Y) P(X,Y).

T(X,Y) P(Y,X).

T(X,Y) P(X,Z), Q(Z,Y).

←
←
←

Target: grandparent

Other predicates: father, mother

Program sketching

182
LOGICLOGICLOGICNEURAL

DATA and
STRUCTUREDATA

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates

T(X,Y) P(X,Y).

T(X,Y) P(Y,X).

T(X,Y) P(X,Z), Q(Z,Y).

←
←
←

Target: grandparent

Other predicates: father, mother

grandparent(X,Y) father(X,Y).

grandparent(X,Y) mother(X,Y).

←
←

grandparent(X,Y) father(Y,X).

grandparent(X,Y) mother(Y,X).

←
←

grandparent(X,Y) mother(X,Z), mother(Z,Y).

grandparent(X,Y) mother(Y,X), father(Z,Y).

……

←
←

DeepCoder

183
LOGICLOGICLOGICNEURAL

DATA and
STRUCTUREDATA

[Balog et al, 2017]

StarAI techniques search for clauses/rules systematically

DeepCoder

184
LOGICLOGICLOGICNEURAL

DATA and
STRUCTUREDATA

[Balog et al, 2017]

Explore the subpart of the space with
primitives that are likely to solve the problem

likely to solve a problem = learned from data

Preferences of learning ‘primitives’

DeepCoder

185
LOGICLOGICLOGICNEURAL

DATA and
STRUCTUREDATA

[Balog et al, 2017]
Preferences of learning ‘primitives’

Learn from pairs 
(examples, program)

Given examples, predict
which functions to use q(functions |examples)

DreamCoder

186
LOGICLOGICLOGICNEURAL

DATA and
STRUCTUREDATA

[Ellis et al, 2018]

Distribution of primitives defines a generative model of programs

q(programs |examples)

Neural network outputs the posterior distribution over programs 
likely to solve a specific task

Neural Markov Logic Networks

187
LOGICLOGICLOGICNEURAL

DATA and
STRUCTUREDATA

[Marra et al, 2020]

MLNs can be interpreted as log-linear models

P(X = x) =
1
Z ∏

i

ϕi(x{i})ni(x)

potentials come from formulas 
 provided by the expert 
 (cliques in Markov network)

Neural Markov Logic Networks

188
LOGICLOGICLOGICNEURAL

DATA and
STRUCTUREDATA

[Marra et al, 2020]

Learn neural potentials from fragments of data

P(X = x) =
1
Z ∏

i

ϕi(x{i})ni(x)

potentials come from fragments
of data (knowledge graph)

ϕ1ϕ2

ϕ3

Markov Logic

189

𝑪(𝑨) 𝑺(𝑨) 𝑭 (𝑨, 𝑩) 𝑭 (𝑩, 𝑨) 𝑪(𝑩)𝑺(𝑩)

F1(A) F1(B)F2(A,B)

𝑭 (𝑨, 𝑨)

F2(A,A) F2(B,A)

𝑭 (𝑩, 𝑩)

F2(B,B)

represented as a factor graph

P(Interpretation) ∝ ∏
i

Fi(X, Y) = ∏
i

exp(wi𝕀(Interpretation ⊧ Fi))

Neural Markov Logic

190

F3 and F4 are trainable factors
very much like in probabilistic graphical models and embeddings/hidden layers of a NN

F3 and F4 correspond in a sense to the logical rules in the other factors
this gives a kind of structure learning
F3 and F4 will not be “interpretable”

Marra and Kuzelka

𝑪(𝑨) 𝑺(𝑨) 𝑭 (𝑨, 𝑩) 𝑭 (𝑩, 𝑨) 𝑪(𝑩)𝑺(𝑩)

F1(A) F1(B)F2(A,B)

𝑭 (𝑨, 𝑨)

F2(A,A) F2(B,A)

𝑭 (𝑩, 𝑩)

F2(B,B)

F3(A) F3(B)F4(A,B) F4(B,A)

Relational Neural Machines

191

𝑪(𝑨) 𝑺(𝑨) 𝑭 (𝑨, 𝑩) 𝑭 (𝑩, 𝑨) 𝑪(𝑩)𝑺(𝑩)

F1(A) F1(B)F2(A,B)

𝑭 (𝑨, 𝑨)

F2(A,A) F2(B,A)

𝑭 (𝑩, 𝑩)

F2(B,B)F3(A) F3(B)

𝐹3(𝜔𝐶𝑎𝑛𝑐𝑒𝑟(𝐴𝑙𝑖𝑐𝑒),) = 1− (𝐶𝑁𝑁𝑐𝑎𝑛𝑐𝑒𝑟() − 𝜔𝐶𝑎𝑛𝑐𝑒𝑟(𝐴𝑙𝑖𝑐𝑒))
2

The Neural Network is trained to become a FACTOR (or a part of it)

[Marra et al ECAI 20]

192
LOGICLOGICLOGICNEURAL

Neural guidance

Pros Cons

Soft patterns

Neural generation

Sketching

Structure via params

lots of training datamakes discrete search 
tractable

no explicit structureefficient learning

significant user effort

spurious interactions

lots of training data

removes combinatorial 
search

reduces combinatorial 
search

focused combinatorial 
search

• Learning: finding logical formulas and estimating
probabilities

• Structure learning: both formulas and probabilities

• Parameter learning: only probabilities

• Many flavours of learning in NeSy

193

5. Learning
Key Messages

The Seven Dimensions

194

1. Proof vs Model based

2. Directed vs Undirected

3. Type of Logic

4. Symbols vs Subsymbols

5. Parameter vs Structure Learning

6. Semantics

7. Logic vs Probability vs Neural

0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake.

alarm :– burglary.

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm.

alarm

burglary. earthquake.

calls(mary) calls(john)

Markov LogicProbabilistic Logic Programs
ProbLog

undirected
Markov Net

model theoretic
directed

Bayesian Net

LOGIC
PROBABI

LITY key representatives

2. Directed vs Undirected
the PGM / StarAI dimension

195

196

6. Semantics

LOGIC
PROBABI

LITYLOGIC LOGICLOGICLOGICNEURAL

• StarAI and NeSy share the same underlying semantics

• Semantics can be described in terms of parametric circuits

• Differentiable semantics/circuits allows an easy integration

• NeSy models can be seen as neural reparameterization of
StarAI models

197

6. Semantics
Key Messages

Semantics

• In Logic, semantics is connected to the interpretations of
logical sentences

• An interpretation assigns a denotation or a value to each
symbol in that language.

“42(47)”

198

Semantics

• In Logic, semantics is connected to the interpretations of
logical sentences

• An interpretation assigns a denotation or a value to each
symbol in that language.

“42(47)”

42 is the property “being human” (or human/1)

47 is a constant referring to a particular human “Socrates”

human(Socrates) = True

199

Semantics

• We are interested in answering the following family of
questions:

Given a sentence of a propositional (or propositionalized through
grounding) language, what is its value? 
 

The nature of what value is differs in the different semantics.

200

Semantics

For simplicity,

• labelling function is the function that assigns, to the
sentence Q, the value v according to semantics S.

e.g.

…

ℓS

ℓS(Q) = v

ℓB(human(socrates)) = True
ℓF(tall(john)) = 0.8

201

202

6. Semantics

Boolean logic

LOGIC

Semantics in Boolean Logic
• Defining a semantics for a propositional language L is about

assigning a truth value to all the sentences of the logic

• Boolean truth values:

Three steps:
1. Truth values for propositions
2. Truth values for operators
3. Labelling formulas

{True, False}

203

LOGIC

Semantics in Boolean Logic

1. Providing the labels for propositions

L = {burglary, earthquake, hears_alarm(john)}

This is a model or a possible world, a “potential” assignment of
truth values to all the propositional variables in the language.

ℓB(burglary) = True
ℓB(earthquake) = False

ℓB(hears_alarm(john)) = True

204

LOGIC

Semantics in Boolean Logic

2. Providing the semantics for operators

205

LOGIC

ℓ→
Bℓ∧

B

Semantics in Boolean Logic

3. The labels of formulas are defined recursively on the semantics
of its components

This recursive evaluation of formulas is said to be extensional
approach.

ℓB(earthquake ∧ burglary) = ℓ∧
B (ℓB(earthquake), ℓB(burglary))

206

LOGIC

Semantics in Boolean Logic

• Consider:

207

(burglary ∨ earthquake) → alarm

→

∨

burglary earthquake

Alarm

ℓ→
B

ℓ∨
B

ℓB(burglary) ℓB(earthquake)

ℓB(alarm)

LOGIC

208

6. Semantics

Fuzzy logic

LOGIC

Semantics in Fuzzy Logic

• Still a pure logic semantics:

• There are many fuzzy logics

• Here we are interested in a subclass, in particular t-norm fuzzy
logic

209

LOGIC

LOGIC

Semantics in Fuzzy Logic
• Defining a semantics for a propositional fuzzy language L is

again about assigning a membership degree to all the
sentences of the logic

• Fuzzy truth/membership degrees:

Three steps:
1. Labels for propositions
2. Labels for operators
3. Labels for formulas

ℓ𝐹:𝐿 → [0,1]

210

LOGIC

Semantics in Fuzzy Logic

1. Providing the labels for propositions

L = {burglary, earthquake, hears_alarm(john)}

ℓF(burglary) = 0.9
ℓF(earthquake) = 0.1

ℓF(hears_alarm(john)) = 0.8

211

LOGIC

Note: -> very mild earthquake,

(probability of earthquake = 0.1)

 

 fuzzy is a measure of intensity/vagueness not of uncertainty

ℓF(earthquake) = 0.1
≠

Semantics in Fuzzy Logic

2. Providing the labels for operators: t-norm theory
• A t-norm is a binary function that extends the conjunction to

the continuous case

• There are 3 fundamental t-norms:

• Lukasiewicz t-norm:

• Goedel t-norm:

• Product t-norm:

t : [0,1] × [0,1] → [0,1]

tL(x, y) = max(0,x + y − 1)
tG(x, y) = min(x, y)
tP(x, y) = x ⋅ y

212

LOGIC They are the continuous version of truth tables!!

Semantics in Fuzzy Logic

• All the other operators can be derived from the t-norm

213

LOGIC

They are the continuous version of truth tables!!

Semantics in Fuzzy Logic

3. The labels of formulas is defined recursively on the semantics
of its components

This recursive evaluation of formulas is said to be extensional
approach.

e.g.

 , ,

ℓF(burglary → alarm) = ℓ→
F (ℓF(burglary), ℓF(alarm))

ℓF(burglary) = 0.9 ℓF(alarm) = 0.3
ℓ→

F = min(1,1 − x + y) = min(1,1 − 0.9 + 0,3) = 0.4

214

LOGIC

Semantics in Fuzzy Logic

• Consider:

215

(burglary ∨ earthquake) → alarm

→

∨

burglary earthquake

Alarm

ℓ→
F

ℓ∨
F

ℓB(burglary) ℓB(earthquake)

ℓB(alarm)

LOGIC

Fuzzy Logic Semantics

• Most common t-norms are:

• Continuous
• Differentiable -> This turns to be one of the reason of their

adoption in NeSY

• Convex fragments of the logic can be defined (Giannini et al,
2019)

• But, ?????

•

ℓF(human(Socrates)) = 0.5
ℓF(bat(Socrates)) = 0.5

216

LOGIC

Fuzzy vs Boolean

• Fuzzy and Boolean have different properties

• When fuzzy is used as a “relaxation” (fuzzification) of Boolean

undesired effects can happen.

• Suppose:

• Satisfying assignments (Lukasiewicz)

• (all true)

• (at least one true)

•

A ∨ B ∨ C ∨ D ∨ E = 1

A = B = C = D = E = 1
A = 1, B = C = D = E = 0
A = B = C = D = E = 0.2

217

LOGIC

218

Semantics

Probabilistic logic

PROBABI
LITYLOGIC

Probabilistic Logic Semantics

PROBABI
LITYLOGIC

Given a proposition language L, the basic idea is to introduce a
probability function :

p

p : L → [0,1]

219

Probabilistic Logic Semantics

PROBABI
LITYLOGIC

Two steps:
• Define a probability distribution over interpretations /

worlds (i.e. boolean semantics)

(E.g.

• Define a the probability of sentence Q of L:

p(ℓB(x1), …, ℓB(xn))
p(ℓB(burglary) = True, ℓB(earthquake) = False, . . .)

p(Q) = ∑
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))

220

Probabilistic Logic Semantics

Problog

0.1 :: burglary. (B)
0.05 ::earthquake. (E)
0.6 ::hears_alarm(john). (H)
alarm :– earthquake.
alarm :– burglary.
calls(john) :- alarm, hears_alarm(john)

 
 
parameters = the labels for propositions (i.e. probabilistic facts)

p(ℓB(x1), …, ℓB(xn)) = ∏
i:ℓB(xi)=True

p(xi) ∏
i:ℓB(xi)=False

(1 − p(xi))

221

PROBABI
LITYLOGIC

e.g. in ProbLog:

222

PROBABI
LITYLOGIC

B E H p(B,E,H)
F F F 0,342
F F T 0,513
F T F 0,018
F T T 0,027
T F F 0,038
T F T 0,057
T T F 0,002
T T T 0,003

0.1 x 0.05 x (1- 0.6)

Probabilistic Logic Semantics

Problog

0.1 :: burglary. (B)
0.05 ::earthquake. (E)
0.6 ::hears_alarm(john). (H)
alarm :– earthquake.
alarm :– burglary.
calls(john) :- alarm, hears_alarm(john)

1.5 : calls(Mary) <- hears_alarm(Mary), alarm

2.0 : alarm <- earthquake

0.5 : alarm <- burglary

p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

wα ℓB(α))

223

PROBABI
LITYLOGIC

Weight formula 1 if is True otherwise 0α

Probabilistic Logic Semantics

Markov Logic

1.5 : calls(Mary) <- hears_alarm(Mary), alarm

2.0 : alarm <- earthquake

0.5 : alarm <- burglary

224

PROBABI
LITYLOGIC

Probabilistic Logic Semantics

Markov Logic

B E A H C p
T F T T T 0,05
T F T T F 0,01
… … … … … …

 exp(1.5 + 2.0 + 0.5)∝
 exp(0 + 2.0 + 0.5)∝

Probabilistic Logic Semantics

Given any sentence Q of the propositional language L, with
variables :

WMC - Weighted Model Counting
(for both ProbLog and Markov Logic)

x1, …, xn

ℓP(Q) = ∑
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))

225

PROBABI
LITYLOGIC

Probabilistic Logic Semantics

For example:

 

226

B E H p(B,E,H)
F F F 0,342
F F T 0,513
F T F 0,018
F T T 0,027
T F F 0,038
T F T 0,057
T T F 0,002
T T T 0,003

PROBABI
LITYLOGIC

Q = B ∧ H

p(Q) = 0.06

0.1 :: burglary. (B)
0.05 ::earthquake. (E)
0.6 ::hears_alarm(john). (H)
alarm :– earthquake.
alarm :– burglary.
calls(john) :- alarm, hears_alarm(john)

Query = burglary ^ hears_alarm(john)

Probabilistic Logic Semantics

For example:

 

227

B E H p(B,E,H)
F F F 0,342
F F T 0,513
F T F 0,018
F T T 0,027
T F F 0,038
T F T 0,057
T T F 0,002
T T T 0,003

PROBABI
LITYLOGIC

Q = (B ∧ H) ∨ E

ℓP(Q) = 0.105

0.1 :: burglary. (B)
0.05 ::earthquake. (E)
0.6 ::hears_alarm(john). (H)
alarm :– earthquake.
alarm :– burglary.

Probabilistic Logic Semantics

Probabilistic Semantics is different from a pure logic semantics

1. It is built on top of a logical semantics; .

2. Probability is NOT extensional, the probability of a formula

A. cannot be defined recursively by the probabilities of its

arguments

B. requires WMC

p(ℓB(x1), …, ℓB(xn))

228

PROBABI
LITYLOGIC

• Consider:

229

(alarm ∧ hears_alarm) → calls

→

∧

alarm hears_alarm

calls

+

+

1 − p(alarm) 1 − p(hears_alarm)

p(calls)

LOGIC

Probabilistic Logic Semantics

Probabilistic Logic Semantics

230

(𝐴 ∧ 𝐵) → 𝐶

PROBABI
LITYLOGIC

∨

¬A ∧

A ∨

¬B ∧

B C

+

1 − p(A) ×

p(A) +

1 − p(B) ×

p(B) p(C)

Knowledge Compilation

The probabilistic structure is now explicit in
the compiled formula.

→

∧

A B

C

ℓP(Q) = ∑
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))

Probabilistic Logic Semantics

• Consider:

231

(𝐴 ∧ 𝐵) → 𝐶

PROBABI
LITYLOGIC

∨

¬A ∧

A ∨

¬B ∧

B C

The circuit is differentiable!

→

∧

A B

C

+

1 − p(A) ×

p(A) +

1 − p(B) ×

p(B) p(C)

Probabilistic Logic Semantics
• WMC:

• Another important inference task in MPE inference (connected
to maxSAT)

p(Q) = ∑
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))

ℓ⋆
B (x1), …, ℓ⋆

B (xn) = max
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))

232

PROBABI
LITYLOGIC

Boolean vs Fuzzy vs Probability

• Boolean and Fuzzy logic are two alternative logical semantics

• Probability is a semantics that is built on top of a logical one
(i.e. “which is the probability of a given truth assignments /
world?”)

• Can we have a probabilistic fuzzy logic as well?

233

Probabilistic Soft Logic (PSL)

• Let’s start by an example of a Markov Logic Network:

• In PSL, we relax the Boolean semantics to a fuzzy
semantics

p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

wα ℓB(α))
ℓ𝐵

ℓ𝐹

p(ℓF(x1), …, ℓF(xn)) =
1
Z

exp(∑
α

wα ℓF(α))

234

PROBABI
LITYLOGIC

Bach, Stephen H., et al. JMLR 2017

Weight formula Each formula contributes
with a value in [0,1]

Probabilistic Soft Logic (PSL)

MPE:

α : burglary → alarm
ℓF(α) = min(1,1−ℓF(burglary + ℓF(alarm)

max
ℓF(burglary),ℓF(alarm)

wαℓF(α)

ℓF(burglary) = ℓF(burglary) + λ
∂wαℓF(α)

∂ℓF(burglary)

235

min(1, ∑ 𝑥𝑖)

1 − 𝑥

ℓF(burglary)

ℓF(alarm)

PROBABI
LITYLOGIC

This is soft SAT

using fuzzy logic

Using Lukasiewicz t-norm:

Probabilistic vs Fuzzy

• Fuzzy is an alternative logical semantics and it can still coupled
with the probabilistic ones

• Fuzzy logic is sometimes used as an approximation of MPE in
probabilistic logic

• Fuzzy logic is sometimes used to solve satisfiability faster

• However, it does not guarantee solutions coherent with the

Boolean logic theory.

• (Remember)A = B = C = D = E = 0.2

236

237

6. Semantics

Neural Symbolic

PROBABI
LITYLOGIC LOGIC NEURAL

Neural Symbolic

How to carry over concepts from the semantics of StarAI to
neural symbolic?

Labelling functions = Parametric circuit 
 (semantics)

ℓ(Q)

238

ℓF((A ∧ B) → C)
The query Q determine
the structure (potentially
after knowledge
compilation)

ℓ→
F

ℓ∧
F

ℓF(A) ℓF(B)

ℓF(C)

Neural Symbolic

How to carry over concepts from the semantics of StarAI to
neural symbolic?

 Labelling functions = Parametric circuit 
 (semantics)

ℓ(Q)

239

ℓF((A ∧ B) → C)
The leaves
represent the
scalar parameters

ℓ→
F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)

ℓ→
F

ℓ∧
F

ℓF(A) ℓF(B)

ℓF(C)

Neural Symbolic

How to carry over concepts from the semantics of StarAI to
neural symbolic?

• Atomic labels are just scalar tables of parameters

240

L
Burglary 0,1
Earthquake 0,05
…

p0.1 :: burglary. (B)
0.05 ::earthquake. (E)
0.6 ::hears_alarm(john). (H)
alarm :– earthquake.
alarm :– burglary.

Neural Symbolic

How to carry over concepts from the semantics of StarAI to
neural symbolic?

• What if atomic labels are just neural networks?

241

? :: burglary(.)
? ::earthquake. ()
? ::hears_alarm(john).
alarm :– earthquake.
alarm :– burglary.

StarAI to Neural Symbolic

242

ℓ→
F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

ℓ→
F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)

NN NN

NN

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

NN

NN

NN

NN NN

LOGIC NEURAL

PROBABI
LITYLOGIC

PROBABI
LITYLOGIC

NEURAL

LOGIC

REPARAMETERIZATION

StarAI

NeSy

Fuzzy Reparameterization

243

Parameters of
the neural nets

min(1, ∑ 𝑥𝑖)

1 − 𝑥

ℓF(burglary)

ℓF(alarm)

NN
θburglary

X

NN
θalarm

X

max
ℓF(stress(X)),ℓF(smokes(X))

wαℓF(α)

max
θburglary,θalarm

wαℓF(α)

LOGIC NEURAL

StarAI (PSL)

NeSy (SBR, LTN)

min(1, ∑ 𝑥𝑖)

1 − 𝑥

ℓF(burglary)

ℓF(alarm)

Semantic Based
Regularization (Diligenti
et al, AI 2017)

Logic Tensor Network
(Donadello et at, IJCAI
2017)

α : burglary → alarm

Probabilistic Reparameterization

• ProbLog:

• Markov Logic:

WMC

p(ℓB(x1), …, ℓB(xn)) = ∏
i:ℓB(xi)=True

p(xi) ∏
i:ℓB(xi)=False

(1−p(xi))

p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

wαℓB(α))

244

Probabilistic parameters

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)
p(Q) = ∑

ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))
LOGICNEURAL

PROB

Probabilistic Reparameterization

• DeepProbLog (Manhaeve et al, NeurIPS (2018))

• Relational Neural Machines (Marra et al, ECAI 2020)

WMC

p(ℓB(x1), …, ℓB(xn)) = ∏
i:ℓB(xi)=True

p(xi) ∏
i:ℓB(xi)=False

(1−p(xi))

p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

wαℓB(α))

245

Neural parameters

LOGICNEURAL

PROB
p(Q) = ∑

ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

NN

NN

NN

NN NN

Probabilistic Reparameterization

246

LOGICNEURAL

PROB

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

NN

NN

NN

NN NN

• DeepProbLog (Manhaeve et al, NeurIPS (2018))

nn(mnist_net, [X], Y, [0 ... 9]) :: digit(X,Y).

 :: burglary.
0.01

Neural Predicate

Probabilistic fact

Interface

• StarAI and NeSy share the same underlying semantics

• Semantics can be described in terms of parametric circuits

• Differentiable semantics/circuits allow an easy integration

• NeSy models can be seen as neural reparameterization of
StarAI models

247

6. Semantics
Key Messages

A Recipe for NeSy

248

A recipe for NeSy

1. Take your favorite
symbolic (logic / rule
based) representation

STEP 1

layout Pieter Robberechts

(applied on DeepProbLog)

© Luc De Raedt

A recipe for NeSy

1. Take your favorite
symbolic (logic / rule
based) representation

2. Interpret neural networks
as neural predicates

STEP 1

layout Pieter Robberechts

(applied on DeepProbLog)

© Luc De Raedt

A recipe for NeSy

1. Take your favorite
symbolic (logic / rule
based) representation

2. Interpret neural networks
as neural predicates

3. Turn the 0/1 or True/False
into Probabilistic or Fuzzy
Interpretation

STEP 1

layout Pieter Robberechts

(applied on DeepProbLog)

© Luc De Raedt

A recipe for NeSy

4. Construct logical proof /
explanation for example

STEP 2

layout Pieter Robberechts

© Luc De Raedt

A recipe for NeSy

4. Construct logical proof /
explanation for example

5. Add the neural networks to
the corresponding
predicates (reparametrise)

STEP 2

layout Pieter Robberechts

© Luc De Raedt

A recipe for NeSy

4. Construct logical proof /
explanation for example

5. Add the neural networks
to the corresponding
predicates (reparametrise)

6. Replace OR and AND by
 and

7. Differentiate

⊕ ⊗

STEP 3

layout Pieter Robberechts

© Luc De Raedt

DeepStochLog

▪ Little sibling of DeepProbLog [Winters, Marra, et al
AAAI 22]

▪ Based on a different semantics
▪ probabilistic graphical models vs grammars
▪ random graphs vs random walks

▪ Underlying StarAI representation is Stochastic
Logic Programs (Muggleton, Cussens)
▪ close to Probabilistic Definite Clause Grammars,

ako probabilistic unification based grammar
formalism

▪ again the idea of neural predicates
▪ Scales better, is faster than DeepProbLog

CFG: Context-Free Grammar

 E --> N  
 E --> E, P, N  
 
 P --> [“+”]

 N --> [“0”]  
 N --> [“1”]  
 …  
 N --> [“9”]

2 + 3 + 8

N

E

E

P N

E

P N

Useful for:
- Is sequence an element of the specified language?
- What is the “part of speech”-tag of a terminal
- Generate all elements of language

PCFG: Probabilistic Context-Free Grammar

0.5 :: E --> N  
0.5 :: E --> E, P, N  
 
1.0 :: P --> [“+”]

0.1 :: N --> [“0”]  
0.1 :: N --> [“1”]  
 …  
0.1 :: N --> [“9”]

2 + 3 + 8

N

E

E

P N

E

P N

Useful for:
- What is the most likely parse for this sequence of terminals? (useful for ambiguous grammars)

- What is the probability of generating this string?

0.5

0.1

1
1

0.1
0.1

0.5

0.5

Probability of this parse = 0.5*0.5*0.5*0.1*1*0.1*1*0.1
= 0.000125

A
lw

ay
s

su
m

s
to

 1
 p

er
 n

on
-

te
rm

in
al

DCG: Definite Clause Grammar

 e(N) --> n(N).  
 e(N) --> e(N1), p, n(N2),  
 {N is N1 + N2}.  
 p --> [“+”].

 n(0) --> [“0”].  
 n(1) --> [“1”].  
 …  
 n(9) --> [“9”].

2 + 3 + 8

n(2)

e(2)

e(5)

p n(3)

e(13)

p n(8)

Useful for:
- Modelling more complex languages (e.g. context-sensitive)
- Adding constraints between non-terminals thanks to Prolog power (e.g. through unification)
- Extra inputs & outputs aside from terminal sequence (through unification of input variables)

SDCG: Stochastic Definite Clause Grammar

0.5 :: e(N) --> n(N).  
0.5 :: e(N) --> e(N1), p, n(N2),  
 {N is N1 + N2}.  
1.0 :: p --> [“+”].

0.1 :: n(0) --> [“0”].  
0.1 :: n(1) --> [“1”].  
 …  
0.1 :: n(9) --> [“9”].

2 + 3 + 8

n(2)

e(2)

e(5)

p n(3)

e(13)

p n(8)

Useful for:
- Same benefits as PCFGs give to CFG (e.g. most likely parse)

- But: loss of probability mass possible due to failing derivations

0.5

0.1

1
1

0.1
0.1

0.5

0.5

Probability of this parse = 0.5*0.5*0.5*0.1*1*0.1*1*0.1
= 0.000125

NDCG: Neural Definite Clause Grammar (= DeepStochLog)

Useful for:
- Subsymbolic processing: e.g. tensors as terminals
- Learning rule probabilities using neural networks

0.5 :: e(N) --> n(N).  
0.5 :: e(N) --> e(N1), p, n(N2),  
 {N is N1 + N2}.  
1.0 :: p --> [“+”].

nn(number_nn,[X],[Y],[digit])::

 n(Y) —> [X].

digit(Y) :-

 member(Y,[0,1,2,3,4,5,6,7,8,9]).

2 + 3 + 8

n(2)

e(2)

e(5)

p n(3)

e(13)

p n(8)

0.5

pnumber_nn(=2)

1
1

0.5

0.5

pnumber_nn(=3)
pnumber_nn(=8)

Probability of this parse =
0.5*0.5*0.5*pnumber_nn(=2)*1*pnumber_nn(=3)*1*pnumber_nn(=8)

DeepStochLog
Inference

Proof derivations d(e(1), []) then turn it into and/or tree+

Deriving probability of goal for given terminals in NDCG

Probability of goal Most likely derivation

MAX
0.96

0.5

0.5

0.5 0.5 0.5 0.5

0.5

0.5

0.04

0.020.98

0.96 0.04

0.020.98

PG(derives(e(1), [, +,]) = 0.1141 dmax(e(1), [, +,]) = argmaxd(e(t))=[, +,]PG(d(e(1))) = [0,+,1]

And/Or tree + semiring for different inference types

Inference optimisation

▪ Inference is optimized using
▪ SLG resolution: Prolog tables the returned proof tree(s), and thus creates

forest
	 → Allows for reusing probability calculation results from intermediate
nodes

▪ Batched network calls: Evaluate all the required neural network queries
first
	 → Very natural for neural networks to evaluate multiple instances at once
using batching
	 & less overhead in logic & neural network communication

Mathematical expression outcome

T1: Summing MNIST numbers
with pre-specified # digits

T2: Expressions with images
representing operator or single
digit number.

+ = 137

= 19

Classic grammars, but with MNIST images as terminals

T3: Well-formed brackets as input
(without parse). Task: predict parse.

T4: inputs are strings akblcm (or
permutations of [a,b,c], and

(k+l+m) mod 3=0). Predict 1 if
k=l=m, otherwise 0.

→ parse = () (() ())

= 1

= 0

Citation networks

T5: Given scientific paper set with only few labels & citation
network, find all labels

7. Logic vs Probability vs Neural

• We have three paradigms in the NeSy spectrum: Logic,
Probability and Neural Networks

• An integration of the three should have the original
paradigms as special cases

• Computationally complex

• The integration is usually achieved by sacrificing the base
paradigms

• More scalable

269

7. Logic vs Probability vs Neural
Key Messages

About integration in neural
symbolic

270

Probability Logic

Neural Networks

Probability Logic

Neural Networks

Statistical Relational AI

271

They perfectly integrate
probability theory (Probabilistic
Graphical Models) and Logic.

Probability Logic

Neural Networks

Knowledge Graph Embeddings

272

They use latent spaces, typical
of neural computation to
encode a relational structure of
the data. 
 
Neural networks cannot be
recovered. 
 
Logic is declined to encoding
relations

Probabilistic modelling is
strongly approximated (e.g.
atom mean field)

Most scalable solutions.

TransE (Bordes 2013)

DistMult (Yang, 2014)

ComplEx (Trouillon, 2016)

NTN (Socher, 2013)

Probability Logic

Neural Networks

Relaxed theorem provers

273

They sacrifice a bit the pure
boolean semantics to obtain
some soft neural capabilities
(weighted reasoning,
embeddings).

KBANN (Tawell 1994)

LRNN (Sourek, 2017)

NTPs (Rocktäschel, 2017)

DiffLog (Si et al, 2018)

NN for Relational Data (2019)

Probability Logic

Neural Networks

Regularization methods

274

They sacrifice the logic and
probability a lot by pushing
everything inside the weights of
the neural network.

Logic and probability are used
only at training time. At inference
time, only the neural net is used.

SBR (Diligenti et al, AI 2017)

LTN (Donatello et al, IJCAI 2017)

SL (Xu et al, ICML 2018)

Probability Logic

Neural Networks

Graph Neural Networks

275

They extend neural network
to provide some relational
and multihop reasoning.

Logical semantics is not
preserved.

R-GCN - Schlichtkrull et al,
2017

Probability Logic

Neural Networks

Probabilistic reparameterization

276

They extend StarAI with
perception capabilities.

Subsymbols at the level of the
constants only
• Not at the level of the atoms

(like KGE)
• Not at the level of the rules (like

GNNs)

One of the most promising
direction for NeSy.

Main problem is scalability.

DeepProbLog (Manhaeve, 2018)
RNM (Marra, 2020)

• We have three paradigms in the NeSy spectrum: Logic,
Probability and Neural Networks

• An integration of the three should have the original
paradigms as special cases

• Computationally complex

• The integration is usually achieved by sacrificing the base
paradigms

• More scalable

277

7. Logic vs Probability vs Neural
Key Messages

Challenges
• For NeSy,

• scaling up

• which models and which knowledge to use

• large scale life applications

• peculiarities of neural nets & fuzzy logic

• dynamics / continuous

• This is an excellent area for starting researchers / PhDs

Conclusions

StarAI and NeSy share similar problems
and thus similar solutions apply

See also [De Raedt et al., IJCAI 20]

Key Message

LOGICLOGICLOGICNEURALLOGIC
PROBABI

LITYFROM TO

The Seven Dimensions

281

1. Proof vs Model based

2. Directed vs Undirected

3. Type of Logic

4. Symbols vs Subsymbols

5. Parameter vs Structure Learning

6. Semantics

7. Logic vs Probability vs Neural

Many questions to ask

• What properties should integrated representations satisfy ?

• Should one representation take over ? (As in most

approaches to NeSy — push the logic inside and forget
about it afterwards)

• Should one build a pipeline or an interface between the
integrated representations ?

• Should one have the originals as a special case ?

• (yes we believe you should be able to do all what you can

do with the original representations)

282

Many questions to ask

• Which learning and reasoning techniques apply ?

• Can you still reason logically / probabilistically ?

• Can you still apply standard learning methods (like gradient

descent) ?

• Is everything explainable / trustworthy ?

• How to evaluate integrated representations ?

• 1 + 1 = 3 ?

• Can they do what the originals can do, and can they do more ?

• Can they do something different ?

283

Challenges

• For NeSy,

• scaling up

• which models to use

• real life applications

• peculiarities of neural nets

• logical inference can be expensive

• This is an excellent area for starting researchers / PhDs

284

THANKS

References

• Tarek R. Besold, Artur S. d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro M. Domingos, Pascal Hitzler, Kai-
Uwe Kühnberger, Luís C.Lamb, Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung
Poon, and Gerson Zaverucha. Neural-symboliclearning and reasoning: A survey and interpretation.CoRR, abs/
1711.03902, 2017.

• Matko Bošnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian Riedel. Programming with a differentiable forth
interpreter. InICML,2017.

• William W. Cohen, Fan Yang, and Kathryn Mazaitis. Tensorlog: Deep learning meets probabilistic dbs.CoRR, abs/
1707.05390, 2017.

• Andrew Cropper. Playgol: Learning programs through play. InIJCAI 2019, 2019.
• Andrew Cropper and Stephen H. Muggleton. Metagol system. https://github.com/metagol/metagol, 2016.
• Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge bases. InIJCAI, 2011.
• Artur S. d’Avila Garcez, Marco Gori, Luís C. Lamb, Luciano Serafini, Michael Spranger, and Son N. Tran. Neural-

symbolic computing: An effective methodology for principled integration of machine learning and reasoning.FLAP,
6, 2019.

• Luc De Raedt, Sebastian Dumančić., Robin Manhaeve and Giuseppe Marra. From statistical relational to neuro-
symbolic artificial intelligence. In IJCAI 2020.

• Luc De Raedt.Logical and relational learning. Springer, 2008.
• Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole.Statistical Relational Artificial Intelligence:

Logic, Probability, andComputation. Morgan & Claypool Publishers, 2016.

286

References

• Luc De Raedt and Angelika Kimmig. Probabilistic (logic) programming concepts.Machine Learning, 100, 2015.
• Luc De Raedt, Robin Manhaeve, Sebastijan Dumanˇci ć, Thomas Demeester, and Angelika Kimmig. Neuro-

symbolic= neural+ logical+probabilistic. InNeSy @ IJCAI, 2019.
• Thomas Demeester, Tim Rocktäschel, and Sebastian Riedel. Lifted rule injection for relation embeddings. InEMNLP,

2016.
• Michelangelo Diligenti, Marco Gori, and Claudio Saccà. Semantic-based regularization for learning and

inference.Artif. Intell., 244, 2017.
• Ivan Donadello, Luciano Serafini, and Artur S. d’Avila Garcez. Logic tensor networks for semantic image

interpretation. In IJCAI, 2017.
• Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic machines. InICLR,

2019.
• Sebastijan Dumanˇci ć, Tias Guns, Wannes Meert, and Hendrik Blockeel. Learning relational representations with

auto-encoding logic programs.InIJCAI, 2019.
• Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-Lezama, and Josh Tenenbaum. Learning libraries

of subroutines forneurally-guided bayesian program induction. InNeurIPS, 2018.
• Kevin Ellis, Maxwell I. Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama. Write, execute,

assess: Program synthesiswith a REPL.CoRR, abs/1906.04604, 2019.
• Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data.J. Artif. Intell. Res., 61, 2018.

287

References

• Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens,
and Luc De Raedt.Inference and learning in probabilistic logic programs using weighted boolean formulas.Theory
and Practice of Logic Programming, 15, 2015.

• Peter Flach.Simply Logical: Intelligent Reasoning by Example. John Wiley & Sons, Inc., 1994.
• Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational models. InIJCAI, 1999.
• Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer set solving in practice.Synthesis

lectures on artificialintelligence and machine learning, 6, 2012.
• L. Getoor and B. Taskar, editors.An Introduction to Statistical Relational Learning. MIT Press, 2007.
• Francesco Giannini, Michelangelo Diligenti, Marco Gori, and Marco Maggini. On a convex logic fragment for

learning and reasoning.IEEETFS, 27, 2018.CV Radhakrishnan et al.:Preprint submitted to Elsevier
• Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for

quantum chemistry.arXivpreprint arXiv:1704.01212, 2017.
• Goldman, O., Latcinnik, V., Naveh, U., Globerson, A., & Berant, J.. Weakly-supervised semantic parsing with

abstract examples. ACL 2018
• Bernd Gutmann, Angelika Kimmig, Kristian Kersting, and Luc De Raedt. Parameter learning in probabilistic

databases: A least squaresapproach. InECML&PKDD, 2008.
• Manfred Jaeger. Model-theoretic expressivity analysis. In Luc De Raedt, Paolo Frasconi, Kristian Kersting, and

Stephen Muggleton, editors,Probabilistic Inductive Logic Programming - Theory and Applications, volume 4911 of
LNCS. Springer, 2008.

288

References

• Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gulwani. Neural-guided
deductive search forreal-time program synthesis from examples. InICLR, 2018.

• Kristian Kersting and Luc De Raedt. Bayesian logic programming: Theory and tool. In L. Getoor and B. Taskar,
editors,An introduction toStatistical Relational Learning. MIT Press, 2007.

• Stanley Kok and Pedro Domingos. Learning the structure of markov logic networks. InICML, 2005.
• Daphne Koller and Nir Friedman.Probabilistic Graphical Models - Principles and Techniques. MIT Press, 2009.
• Marco Lippi and Paolo Frasconi. Prediction of protein beta-residue contacts by markov logic networks with

grounding-specific weights.Bioinform., 25, 2009.
• John W Lloyd.Foundations of logic programming. Springer Science & Business Media, 2012.
• Daniel Lowd and Pedro Domingos. Efficient weight learning for markov logic networks. InECML&PKDD, 2007.
• Robin Manhaeve, Sebastijan Dumanˇci ć, Angelika Kimmig, Thomas Demeester, and Luc De Raedt. Deepproblog:

Neural probabilistic logicprogramming. InNeurIPS, 2018.
• Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The neuro-symbolic concept

learner: Interpreting scenes,words, and sentences from natural supervision. In ICLR, 2019.
• Giuseppe Marra, Michelangelo Diligenti, Francesco Giannini, Marco Gori, and Marco Maggini. Relational neural

machines. In ECAI, 2020.
• Giuseppe Marra and Ondrej Kuželka. Neural markov logic networks. CoRR, abs/1905.13462, 2019.

289

References

• Pasquale Minervini, Matko Bošnjak, Tim Rocktäschel, Sebastian Riedel, and Edward Grefenstette. Differentiable
reasoning on large knowledgebases and natural language. InAAAI, 2020.

• Pasquale Minervini, Thomas Demeester, Tim Rocktäschel, and Sebastian Riedel. Adversarial sets for regularising
neural link predictors. InUAI, 2017.

• Stephen Muggleton. Stochastic logic programs.Advances in inductive logic programming, 32, 1996.
• Maxwell I. Nye, Armando Solar-Lezama, Josh Tenenbaum, and Brenden M. Lake. Learning compositional rules via

neural program synthesis.In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors,Advances in Neural InformationProcessing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,2020.

• David Poole. The independent choice logic and beyond. InProbabilistic Inductive Logic Programming - Theory and
Applications, volume4911 ofLNCS. Springer, 2008.

• Matthew Richardson and Pedro M. Domingos. Markov logic networks.Machine Learning, 62, 2006.
• Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. InNIPS, 2017.
• Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. Injecting logical background knowledge into embeddings for

relation extraction. InNAACL HLT, 2015.
• Stuart Russell. Unifying logic and probability.Communications of the ACM, 58, 2015.

290

References

• Xujie Si, Mukund Raghothaman, Kihong Heo, and Mayur Naik. Synthesizing datalog programs using numerical
relaxation. InIJCAI, 2019.

• Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles A. Sutton, and Swarat Chaudhuri. Houdini: Lifelong
learning as program synthesis.InNeurIPS, 2018.

• Guy Van den Broeck, Dan Suciu, et al. Query processing on probabilistic data: A survey.Foundations and Trends® in
Databases, 7, 2017.

• Emile van Krieken, Erman Acar, and Frank van Harmelen. Analyzing differentiable fuzzy logic operators.CoRR, abs/
2002.06100, 2020.

• Wenya Wang and Sinno Jialin Pan. Integrating deep learning with logic fusion for information extraction.CoRR, abs/
1912.03041, 2019.

• Wang, P., Wu, Q., Shen, C., Hengel, A. V. D., & Dick, A. . Explicit knowledge-based reasoning for visual question
answering. IJCAI 2017

• Leon Weber, Pasquale Minervini, Jannes Münchmeyer, Ulf Leser, and Tim Rocktäschel. Nlprolog: Reasoning with
weak unification forquestion answering in natural language. InACL, 2019.

• Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss function for deep
learning with symbolicknowledge. InICML, 2018.

• Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for knowledge base reasoning.
InNIPS, 2017.

• Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: Embracing neural networks into answer set programming.
InProceedings of theTwenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI, pages 1755–1762,

291

References

• Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum. Neural-symbolic vqa:
Disentangling reasoningfrom vision and language understanding. InNeurIPS, 2018.

• Lotfi A Zadeh. Fuzzy logic and approximate reasoning.Synthese, 30(3-4):407–428, 1975.
• Pedro Zuidberg Dos Martires, Vincent Derkinderen, Robin Manhaeve, Wannes Meert, Angelika Kimmig, and Luc De

Raedt. Transformingprobabilistic programs into algebraic circuits for inference and learning. InProgram
Transformations for ML Workshop at NeurIPS, 2019.

• Gustav Šourek, Vojtech Aschenbrenner, Filip Zelezný, Steven Schockaert, and Ondrej Kuželka. Lifted relational
neural networks: Efficientlearning of latent relational structures.J. Artif. Intell. Res., 62, 2018

292

