From Statistical Relational Al to
Neural Symbolic Computation

Luc De Raedt, Sebastijan Dumancic, Robin Manhaeve, Giuseppe Marra
firstname.lastname@kuleuven.be

reusing some slides from previous tutorials with sz LEMUR
Angelika Kimmig, Kristian Kersting, David Poole, and Sriraam Natarajan

.. o ~
| *DTAL % m & ES,ILEB LEUVEN.AI INSTITUTE
7 %0 UNN‘@'Q?



mailto:firstname.lastname@kuleuven.be

You will find a version of this tutorial and additional
content at

https://dtai.cs.kuleuven.be/tutorials/nesytutorial
(after the tutorial)

See also
De Raedt, Dumancic, Marra, Manhaeve
From Statistical Relational to Neuro-Symbolic Artificial Intelligence
IJCAI 20, and long version on AlJ 24

. .
"
. -
®
.
[ ] o (=] ~
. *DTAI 2 Iz
[ )
0 K o
%
MACHINE LEARNING

B
%0 UNNQ.Q”



https://dtai.cs.kuleuven.be/tutorials/nesytutorial

Introduction




Learning and Reasoning
both needed

DANIEL
KAHNEMAN

System 1 - thinking fast - can do things like 2+2 = ? and
recognise objects in image

System 2 - thinking slow - can reason about solving complex
problems - planning a complex task

alternative terms — data-driven vs knowledge-driven, symbolic
VS subsymbolic, solvers and learners, neuro-symbolic...

A lot of work on integrating learning and reasoning, neural
symbolic computation to integrate logic / symbols
reasoning with neural networks

see also arguments

by Marcus, Darwiche, Levesque, Tenenbaum, Geffner,
Bengio, Le Cun, Kautz, ...

see also Al Debates



Real-life problems involve two
Important aspects.

Who can go first ?

A. The red car

B. The blue van

C. The white car



https://www.theorie-blokken.be/nl/gratis-proefexamen

Real-life problems involve two
Important aspects.

Who can go first ?

A. The red car

B. The blue van

C. The white car

Reasoning

Sub-symbolic perception


https://www.theorie-blokken.be/nl/gratis-proefexamen

Thinking fast

MAIN PARADIGM in Al
Focus on Learning

NEURAL



Thinking slow = reasoning

TWO MAIN PARADIGMS in Al

PROBABILITY

LOGIC

Their integration has been well studied In
Probabilistic (Logic) Programming and Statistical Relational Al (StarAl)



Learning

PROBABILITY

NEURAL

How to integrate these three paradigms in Al ?



A lot of ML

PROBABILITY

NEURAL

Well studied from a LEARNING perspective
in Deep Learning

10



Thinking slow = reasoning

TWO MAIN PARADIGMS in Al

PROBABILITY

LOGIC

Their integration has been well studied In
Probabilistic (Logic) Programming and Statistical Relational Al (StarAl)



State of the Art

LOGIC

NEURAL

Being studied from a LEARNING perspective
in Neuro Symbolic Computation

12



Key Message

oM 10

StarAl and NeSy share similar problems
and thus similar solutions apply

. WARNING

TALK MAY NOT COVER ALL of
NESY

See also
De Raedt, Dumancic, Marra, Manhaeve
From Statistical Relational to Neuro-Symbolic Artificial Intelligence

IJCAI 20, and long version on AlJ 24
13



Applications




Alpha Geometry

IMO 2015 P3

Let ABC be an acute triangle. Let (O) be its
circumcircle, H its orthocenter, and F the foot
of the altitude from A. Let M be the midpoint
of BC. Let Q be the point on (O) such that

QH 1 QA and let K be the point on (O) such
that KH L KQ. Prove that the circumcircles (O,)
and (O,) of triangles FKM and KQH are tangent
to each other.

AlphaGeometry

AlphaGeometry solving an Olympiad problem: Problem 3 of the 2015 International Mathematics

Solution

[...]

Construct D: midpoint BH [a]

[al, 0, midpoint HQ = BQ || 0,D [20]
[...]

Construct G: midpoint HC [b]

ZGMD = £G0,D = M 0, G D cyclic [26]
[...]

[al.[b] = BC |/ DG [30]

[...]

Construct E: midpoint MK [c]

[c] = 4KFC = KO, E [104]

[...]

ZFKO; = ZFKO, = KO; || KO, [109]
[109] = 0:0,K collinear = (0,)(0,) tangent

Olympiad (left) and a condensed version of AlphaGeometry’s solution (right). The blue

elements are added constructs. AlphaGeometry’s solution has 109 logical steps.




(New) Game Playing

The NeSy NooK system
defeats eight
world bridge champions
in Paris (2022)

Background knowledge

Human expertise
Symbolic methods

@ NukkAi
@nukkailabl Heuristic search algorithm
3 : 6136
¢ : 5238
Neural network
NooK won The Nukkai Challenge! Opponents’ strategy mimicking

https://challenge.nukk.ai/

16



Addition

Learn to add the sum of lists of MNIST images

EIBEE R AELI° 359

example multi-addition predicate

Assume you do not know how to map MNIST images to
numbers, but do know the rules of addition. Can you lean from
these examples how to map MNIST to numbers ?

" DeepProblLog, Manhaeve et al, NeurlPS 2018



Emerging applications

bicyclist <p, b> gets occluded by Car (c) | bicyclist <p, 6>

reappears from behind car (c)

& [} L p "3

e D,

S N
SE
s

5

bicyclist <p, b>

From Suchan, Bhatt and Varadarajan, AlJ 21



ROAD-R: The autonomous driving dataset with
logical requirements

Natural Language Explanations

If an agent pushes an object then it is a pedestrian

A pedestrian can only push objects, move away, etc.

Only pedestrains, cars, cyclists, etc. can cross from left

Only pedestrians and cyclists can wait to cross

Only pedestrians, cars, cyclists, etc can stop

Only pedestrians, cars, cyclists, etc can move

Only pedestrians, cars, cyclists, etc can move towards

Only pedestrians, cars, cyclists, etc can move away

An emergency vehicle can only overtake, move away etc.
Only emergency vehicles, cars etc. can have hazards lights on
A bus can only overtake, move away move towards etc.

A medium vehicle can only overtake, move away, move towards etc.

Giunchiglia, Eleonora, Mihaela Catalina Stoian, Salman Khan, Fabio Cuzzolin, and Thomas
Lukasiewicz. "ROAD-R: The autonomous driving dataset with logical requirements." Machine
Learning (2023): 1-31.



ROAD-R: The autonomous driving dataset with
logical requirements

® Task: road event-

v N\
detection ()
multi-label classification (B2) (=B /\
with constraints

® Solution: neuro-

symbolic Al e
Calculate most probable & ", Red
explanation s N
given constraints and R A |

neural outputs ' Light is both red and

green P s

Giunchiglia, Eleonora, Mihaela Catalina Stoian, Salman Khan, Fabio Cuzzolin, and Thomas
Lukasiewicz. "ROAD-R: The autonomous driving dataset with logical requirements." Machine
Learning (2023): 1-31.

20



Relational Affordances

- Object Affordance:

What can one do with

particular object?

- Relational Affordance:

in a particular context?

with multiple objects and

relations among them

- Use of statistical relational learning,
probabilistic programming for
learning, reasoning and planning !

[nputs | Outputs Function

| (O, A) E | Effect prediction
(O, F) A Action recognition/planning
(A.F) @, Object recognition/selection

Shelf

__E@

< O

@

—




Constrained output of LLMs

Lexical Constraint a: sentence contains keyword “winter”

Constrained Generation: Pr(x,,, | @, x;., = "the weather is")

X intractable

Pre-trained Tractable
Language Model Probabilistic Model
X141 Pryp(Xpq 1 X1 X1 | Prppyla] x5 xp.0)
cold 0.05 cold 0.50
warm 0.10 warm 0.01

X1+1 Pyl xy.)
cold 0.025
warm 0.001

Zhang, Honghua, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. "Tractable control for
autoregressive language generation." In International Conference on Machine Learning, pp.
40932-40945. PMLR, 2023.

22



Probabilistic Logic Shield for Reinforcement Learning

Wen-chi Yang et al, IJCAI 23 Distinguished paper award

Shield

Assuming noisy A,
Sensors f \ H
0.8 :: obstc(front). - WIll stay undamaged?
0.2 :: obstc(left). 5 Ploat B
E 0.5 :: obstc(right). (safela,s) = {i:;ezlerate : 83§
right — 0.8 E

0.5 ::act(accel);

0.3 : act(left);
0.2 :: act(right)

Probability of staying
rfc(a,ccelerate |s) =0.5

z(left|s) =0.3 safe if following JT?

0.9 :: crash:— obstc(front),act(accel).

- — P (safel|s) =0.576 :
\ m(right|s) =0.2 0.4 :: crash:— obstc(left),act(left). s ( ......... | ) ------------------------------------
0.4 :: crash:— obstc(right),act(right).

A

safe:— - crash.

What is a safer policy 777

r7r+(ac:celeraute |s) = 0.24
rt(left|s) = 0.48
kﬂJr(right |s) = 0.28

DeepProbLog Theory
(Manhaeve et al. AlJ)

AN




Visual Reasoning and Question
Answering

How many blocks are on the Will the block tower fall if What is the shape of the object Are there more trees than
right of the three-level tower? the top block is removed? closest to the large cylinder? animals?

Figure 1: Human reasoning is interpretable and disentangled: we first draw abstract knowledge of

the scene via visual perception and then perform logic reasoning on it. This enables compositional,
accurate, and generalizable reasoning in rich visual contexts.

Adding a reasoning component on top of
the perception can improve performance.

24 NS-VQA, Yi et al , NeurlPS 2019



Semantic Image Interpretation

Vay(partOf(z,y) — —partOf(y, x))
Vxy(Cat(x) A partOf(xz,y) — Tail(y) V Muzzle(y))

Vzy(Cat(x) — —partOf(z,y))

1.0 Precision-Recall curve types

0.8}

o
o

Precision
o
N

02— LTN_prior: AUC=0.800

— LTN_expl: AUC=0.692
— FRCNN: AUC=0.756

2.0 0.2 0.4 0.6 0.8 1.0
Recall

LIN, Serafini et al , NeSY@HLAI 2016



(New) Dialog Systems

User: Where is my meeting at 2 this afternoon?

place(findEvent(EventSpec(start=pm(2))))

Dialogues represented
(1) 2 —» pm ﬂ» EventSpec —» findEvent —»| place as SymbOIiC prOgramS
(e.g. dataflow graphs)

Event(name=“kickoff”, place=..) “Conference Room D”

Agent: Its in Conference Room D.

Andreas, Jacob, et al. ACL, 2020



Emerging applications

automated engineering assistant (IAAl 21)
interpret and correct designs and maps

Standard Prompting

Model Input
Q: Roger has 5 tennis balls. He buys 2 more cans of
? tennis balls. Each can has 3 tennis balls. How many
\ r tennis balls does he have now?

A: The answer is 11

// Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

N do they have?

A: The answer is 27. x

0
N

Intelligent OCR for chemical structures (ICLR 23)
and forms

27

ar rown|.
Say
Step 1: put brown disk in rod 1
Step 2: put yellow disk in rod 2
Step 3: put red disk in rod 2

Goal: move the yellow disk in rod 2
middle rod].

Initial State: brown disk on top ol
yvellow disk. yellow disk on top of red
disk. red disk in rod 1. The disks can
be moved in rod 1 [light brown], rod 2
[middle rod], rod 3 [dark 1 ]

Step 4: done purtting disks in rods

planning, reinforcement learning and shielding (AAAI
24, |JCAI 23 distinguished paper award)

Chain-of-Thought Prompting
Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11, The answer is 11

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

| Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 =9. The
answer is 9. 4/

reasoning and mathematical problem solving JAIR 23,
IJCAI 2017, EMNLP 21)



Both StarAl and NeSy

® Structured environments

O
® objects,and OQ(\,
g\\/ (Q‘D
® relationships amongst them O @
& (OQO
® and possibly QO \Q
O

® using background knowledge
® cope with uncertainty and/or perception

® |earn from data and reason with knowledge

28



The Seven Dimensions

1.
2.
3.
4.
5.
6.
/.

Proof vs Model based

Directed vs Undirected

Type of Logic

Symbols vs Subsymbols
Parameter vs Structure Learning
Semantics

Logic vs Probability vs Neural

29



1. Proof vs Model based

30



1. Proof vs Model based

31



1. Proof vs Model based
the logic dimension

Model- vs proof-based

First order / relational vs propositional
Grounding

Differences important for both StarAl and NeSY

32



Logic Programs

as in the programming language Prolog

Propositional logic program

burglary.
hears_alarm_mary.
facts :

burglary = true
earthquake.
hears_alarm_john.

alarm :— earthquake.

alarm :— burglary.

calls_mary :—alarm, hears_alarm_mary.

calls_john :—alarm, hears_alarm_john.

33



Logic Programs

as in the programming language Prolog

Propositional logic program

burglary.
hears_alarm_mary.

earthquake.
hears_alarm_john.

alarm :— earthquake.
rule:

alarm :—burglary. cails_mary =true IF alarm = true AND hears_alarm_mary = true

calls_mary :— alarm, hears_alarm_mary.

calls_john :—alarm, hears_alarm_john.

34



Logic Programs

as in the programming language Prolog
Propositional logic program Two proofs (by refutation)

burglary.

.- calls_mary.
hears_alarm_mary. B

l

:- alarm, hears_alarm_mary.

earthquake. l
hears_alarm_john. .- earthquake, hears_alarm_m

l :- burglary, hears_alarm

alarm :— earthquake. - hears_alarm_mary.

- hears_a}arm_mary.

alarm :— burglary. !

[ M

calls_mary :—alarm, hears_alarm_mary. i

calls_john :— alarm, hears_alarm_john. A proof-theoretic view

backward chaining

35



Logic as constraints

as in SAT solvers
Propositional logic Model / Possible World

IF AND

calls(mary)«hears_alarm(mary) A alarm { burglary

hears_alarm(john),

calls(john) <« hears_alarm(john) A alarm alarm,

OR calls(john)}
alarm < earthquake v burglary

the facts that are true
in this model / possible world

SAT: Find a model / possible world that satisfies all the constraints
SAT SOLVERS

A model-theoretic view

36



Relational/First Order Logic

Introduce Variables and Domains
The meaning of this is always the GROUNDED theory

allows to exploit symmetries / templates ...

burglary.

burglary.
Sy hears_alarm(mary).

hears_alarm(mary).
earthquake.

earthquake. .
hears_alarm(john).

hears_alarm(john).

alarm :— earthquake. alarm :— earthquake.

alarm :— burglary.

alarm :— burglary.
Sy calls(mary) :— alarm, hears_alarm(mary).

calls(X) :— alarm, hears_alarm(X).

calls(john) :— alarm, hears_alarm(john).
Variable X

Domain = {mary, john} Grounded Theory

BOTH for model and proof-based appraoch

37



Logical Theory

GROUNDING OUT

stress (ann) .
influences (ann,bob) .
influences (bob,carl).

smokes (ann) :- stress(ann).
smokes (bob) :- stress (bob).
smokes (carl) :- stress(carl).

influences (ann,ann),
influences (bob,ann),

smokes (ann) :-
smokes (ann) :-
smokes (ann) :-

influences (ann,bob),
influences (bob,bob),

smokes (bob) :-
smokes (bob) :-
smokes (bob) :-

smokes (carl)
smokes (carl)
smokes (carl)

influences (carl,ann),

influences (carl, bob),

:— influences (ann,carl),
:— influences (bob,carl),
:— influences (carl,carl),

stress (ann) .
influences (ann,bob) .
influences (bob,carl).

smokes (X) :- stress (X).

smokes (X) :-
influences (Y, X),
smokes (Y) .

IF INTERESTED ONLY IN
CERTAIN QUERIES,
CLEVER TECHNIQUES EXIST
TO AVOID GROUNDING OUT
COMPLETELY

smokes (ann) .
smokes (bob) .
smokes (carl) .

smokes (ann) .
smokes (bob) .
smokes (carl) .

smokes (ann) .
smokes (bob) .
smokes (carl) .



stress(ann) .

LOg ical ReaSOning: influences (ann,bob) .

influences (bob,carl).

MOdeI TheOretiC smokes (X) :- stress (X).

smokes (X) :-
influences (Y, X),

FINDING A MODEL smokes (Y) .

stress (ann) .
influences (ann,bob) .
influences (bob,carl).

smokes (ann) :- stress(ann).
-> infer smokes (ann)

smokes (bob) :- influences (ann,bob), smokes (ann)
-> infer smokes (bob)

smokes (carl) :- influences (bob,carl), smokes (bob).
-> infer smokes(carl).

FINDING A MODEL
here — the least Herbrand model as in Prolog using the Tp Operator (forward reasoning

39



. . §tress(ann).
Logical Reasoning:  saneiznen;
MOdeI TheOretiC smokes (X) :- stress(X).

smokes (X) :-

Clark’s completion AND call a SAT Solver influences (Y,X) ,
stress (ann) . smokes (Y) .
influences (ann,bob) .
influences (bob,carl) . Clark’s completion’s as a

grounding is incorrect
for Prolog when there are cycles

smokes (ann) <-> stress(ann) but it is too hard to explain why
v influences(ann,ann), smokes (ann) phere
v influences (bob,ann), smokes (bob)
v influences (carl,ann), smokes(carl)

smokes (bob) <-> stress (bob)
v influences (ann,bob), smokes (ann)
v influences (bob,bob), smokes (bob)
v influences (carl,bob), smokes (carl)

smokes (carl) <-> stress(carl)
v influences (ann,carl), smokes (ann)
v influences (bob,carl), smokes (bob)
v influencesQ%arl,carl), smokes (carl)



stress (ann) .

LOgiCaI ReaSOning influences (ann,bob) .

influences (bob,carl).

PrOOfS smokes (X) :- stress (X).

smokes (X) :-
influences (Y, X),

?- smokes (carl). smokes (Y) .
?- stress(carl). ?—~influ§nces(Y,carl),smokes(Y).

\

?- smokes (bob) .

/ ~— Yl=ann

?- stress (bob) . ?-l influences (Y1l,bob) ,6 smokes (Y1) .

/

?- smokes (ann) .
—— N

?-| stress (ann) . ?—- influences (Y2,ann),b smokes (Y2).

|

facts used in successful derivation:

influences (bob,carl) &influences (ann,bob) &stress (ann)



1. Proof vs Model based
the logic dimension

Model- vs proof-based

First order / relational vs propositional
Grounding

Differences important for both StarAl and NeSY

42



1. Proof vs Model based
2. Directed vs Undirected

43



V MORGAN &CLAYPOOL PUBLISHERS
m m .
Statistical Relational
I v I Artificial Intelligence
| Laogic, Probability,

and Computation

[ u Luc de Racdt
Kristian Kersting
Sriraam Natarajan
David Poole
Syvraests LECTURES ON ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING
Reashd ) Bencheman, Wihao W. Coben, and

@nds(A,B)
@;@ #okes(@

S
ey

Friends(/B,@

0.1 ::burglary.

Smokes(B) Friends(B,B)

Car:c_e;@

0.05 :: earthquake.

alarm :— earthquake.

alarm :— burglary.
0.7:calls(mary) :— alarm.

0.6::calls(john) :— alarm.

1.5 Vvx Smokes(x) = Cancer(x)
1.1 vx,y Friends(x,y) = (Smokes(x) & Smokes(y))

Probabilistic Logic Programs
ProblLog

undirected
directed Markov Net
Bayesian Net model theoretic
BABI

Y key representatives

Markov Logic




Bayesian Net

P(A|B, E)
P(R|E)
alarm (= true) | Burglar | Earthquake |
0.9999 true true radio | Earthquake
0.99 true false 1 true
0.99 false true 0 false
0.0001 false true

The remaining tables are P(b) = 0.01 and P(e) = 0.000001. The tables and
graphical structure fully specify the joint distribution P(A, R, E, B).



Queries

Initial evidence: The alarm is sounding

” @

P(bya) ... P(be a,e)
P(a) Zb,e,r P(b,e,a,r)
_ 2e, P(rbe) P(b)P(e) P(rle)
- Y, Plalb,e)P(b)P(e)P(rle)

P(bla) =

~ (.99



Logic Programs

as in the programming language Prolog

Propositional logic program Two proofs (by refutation)
burglary. .
hears_alarm(mary). - Ialls(mary).

:- alarm, hears_alarm(mary).

earthquake. l
hears_alarm(john). .- earthquake, hears_alarm(ma

l .- burglary, hears_alarm(|
alarm :— earthquake. - hears_alarm(mary).

alarm :— burglary. - hears_a*arm(mary)

[] v

calls(mary) :— alarm, hears_alarm(mary). [

calls(john) :— alarm, hears_alarm(john).
A proof-theoretic view

47



Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program

0.1 ::burglary.
0.3 ::hears_alarm(mary).

Probabilistic facts

0.05 ::earthquake.
0.6 ::hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).

)BABI
Y

48

Key Ildea (Sato & Poole)
the distribution semantics:

unify the basic concepts in logic
and probability:

random variable ~ propositional
variable

an interface between logic and
probability




Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program

0.1 ::burglary.
0.3 ::hears_alarm(mary).

0.05 ::earthquake.
0.6 ::hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).

49

Two proofs (by refutation)

.- alarm
:- burglary. .- earthquake.
P=0.1 l P=0.05 l
[] []
Probability of one proof: H Pf

fifacteProof



Probabilistic Logic Programs

as in the probabilistic programming language ProbLog
Propositional logic program Disjoint sum problem

0.1 :: burglary. .- alarm

0.3 ::hears_alarm(mary). / \

0.05 ::earthquake.

. :- burglary. .- earthquake.
0.6 ::hears_alarm(john).
P=0.1 l P=0.05 l
alarm :— earthquake. 1 1
alarm :— burglary.
Probability of one proof: H Pf
fifacteProof

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john). P(alarm) = P(burg OR earth)

= P(burg) + P(earth) - P(burg AND earth)

=/= P(burg) + P(earth)
50



Probabilistic Logic Program
Semantics

earthquake. [Vennekens et al, ICLP 04]

0.05: :burglary. re .
probabilistic causal laws

0.6::alarm :- earthquake.

0.8::alarm :- burglary.
g y earthquake |].0

alarm no alarm

0.6 0.4

burglary no burglary burglary

05 0.95\, no burglary

no alarm alarm no alarm

0.2

alarm

P(alarm)=0.6%0.05%x0.8+0.6x0.05%0.2+0.6%0.95+0.4%x0.05%0.8



Probabilistic Logic Program
Semantics

. : Bayesian Network
Propositional logic program

0.1 :: burglary. burglary.
0.05 :: earthquake.

alarm :— earthquake.

alarm :— burglary.

0.7::calls(mary) :— alarm.

0.6::calls(john) :— alarm.

Bayesian net encoded as Probabilistic Logic Program
PLPs correspond to directed graphical models

ProbLog has both (directed) probabilistic graphic models,




Flexible and Compact Relational
Model for Predicting Grades

8

“Program” Abstraction: c

* S, Clogical variable representing students, courses

* the set of individuals of a type is called a population

* Int(S), Grade(S, C), D(C) are parametrized random variables
Grounding:

* for every student s, there is a random variable Int(s)

* for every course c, there is a random variable Di(c)

* for every s, c pair there is a random variable Grade(s,c)

* all instances share the same structure and parameters

De Raedt, Kersting, Natarajan, Poole: Statistical Relation%?’ Al



ProblLog by example:

Grading

Shows relational structure C
* grounded model: replace variables by constants

Works for any number of students / classes (for 1000 students

and 100 classes, you get 101100 random variables); still only few

parameters |

With SRL / PP o " iR
* build and learn compact models, '— 8 Clg e
. from one set of individuals - > other sets; || 8 > ._
- reason also about exchangeability, [ Tl e
* build even more complex models, _ ~ '
- incorporate background knowledge G




ProblLog by example:

Grading ON |(ome)

Shows relational structure C

* grounded model: replace variables by constants

Works for any number of students / classes (for 1000 students
and 100 classes, you get 101100 random variables); still only few

parameters Student | Course | Grade
With SRL / PP S1 C1 A

* build and learn compact models, 2 2 g

* from one set of individuals - > other sets; g, c3 B

* reason also about exchangeability, S3 C2 B

* build even more complex models, 2‘3‘ 2 'f

* incorporate background knowledge sS4 Ca ?




ProblLog by example:

Grading

0.
0.

student (john) . student (anna).
course (ml) .

course (ai) .

4 int(S) :- student(S).
5 :: diff(C) :- course(C).

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(s,C,a); 0.5::gr(s,C,b);0.2::gr(S,C,c) :-
int(S), diff(C).

0.1::gr(s,C,b); 0.2::gr(S,C,c);

not int (S),

not diff (C).

0.3::gr(S,C,c); 0.2::gr(Ss,C,f)

not int(S),

diff (C).

student (bob) .
course (cs) .

0.2::gr(Ss,C,£f) :-
student (S), course(C),




ProblLog by example: Grading

unsatisfactory(S) :- student(S), grade(S,C,f).

excellent (S) :- student(S), not(grade(S,Cl,G) ,below(G,a)),
grade (S,C2,a).

0.4 int(S) :- student(S).

0.5 :: diff(C) :- course(C).

student (john) . student (anna) . student (bob).

course (ai) . course (ml) . course (cs) .

gr(S,C,a) :- int(S), not diff(C).
0.3::gr(s,C,a); 0.5::gr(s,C,b);0.2::gr(Ss,C,c) :-
int(S), diff (C).
0.1::gr(s,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,£f) :-
student (S), course(C),
not int(S), not diff (C).
0.3::gr(S,C,c); 0.2::gr(S,C,£f) :-
not int(S), di%;(C).



Dynamic networks

P‘:w 2 PG//'
|| S
AAnil:.l‘ jance 2 /1 A / w\

| i\"’ M&

A

O

\ ¢e ‘ |
AW NWAN
Allian #Q‘ ﬁ%’s
s NN\ My
':/ \P %“‘“\~"‘i @
/' nu‘y"

Travian: A massively multiplayer real-
time strategy game

iance
\
\"‘\"

i
\ il

/ / /! I I i
//Q// [
i;éé;lﬁ/ ‘E’D\hM'\

/

Can we build a model

of this world ?

Can we use it for playing
better ?

o8 [Thon et al, MLJ | 1]



Activity analysis and tracking
video analysis

=/

¥ A : Ry
- : ik
‘ . ] gL
4| ! J !
!
& - "
: N > 4 - : * g
1 i 7 W
i = r § N A

g+ R i¢ 8 < ——t - .. ’

. s el || \ ‘,‘ o,

\ - . -
x ‘ | ! Wy O\ .
A { = R/ / P (Pl g : ‘
X . ey N\ e o y
-y B v LAGS
[ S Nad
3 .4 Y O e,
- = . :
1

ex ) |\« Track people or objects
| over time? Even if

g@@;@ temporarily hidden?
4’%{ + + Recognize activities?
* Infer object properties?

(\\{4} AN [Skarlatidis et al, TPLP 14; [Persson et al, IEEE Trans on
v Nitti et al, IROS I3, ICRA 14, Cogn. & Dev. Sys. 19;
ML] 16] [JCAI 20]

99




Learning relational affordances

Learning relational
affordances
between

two objects
(learnt by experience)

1), an Similar to probabilistic Strips
(with continuous distributions) Moldovan et al. ICRA 12, |13, 4;Auton. Robots |8

I

<>O




Distributional Clauses (DC)

® Discrete- and continuous-valued random variables

random variable with Gaussian distribution

length (Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).

stackable (OBot,OTop) :- comparing Va|ues Of
=length (OBot) 2 =length (OTop), )
=width (OBot) 2 =width (OTop) . random variables

[Gutmann et al, TPLP | |; Nitti et al, IROS 13;
Nitti et al. MLJ]

61



Networks of Uncertain
Information

is related to

is located in
phenotype

participates in

participates in homologgroup

belongs to

is homologous to |is found in
Y

codes for
cellular refers to

biological component

process

is found in

participates in

Biomine
molecular
database @ function /i
Helsinki has subsumes,
http://biomine.cs.helsinki.fi \ 62 interacts with



Biology

Interaction network

Probabilistic Sub-network
network generation inference

~ “, v Inferred
L,_V _ sub-network

Molecular profiling Gene list

Figure 1. Overview of PheNetic, a web service for network-based interpretation of ‘omics’ data. The web service uses as input a genome wide interaction
network for the organism of interest, a user generated molecular profiling data set and a gene list derived from these data. Interaction networks for a wide
variety of organisms are readily available from the web server. Using the uploaded user-generated molecular data the interaction network is converted into
a probabilistic network: edges receive a probability proportional to the levels measured for the terminal nodes in the molecular profiling data set. This
probabilistic interaction network is used to infer the sub-network that best links the genes from the gene list. The inferred sub-network provides a trade-off
between linking as many genes as possible from the gene list and selecting the least number of edges.

e Causes: Mutations * Interaction network: * Goal: connect causes to effects
 All related to similar e 3063 nodes through common subnetwork
phenotype * Genes * = Find mechanism
« Effects: Differentially * Proteins * Techniques:
expressed genes * 16794 edges  DTProbLog
000 cause effect * Molecular interactions < Approximate inference
' * Uncertain

al., Molecular Biosystems |13, NAR 15] [Gross et al. Communications Biology, |9]



- C [ https:/dtai.cs.kuleuven.be/problog/

Home

-

a0 5 P

/]

)5 i

To-aid in the interpretation of gene lists, PheNetic'was built:on top of ProbLog.

Introduction.
Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities.

ProbLog is a tool that allows you to intuitively build programs that do not only encode complex interactions between a large sets of heterogenous components bt

uncertainties that are present in real-life situations.

The engine tackles several tasks such as computing the marginals given evidence and learning from (partial) interpretations. ProbLog is a suite of efficient algorithms
tasks. It is based on a conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce the inference tasks to well-s
weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature.

The Language. Probabilistic Logic Programming.

ProbLog makes it easy to express complex, probabilistic models.

0.3::stress(X) :- person(X).
0.2::influences(X,Y) :- person(X), person(Y).

smokes(X) :- stress(X).
smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y).

1BABI

Y
64




Probabilistic Programming
Languages outside LP

e |BAL [Pfeffer O1]

® Figaro [Pfeffer 09]

® Church [Goodman et al 08 ]
e BLOG [Milch et al 05]

® Stan & Edward & Anglican

® and many more appearing recently such

65



C h u rC h (define randplus5

(lambda (x) (if (flip 0.6)

e : several + x5

probabilistic functional : 00
. possible

programming executions (map randplus5 '(1 2 3))

[Goodman et al, UAI 08]

D ealigowith
probabilistic primitives + functional program LFFI(IBTIUVB'S)’
— distribution over possible executions
R efisnatiiggatith
rEtogcarahaag
Learning

onhe execution

(define plus5 (lambda (x) (+ x 5)))

(map plusS '(1 2 3))

66 http://probmods.org



Church vs ProblLog

(define randplus5 (lambda (x) (if (flip 0.6) (+ x 5) x)))

(map randpluss (1 2 Church result: (1 2) with 0.4x0.4
(I 7) with 0.4x0.6

0.4::p5(N,N);0.6::p5(N,M) :- M is N+5. (6 2) W|th 06)(04
1p5([1,11) . .
1p5([N|L], [M|K]) :- (6 7) with 0.6%0.6
pS(N,M),
1p5(L,K) .

ProblLog result: (1 2) with 0.4x0.4
(1 7) with 0.4x0.6
(6 2) with 0.6x0.4
(6 7) with 0.6x0.6

query (1p5([1,2],_)).

67



V MORGAN &CLAYPOOL PUBLISHERS
m m .
Statistical Relational
I v I Artificial Intelligence
| Laogic, Probability,

and Computation

[ u Luc de Racdt
Kristian Kersting
Sriraam Natarajan
David Poole
Syvraests LECTURES ON ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING
Reashd ) Bencheman, Wihao W. Coben, and

@nds(A,B)
@;@ #okes(@

S
ey

Friends(/B,@

0.1 ::burglary.

Smokes(B) Friends(B,B)

Car:c_e;@

0.05 :: earthquake.

alarm :— earthquake.

alarm :— burglary.
0.7:calls(mary) :— alarm.

0.6::calls(john) :— alarm.

1.5 Vvx Smokes(x) = Cancer(x)
1.1 vx,y Friends(x,y) = (Smokes(x) & Smokes(y))

Probabilistic Logic Programs
ProblLog

undirected
directed Markov Net
Bayesian Net model theoretic
BABI

Y key representatives

Markov Logic




Markov Logic: Intuition

* Undirected graphical model

* Alogical KB is a set of hard constraints
on the set of possible worlds

* Let’'s make them soft constraints:
When a world violates a formula,
It becomes less probable, not impossible

* Give each formula a weight
(Higher weight = Stronger constraint)

P(world) o exp (E weights of formulas it satisﬁes)

De Raedt, Kersting, Natarajan, Poole: Statistical Relational Al



A possible worlds view

Say we have two domain elements Anna and Bob as well as
two predicates Friends and Happy

- Friends(Anna, Bob)

Friends(Anna, Bob)

- Happy(Bob)  Happy(Bob)

De Raedt, Kersting, Natarajan, Poole: Statistical Relational ‘Al slides by Pedro Domingos



A possible worlds view

Logical formulas such as
not Friends(Anna,Bob) or Happy(Bob)
exclude possible worlds

- Friends(Anna, Bob) - Friends(Anna, Bob)
v Happy(Bob)

Friends(Anna, Bob)

- Happy(Bob)  Happy(Bob)

De Raedt, Kersting, Natarajan, Poole: Statistical Relational Al slides by Pedro Domingos



A possible worlds view

Instead of excluding worlds, we want them to become less likely,
e.g.
P(- Friend9 Anna, Bob) v Happy( Bob)) = 0.8

- Friends(Anna, Bob) - Friends(Anna, Bob)
v Happy(Bob)

Friends(Anna, Bob)

~Happy(Bob)  Happy(Bob)

De Raedt, Kersting, Natarajan, Poole: Statistical Relationa@AI



A possible worlds view

four times as likely that rule holds

O (- Friends(Anna, Bob) v Happy(Bob)) =1
O(Friends(Anna, Bob) n —Happy(Bob)) =0.75

-~ Friends(Anna, Bob) 1 1

Friends(Anna, Bob)

~Happy(Bob)  Happy(Bob)

De Raedt, Kersting, Natarajan, Poole: Statistical Relationafl Al slides by Pedro Domingos



A possible worlds view

Or as log-linear model this is:

w(® (- Friends(Anna, Bob) v Happy(Bob)))
=log(1/0.75) =0.29

-~ Friends(Anna, Bob) 1 1

Friends(Anna, Bob)

~Happy(Bob)  Happy(Bob)
This can also be viewed as' building a graphical model



Markov Logic

1.5
1.1

Vx Smokes(x) = Cancer(x)

Vx,y Friends(x,y) = (Smokes(x) & Smokes( y))

Suppose we have two constants: Anna (A) and Bob (B)

Cancer(B)

slides by Pedro Domingos



Markov Logic

1.5
1.1

Vx Smokes(x) = Cancer(x)

Vx,y Friends(x,y) = (Smokes(x) & Smokes( y))

Suppose we have two constants: Anna (A) and Bob (B)

Friends(A,B)

Friends(AA

Smokes(B) Friends(B,B)

Cancer(B)
Friends(B,A)

slides by Pedro Domingos



Markov Logic

1.5
1.1

Vx Smokes(x) = Cancer(x)

Vx,y Friends(x,y) = (Smokes(x) & Smokes( y))

Suppose we have two constants: Anna (A) and Bob (B)

Friends(A,B)

Friends(AA @
Friends(B,A)

Friends(B,B)

slides by Pedro Domingos



Markov Logic

1.5 |Vx Smokes(x) = Cancer(x)
1.1 |Vx,y Friends(x,y) = (Smokes(x) & Smokes( y))

Suppose we have two constants: Anna (A) and Bob (B)

Friends(A,B)

Friends(AA Smokes(B) Friends(B,B)
Cancer(B)

Friends(B,A)

slides by Pedro Domingos



Markov Logic

* A Markov Logic Network (MLN) is a set of pairs (F, w) where
* Fis aformula in first-order logic
* W Is a real number

« An MLN defines a Markov network with

* One node for each grounding of each predicate
in the MLN

* One feature for each grounding of each formula F in the
MLN, with the corresponding weight w

* Probability of a world

P(x)= %exp(z win, (x))
7\

Weight of formula i No. of true groundings of formula/in x

79



Possible Worlds

A vocabulary

o o

2 S
—~ — A <
S 3§ 8§ s
< @ I @
8 8 & 5
e e C (=
c g g2 0
0P 0P LL LL ]

Possible worlds

[0 0 0 0] Logical interpretations
] 0 ] 0

Slides adapted from Guy Van den Broeck



Possible Worlds

I

A logical theory

o o

o O
T = T < vXx,y, Smokes(x) A Friends(x,y) = Smokes(y)
i O
< & 3 g
s B %5 B
w o IL L _;__3
—|="' Interpretations that
(? (.) 9 9 ] satisfy the theory

Models

10 1 010

T

Slides adapted from Guy Van den Broeck



First-Order Model Counting

A logical theory

S\

vX,y, Smokes(x) A Friends(x,y) = Smokes(y)

Smokes(Alice)
Friends(Bob,Alice)

oIl Smokes(Bob)
o| Friends(Alice,Bob)

—| theory

i (:) 1 (:) 0 > First-order model count
S ~#SAT

Slides Guy Van den Broeck



Markov Logic

® MLNs are a template for ground Markov Networks

® Probability of a world/interpretation

® If n; =0then P(z)=—

Weight of formula i No. of true groundings of formula / in x




Markov Logic

A Markov Logic theory

N

o o
o O -
T = 2 Z 1.5 VX,y, Smokes(x) A Friends(x,y) = Smokes(y)
O = )
— O RS, 2
< 4 I A
N N 74 71
2 ¢ I3 3B
o © G & oy
e £ 2 2 |z
w O WL LW 9
T 0 0T
0 0 0 0 Zexp(l'.E) % 2)

i 0 ] O %exp(lﬁ * 1)

: : : : 7

— 1. 2
] 1 l l 7 6x].9 ( 0 ¥ ) counting only substitutions for which X =/=Y
X=Alice, Y=Bob

Slides adapted from Guy Van den Broeck X=Bob, Y=Alice




Markov Logic

A Markov Logic theory

N

1.5 VX,y, Smokes(x) A Friends(x,y) = Smokes(y)

Friends(Alice,Bob)
Friends(Bob,Alice)

Smokes(Alice)

theory

=~ Smokes(Bob)

L,
S
L=
}_ |

exp(1.5 *x 2)

N| —

i O ] O Eea:p(l.f)*l) Z /
— 3 partition function

i 1 l l %ex;lo(lﬁ % 2)

Slides adapted from Guy Van den Broeck



Markov Logic

* A Markov Logic Network (MLN) is a set of pairs (F, w) where
* Fis aformula in first-order logic
* W Is a real number

« An MLN defines a Markov network with

* One node for each grounding of each predicate
in the MLN

* One feature for each grounding of each formula F in the
MLN, with the corresponding weight w

* Probability of a world

P(x)= %exp(z win, (x))
7\

Weight of formula i No. of true groundings of formula/in x

86



Parameter Learning

9 ogP.(x) L) JE )]

ow,

No. of times clause i is true in data \

Expected no. times clause i/ is true according to MLN

Has been used for generative learning (Pseudolikelihood);
Many variations (also discriminative);
applications in networks, NLP, bioinformatics, ...

87



Applications

= Natural language processing, Collective Classification, Social
Networks, Activity Recognition, ...

Alchemy: Open Source Al

Tutorial Welcome to the Alchemy system! Alchemy is a software package providing a series
of algorithms for statistical relational learning and probabilistic logic inference,
Mailing Lists based on the Markov logic representation. Alchemy allows you to easily develop a

wide range of Al applications, including:

Alchemy
Collective classification

Link prediction

Entity resolution

Social network modeling
Information extraction

Alchemy-announce

Alchemy-update

Alchemy-discuss

Repositories Choose a version of Alchemy:
Code
Datasets
LN Alchemy Lite
Publications Alchemy Lite is a software package for inference in Tractable Markov Logic

(TML), the first tractable first-order probabilistic logic. Alchemy Lite allows for
Related Links fast, exact inference for models formulated in TML. Alchemy Lite can be used in
batch or interactive mode.

88



Why StarAl ?

Reasoning (Probability + Logic) AND Learning
SRL : Expressive Probabilistic Graphical Models

® First order logic results supports entities + relationships +
background knowledge — abstraction of multiple entities

® Recursion (e.g. smokers cannot be represented by a plate model)
PP : Power of a universal Turing machine = a prog. language

® you can program in it and have builtin expressive prob. models

® PP can learn -> so bring learning to programming languages

ProbLog fits both paradigms

89



90



Inference / Reasoning

® Most of the work in PP and StarAl is on
inference

® |t is hard (complexity wise)
® Many inference methods
® exact, approximate, sampling and lifted ...

® |nference is the key to learning

91



Two Steps

¢ Logical inference -
® about a ground logical theory
® proofs or model theoretic ...
® Result: Weighted Model Counting problem
¢ Probabilistic propositional inference —
® Knowledge Compilation
® Backtracking search — DPLL,VE, RC based

® Advanced — lifted inference

92



ProbLog Inference

Answering a query in a ProbLog program happens in four steps

1. Grounding the program w.r.t. the query

2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit

4. Evaluate the arithmetic circuit

0.1 :: burglary.
0.5 :: hears_alarm(mary).

calls(mar
0.2 :: earthquake. (mary)
0.4 :: hears_alarm(john). <>
alarm :— earthquake. hears_alarm(mary) A (burglary v earthquake)

alarm :— burglary.
calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).



ProbLog Inference

Answering a query in a ProbLog program happens in four steps

1.

Grounding the program w.r.t. the query

2. Rewrite the ground logic program into a propositional logic formula
3.
4. Evaluate the arithmetic circuit

Compile the formula into an arithmetic circuit (knowledge compilation)

OR | 6.14 calls(mary)

AND _@_;_0_4__\

AND | o.06 | \ AND [ 6.7 -
J J

hears_alarm(mary) A (burglary v earthquake)



V MORGAN &CLAYPOOL PUBLISHERS
m m .
Statistical Relational
I v I Artificial Intelligence
| Laogic, Probability,

and Computation

[ u Luc de Racdt
Kristian Kersting
Sriraam Natarajan
David Poole
Syvraests LECTURES ON ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING
Reashd ) Bencheman, Wihao W. Coben, and

@nds(A,B)

@;@ 473\0@5(@ Smokes(B)
A
Ly

@;(A) v

Friends(/B,@

0.1 ::burglary.
Friends(B,B)

Car:c_e;@

0.05 :: earthquake.

alarm :— earthquake.

alarm :— burglary.

0.7:calls(mary) :— alarm.

0.6::calls(john) :— alarm.

1.5 Vvx Smokes(x) = Cancer(x)
1.1 vx,y Friends(x,y) = (Smokes(x) & Smokes(y))

Probabilistic Logic Programs
ProblLog

directed undirected
B |re_c eN : Markov Net
ayesian Ne model theoretic

key representatives
95

Markov Logic




1. Proof vs Model based
2. Directed vs Undirected

96



2. Directed vs Undirected
the NeSy dimension

TWO ty p eS Of N e u ra I Sy m b O I i C T —
SyStemS Just like in StarAl

Logic as a kind of neural

program Logic as the regularizer

(reminiscent of Markov Logic

directed StarAl approach and logic Networks)
programs undirected StarAl approach and
(soft) constraints

Also, many NeSy systems are doing
knowledge based model construction KBMC
where logic is used as a template

Just like in StarAl

97



Logic as a neural program

directed StarAl approach and logic programs

e KBANN (Towell and Shavlik Ald 94)

* Turn a (propositional) Prolog program into a neural
network and learn

A - B, Z. Ke A
A :-B, 2.REWRITE , . o ' P
B —_— C ’ D .ﬁ B _ B . . ﬁ A
B :-E, F, G ' unct 2 2
’ ’ . B - C, D. conjunction L
Z - Y, not X. B’ - E, F, G. /\ ‘\
v - s, T. 7 - Y, not X. unnegated B’ B’’ Y
Y - S, T. dependency ,0\ /ﬁ /O\
‘negted | C D E F G S T
dependency c — Step 1

98



Logic as a neural program

directed StarAl approach and logic programs

ADD LINKS — ALSO SPURIOUS ONES

e — Step 3

HIDDEN UNIT

and then learn

iIs of activation & loss functions not mentioned)




Lifted Relational Neural Networks

directed StarAl approach and logic programs

* Directed (fuzzy) NeSy

* similar in spirit to the Bayesian Logic Programs and
Probabilistic Relational Models

* Of course, other kind of (fuzzy) operations for AND, OR
and Aggregation (cf. later)

ling(A,B)
\\u/ N sibling(star,dakot )H sibling|star dakotta) }_\{j
hsedaktt)—{h se(dakotta)

100 [Sourek, Kuzelka, et al JAIR]




Neural Theorem Prover

directed StarAl approach and logic programs

Towards Neural Theorem Proving at Scale

Example Knowledge Base:

IZ] fatherOf(ABE, HOMER).

parentOf(HOMER, BART).

@ grandfatherOf(X,Y) -
fatherOIi(X,Z),
parentO£(Z,Y).

' 1.0

%)

o %

.
.
Xiage !
32 parent0£(Z,Y) YIR\:JRI'I‘ H 40
» OCa,

ZMOMER :
.

grandpaOf ABE BART
r Y Y -.. . Y
00X
L. - 3.
@ RN X/ABE E Oa, 3.1 father0£(X,Z)
. ,
' et ' 40 3.2 parent0£(Z,Y)
O“‘
-“'
fatherOf ABE e
B
Z :- -------------
‘Eg :
.
Xiase !
Y/BART s %‘o 3.2 parent0£(Z,Y)
o T ZiparT ! -
FAIL '
40
.

HOMER

-
* parentOf

v I 3 [
A 4 .
wes b

... Y ~
1. P09
wes

BART parentOf

BART

L]

XJ/ABE
Y/BART »
ZIHOMER :
.

' Oa

40 40

X/ABE :
Y/BART »
Z/BART :

.

X/ABE :
Y/BART »
ZIBART :

L

.
X/ABE Q
.

Y/BART
Z/HOMER

o)

the logic is encoded In the network
how to reason logically ?

[Rocktdschel Riedel, NeurIPS 17; Minervini et al.]



2. Directed vs Undirected
the NeSy dimension

TWO ty p eS Of N e u ra I Sy m b O I i C T —
SyStemS Just like in StarAl

Logic as a kind of neural

program Logic as the regularizer

(reminiscent of Markov Logic

directed StarAl approach and logic Networks)
programs undirected StarAl approach and
(soft) constraints

Also, many NeSy systems are doing
knowledge based model construction KBMC
where logic is used as a template

Just like in StarAl

102



Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

This constraint should be satisfied

(—031 A\ X9 N\ ZEg)\/
(_I.le A\ L9 A\ _l.ilfg)\/

(371 /\ %) N\ _ng)

from Xu et al., ICML 2018

103



Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

Probability that constraint is satisfied

(1 — .2131)(1 — CUQ)CEg—-
(1 — 2131)5172(1 — 563)——
331(1 — 2132)(1 — 5133)

basis for SEMANTIC LOSS

(weighted model counting)

104




Logic as a regularizer

undirected StarAl approach and (soft) constraints

Semantic Loss:

* Use logic as constraints (very much like “propositional
MLNSs)

. Semantic loss ~ SLoss(T) o< —log » [ »i ][] (1 —pi)
X|:T reX xeX

* Used as regulariser Loss = T'raditional Loss + w.SLoss

* Use weighted model counting , close to StarAl

(o)



Logic as a regularizer

e Semantic Loss can be used with any logical
constraint theory

e Examples with semi-supervised learning,
where the constraint enforces that each
example should have a class

® very nice properties :

o differentiable, also monotonicity

o if a E Bthen SLoss(a) > SLoss(f)

106



Logic Tensor Networks

undirected StarAl approach and (soft) constraints

P(x,y) — A(y), withG(x) = vand G(y) = u

G(P(v,u) > A(u)

107 Serafini & Garcez



Semantic Based Regularization

undirected StarAl approach and (soft) constraints

Evidence Predicate

F = Vd Pa(d) = A(d)
Fr = VdVd R(d,d') = ((Ad) N A(d)) V (mA(d) A —=A(d))) Groundings
C = {dy,ds} Pa(dy) =1
R(dy,ds) =1
1\ Output
Output Layer
2

Propositional Layer [ tr(Pa(dy), fa(dy)) }

____________________

‘B avg

{tFR (R(d1,dz), fa(dy), fA(dfz))]

the logic is ehcoded in the network

how to reason logically ?

Diligenti et al. AlJ




[wo types of Neural Symbo| i
tatistic elation
ti cial Intelligence
ogic, Probability,
an, d Computation

Just like in StarAl
Logic as a kind of neural Logic as the regularizer
roaram (reminiscent of Markov Logic
prog Networks)
directed StarAl approach and undirected StarAl approach and
logic programs (soft) constraints

Conseqguence :
the logic Is encoded in the network

the ability to logically reason is lost
logic is not a special case




2. Directed vs Undirected
the NeSy dimension

and Computation
Luc de Raedt
° Kristian Kersti
Sriraam Natarajan
' “ O e S O e u I a I I I O I C S e I I l S =
SynvraEsIs LECTURES ON ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING
R | Benchan, Wil W. Cohon, s Feer Stome, S £

Just like in StarAl

Logic as a kind of neural

program Logic as the regqularizer
(reminiscent of Markov Logic

Networks)

undirected StarAl approach and
(soft) constraints

directed StarAl approach and
logic programs

Also, many NeSy systems are doing
knowledge based model construction KBMC
where logic is used as a template

Just like in StarAl

|10



3. Types of Logic

111



3. Types of Logic

Key Messages

o Different types of logic exist

e Different types of logic enable different functionalities

112



3. Types of Logic

113



Various flavours of logic

stress (ann) .

alarm :— earthquake. influences (ann,bob) .

alarm :— burglary. influences (bob,carl) .
smokes (X) :- stress(X).
calls_mary :— alarm, hears_alarm_mary. smokes (X) :-

influences (Y, X),

calls_john :—alarm, hears_alarm_john. smokes (Y) .

Propositional logic First-order logic

114



Various flavours of first-order
logic

Logic programs
= programming language




Logic programming and Prolog

Full-fledged programming language
structured terms

/

member (X, [X]| ]).

member (X, [ |Tail]) :-
member (X, Tail).

AN

recursion



Various flavours of first-order
logic

Logic programs
= programming language

Datalog
= Logic programs
that always terminate




Datalog

Query language for deductive databases

no structured terms
guaranteed to terminate

ancestor (X, Y) :- parent(X, Y).
ancestor (X, Y) :- parent(X, Z2), ancestor(Zz, Y).

118



Various flavours of first-order
logic

Answer-set programs
= Logic programs with
multiple models that

always terminate
+ soft/hard constraints

+ preferences

Logic programs
= programming language

Datalog
= Logic programs
that always terminate



Answer-set programming

Prolog with multiple models + interesting features

choice rules

col(r). col(g). col(b). /

1 {color(X,C) : col(C)} 1]:- node(X).
:— edge(X,Y), color(X, , color (Y, .

\ constraint

120



What can it do?



What can it do?

Datalog:
database queries



What can it do?

Answer-set programming:
database queries, common-sense
reasoning, preferences

Datalog:
database queries

123




What can it do?

Logic programming:
programs manipulating structured
objects, infinite domains, ...

Answer-set programming:
database queries, common-sense
reasoning, preferences

Datalog:
database queries

124



Logic program vs First-order
logic

Issues with transitive closure in first-order logic
edge(|,2).
path(A,B) < edge(A,B).
path(A,B) < edge(A,C), path(C,B).

Logic programs always First-order logic can have
have one model many models
{edge(1,2), path(l1,2)} {edge(1,2), path(1,2)}

{edge(1,2), path(1,2), path(l,1)}
{edge(l,2), path(l,2), path(2,1)}



3. Types of Logic

126



Logic in NeSy -




Logic in NeSy - Dataloo

JdILP, Neural Theorem
Provers, LRNN, DiffLog, ...




Logic in NeSy - Answer-satl
programming

NeurASP

JdILP, Neural Theorem
Provers, LRNN, DiffLog, ...




Logic in NeSy - oo programming

DeepProblog,
NLProlog

NeurASP

JdILP, Neural Theorem
Provers, LRNN, DiffLog, ...




Logic in NeSy - First-order logic

Logic tensor networks, NMLN,
SBT, RNM

DeepProblog,
NLProlog

NeurASP

JdILP, Neural Theorem
Provers, LRNN, DiffLog, ...




3. Types of Logic

Key Messages

o Different types of logic exist

e Different types of logic enable different functionalities

132



4. Symbolic vs sub-symbolic




4. Symbolic vs sub-symbolic
Key Messages

e Entities are represented very differently in symbolic and
sub-symbolic systems, but they are complementary

e NeSy systems can be categorized by how they use
symbolic and sub-symbolic intermediate representations

|34



Symbolic representations

* Atoms: an, bob motherOf
an - bob
* Numbers: 4, -3.5
* Variables: X,Y
10,11,2/0,5

* Structured terms: f(t1,...,tn)

* motherOf(an) :1 2 Z

* [-0.1,1.2,0.5]

* [[1,2,3],[4,5,6]] c}

* plus(3,times(2,5)) /7 \\



Comparing symbols: unification

* Powerful mechanism for symbol matching
* basis for many logic-based Al systems

* Finds substitution 8 such that both symbols match
* mother(X, bob) = mother(an, Y)
*0={X=an, Y =bob}

* Not useful to determine similarity
* mother(an,bob) = mother(an,charlie)?



Sub-symbolic representations

* Sub-symbolic systems require numerical representation
* Often, entities are already numerical in nature

| 0,103 ..
- S S =
! 09-02 ..

* Generally, these representations are fixed in size and dilme'nsionality

* Exceptions require special neural architectures, e.qg.
* Recurrent neural networks
* Fully convolutional networks



Sub-symbols in StarAl

* |t is possible to represent these sub-symbols in logic
* vectors: [0.1, -0.5, 0.6]

* matrices: [[0.2,0.4],
[0.3, 0.1]]

* However, they are not part of the computation mechanisms.
* |.e. we cannot learn its parameters
* They are not first class citizens.



Comparing sub-symbols

* Similarity can be determined through various metrics
* L1, L2, radial-basis function, ...
* Can only give a degree of similarity la-bl|2

 Whenis a = b? Whenis a=Db? — 7



4. Symbolic vs sub-symbolic
Translating between representations




Symbols to sub-symbols

* A lot of deep learning research is on how to represent symbols

N I ' NN N 4 ¢

The quick brown fox ... s s :
g — 132 32 204 .. — 08 04 06 ..
* Encoding relations r(h,t)
* Many ways to structure embedding space
Models score function f(h, r, t)
TransE [2] —||h+r—t||;/2
TransR [10] —||Myh + 1 — M,t]|2
DistMult [20] h ' diag(r)t
ComplEx [16] Real(h" diag(r)t)
RESCAL [12] h™M;t

RotatE [15] —|lhor—t||?

141



Symbols to sub-symbols

3
* What about graphs? 00

/\ 1 0 0 1 [
USSR OSSO SRS S— 0,4
‘ / 1100
o ?

0<¢?9 \ |

/ N\




Sub-symbols to symbols

* E.g. in neural network classifiers
* Turn real-valued vector into discrete classes
* Final layer with specific activation function

argmax 1
| ——— 0,1 /
0,1 —0,3 e | 0,6 softmax B B
—_— 0902 ----------- | — 01 p(1) = 0.5, ...
Bt s W approximate
O F 04| Gumbe: dlﬁerentlable sample
" - softmax [1] =0.02, p(1) = 0.95, ...

[1] Jang et al.:"Categorical Reparameterization with Gumbel-Softmax", ICLR 2017



4. Symbolic vs sub-symbolic
Representations in NeSy




Representation in NeSy

» StarAl
* Input = intermediate = output = symbolic representation
* Neural methods
* Input = intermediate = sub-symbolic
* Output =
* Symbolic (classifier)
* Or sub-symbolic (auto-encoder, GAN, regression, ...)
* NeSy
* Intermediate representation = symbolic or sub-symbolic
* We discern several approaches

(o



4. Symbolic vs sub-symbolic
Single translation step




Single translation step

* Symbolic input is mapped onto sub-symbols

* One-hot encoding, relational embeddings, ...
* Afterwards, all reasoning happens in sub-symbolic space
* This approach is seen in most NeSy systems

* Examples include:
* LTNs[1], SBRJ[2], NLMs][3], TensorlLog[4]

[1] Serafini, et al.: "Logic Tensor Networks:

Deep Learning and Logical Reasoning from Data and Knowledge", NeSy@HLAI 2016
[2] Diligenti et al.: "Semantic based regularization for learning and inference", Artificial Intellligence 2017
[3] Dong et al.: "Neural Logic Machines", ICLR 2019
[4] Cohen et al.: "Deep Learning meets Probabilistic DBs"



Logic Tensor Network

* This translations is made explicit in Logic Tensor Networks

Definition 1. A grounding G for a first order language L is a function from the signa-
ture of L to the real numbers that satisfies the following conditions:

1. G(c¢) € R™ for every constant symbol ¢ € C;
2. G(f) e Rmo) — R™ forevery f € F;
3. G(P) e R**(B) —[0,1] for every P € P;

G(f(t1, . tm)) = G(F)(G(t1),-..,G(tm))

G(P(t1;- - tm)) = G(P)(G(t1), .., G(tm))
g(ﬁp(tla 7tm)) =1- Q(P(tl, atm»

G(¢1 V or) = u(G(é1),---,G(dr))

148
Luciano Serafini, Artur S. d'Avila Garcez: Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge. NeSy@HLAI 2016




Logical Theory

GROUNDING OUT

stress (ann) .
influences (ann,bob) .
influences (bob,carl).

smokes (ann) :- stress(ann).
smokes (bob) :- stress (bob).
smokes (carl) :- stress(carl).

influences (ann,ann),
influences (bob,ann),

smokes (ann) :-
smokes (ann) :-
smokes (ann) :-

influences (ann,bob),
influences (bob,bob),

smokes (bob) :-
smokes (bob) :-
smokes (bob) :-

smokes (carl)
smokes (carl)
smokes (carl)

influences (carl,ann),

influences (carl, bob),

:— influences (ann,carl),
:— influences (bob,carl),
:— influences (c¢arl,carl),

stress (ann) .
influences (ann,bob) .
influences (bob,carl).

smokes (X) :- stress (X).

smokes (X) :-
influences (Y, X),
smokes (Y) .

IF INTERESTED ONLY IN
CERTAIN QUERIES,
CLEVER TECHNIQUES EXIST
TO AVOID GROUNDING OUT
COMPLETELY

smokes (ann) .
smokes (bob) .
smokes (carl) .

smokes (ann) .
smokes (bob) .
smokes (carl) .

smokes (ann) .
smokes (bob) .
smokes (carl) .



Logic Tensor Network

Gg(P(v,u) = A(u)

(- G
(o) - (2 | Sub-symbolic
@‘@ - @‘@ computation
(+) (+) o (+) (+) |
\ >/ - \ >/ i
L (vi) (v3)

— Encoding symbols

150
Luciano Serafini, Artur S. d'Avila Garcez: Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge. NeSy@HLAI 2016



4. Symbolic vs sub-symbolic
Alternating symbols and sub-symbols




Alternating symbols and sub-symbols

Both symbolic and sub-symbolic representations are used
* Not simultaneously by one component
* Some components work on symbols, others on sub-symbols

Indicative of systems that implement an interface

Very natural for NeSy systems originating from a logical framework
* Examples include:

* DeepProblLog|[1], NeurASP[2], ...

* ABL[3], NeurolLog[4], ..

[1] Manhaeve et al: "DeepProblLog: Neural Probablistic Logic Programming", NeurlPS 2018

[2] Yang et al: "NeurASP: Embracing Neural Networks into Answer Set Programming", IJCAI 2020
. [3] Dai et al.: "Bridging Machine Learning and Logical Reasoning by Abductive Learning", NeurlPS 2019
y [4] Tsamora et al. "Neural-symbolic integration: A compositional perspective"



Neural predicate

Output distribution

e Neural networks have
uncertainty in their predictions

99999999999

e A normalized output can be

Interpreted as a probability

distribution unify the basic concepts in logic
and neural networks:

Key Idea DeepProblLog

e Neural predicate models the
output as probabilistic facts neural predicate ~ neural net
o
PROBABI

an interface between logic and
neural nets

No changes needed in the
probabilistic host language

153



DeepProblog

e DeepProblLog: interface between PLP (ProblLog) and neural networks.
e This interface takes the form of the neural predicate

e Qutput of neural networks represented as probabilistic facts

nn(mnist net, [D], N, [0 ... 9] ) :: digit(D,N).
addition(X,Y,Z2) :- digit(X,N1l), digit(¥,N2), Z is N1+N2.

e In the logic, the images are represented as constants
e Sub-symbolic properties are used in the neural network to make predictions

e This may seem as a limitation, but isn't

Examples:
addition( El, H,8), addition(ld ,B ,4), addition(E,6 BE,11), ..

154



DeepProbLog exemplified:
MNIST addition

Task: Classity pairs of MNIST digits with their sum

ElBis
O
Ed ES 11

Benefit of DeepProblLog:
 Encode addition in logic

e Separate addition from digit classification

nn(mnist net, [X], Y, [0 ... 9] ) =:: (X,Y).
addition(X,Y,Z) :- (X,N1), (Y,N2), Z is N1+N2.
addition(E],B,8) :- digit(Ej}N1l), digit(p§,N2), 8 is N1 + N2.
Examples:

addition ( El’ ; 8), addition(ﬂ = ,4), addition( ' B y11), ..



Example

Learn to classify the sum of pairs of MNIST digits

Individual digits are not labeled!

Eg ( ’ ’8)

Could be done by a CNN: classify the
concatenation of both images into |9 classes

EINMECIA-REN-~

However:

156



MNIST Addition

Pairs of MNIST images, labeled

with sum
Loss Accuracy
. 0+ 1.0
Basellne: CNN >0 DeepProblLog
2.51 CNN L 0.8
® (lassifies concatenation of both *° 06
. . 1.5- A
images into classes 0 ...18 o 0.4
0.5+ " -0.2
DeepProblog:
0.0

. , . . : : . 0.0
0 5000 10000 15000 20000 25000 30000
Iterations

® CNN that classifies images into
0...9

® Jwo lines of DeepProblog code

157



Multi-digit MNIST
addition with MNIST

number ([ | , Result , Result) .

number ( [HIT ],Acc , Result) :— oS Aecursd
dlglt(H, Nr ), Acc2 1s Nr +10*Acc , 2.5 DegpProblog |
number ( T , Acc2 ,Result) . 50
number (X,Y) :— number (X,0.,Y ) . - 06
-0.4
multiaddition(X, Y, Z ) :—
number (X, X2 ), o o
number (Y, Y2) ) o 0 5000 10000 15000 20000 25000 30000
7 is X2+Y?2 . rerations

(b) Multi-digit (T2)

158



Noisy Addition

nn(classifier, [X], Y, [0 .. 9]) :: digit(X,Y).
t(0.2) :: noisy.

1/19 :: uniform(X,Y,0) ; ... ; 1/19 :: uniform(X,Y,18).

addition(X,Y,Z) :- noisy, uniform(X,Y,Z).
addition(X,Y,Z) :- \+noisy, digit(X,Nl), digit(Y,NQ), Z is N1+N2.

(a) The DeepProbLog program.

Fraction of noise
0.0 0.2 0.4 0.6 0.8 1.0

Baseline 93.46 87.85 8249 52.67 879  5.87
DeepProbLog 97.20 95.78 9450 9290 46.42  0.88
DeepProbLog w/ explicit noise 96.64 95.96 95.58 94.12 73.22 2.92
Learned fraction of noise 0.000 0.212 0.415 0.618 0.803 0.985

Table 3: The accuracy on the test set for T4.




DeepProblog

nn(mnist net, [X], Y, [0 ... 9] )

(X,Y). N q-

addlthH(X,YrZ) s = [9.6,8.2,-;1,9.8] D
(X,N1),
(Y,NZ) , 0.48, ® 0.02,

[0.6,0,0,0.8] ® l0.0.2,0.1,0]

Z is NI1+N2. /X\

[digit(ﬂ,@) } [digit(ﬂj) } [digit(ll,‘l) } {digit(ll,@) ]
0.8, 0.1, 0.6, 8.2,

The ACs are differentiable and [1,8,0,0] (0,1,0,0] [0,0,0,1] (0,8,1,0]
there is an interface with the
neural nets

PROBABI

5 T

*
K

160



Useful Semirings

task A e e j a(v) a(—w) ref
B, BT,
SAT {true, false} false true \Y; A true true G. GK.
K, L, M
B, G,
#SAT N 0 1 + 1 1 GK, K,
L
\\'1\1(‘ RZ“ 0 | € RZ() S RZ“
| | B, BT,
PROB R 0 1 e [0,1] 1 — a(v) B G. K
SENS R[V] 0 1 + : vor e [0,1] 1 — a(v) K
GRAD R>o x R (0,0) (1,0) Eq. (4) | Eq. (5) Eq. (2) Eq. (3) E, K
B, BT,
MPE R> 0 | max e [0,1] 1 — a(v) G, K., L.
M
S-PATH N~© o0 0 min + €N 0 Bl ’K(lh’
W-PATH N~ 0 o0 max min €N o0 BT
FUZZY 0,1] 0 1 max min e [0,1] 1 GK, M
EWEIGHT {0,....k} k 0 min R €{0,....k} | €1{0,...,k} M
OBDD. 0BDD- (V) | OBDD-(0) | OBDD. (1) V A OBDD- (v) | —OBDD.(v) K
WHY P(V) () 0 U U {v} n/a GK
RAT N[V 0 1 + v n/a GK

Table 1: Examples of commutative semirings and labeling functions. The WHY and RA" provenance semirings apply to
positive literals only. Reference key: B (Bacchus et al., 2009), BT (Baras and Theodorakopoulos, 2010), E (Eisner, 2002), G
(Goodman, 1999), GK (Green et al., 2007), K (Kimmig et al., 2011), L (Larrosa et al., 2010), M (Meseguer et al., 2006); more

examples can be found in these references. ) .
! From Kimmig,Vanden Broeck and De Raedt, 2016



Program Induction/Sketching

In Neural Symbolic methods
® Rule Induction — work with templates
P(X) :- R(X,Y), Q(Y)
® and have the “predicate” variables / slots BQ, R determined by the NN
® Simpler form, fill just a few slots / holes
Approach similar to ‘Programming with a Differentiable Forth Interpreter ['1 04
® Partially defined Forth program with slots / holes
® Slots are filled by neural network (encoder / decoder)

Fully differentiable interpreter: NNs are trained with input / output
examples

162



Example DeepProblog

neural predicate

hole(X,Y,X,Y):-
(X,Y,0).

hole(X,Y,Y,X):-
(X,Y,1).

bubble sort

bubble([X],[],X).

bubble([H1,H2IT],[X1IT1],X):-
hole(H1,H2,X1,X2),
bubble([X2IT],T1,X).

(a) Accuracy on the sorting and addition problems (results for 94 reported by Bosnjak et al. [2017]).

bubblesort([],L,L).

bubblesort(L,L3,Sorted) :-
bubble(L,L2,X),

bubblesort(L2,[XIL3],Sorted).

sort(L,L2) :- bubblesort(L,[],L2).

PROBABI

Training length — 2 3 4 5 6
04 on GPU 42s  160s - - -
04 on CPU 6ls 390s - E i
DeepProbLog on CPU I1s 14 s 32s 114s 2455

(b) Time until 100% accurate on test length 8 for the sorting problem.

Table 1: Results on the Differentiable Forth experiments

Sorting: Training length Addition: training length

Test Length 2 3 4 5 6 2 4 8
v 8 100.0 100.0  49.22 - - 100.0 100.0 100.0
04 [BoSnjak et al., 2017] 64 | 1000 1000 2065 - ~ | 1000 1000 1000
DeenProblLos 8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
P © 64 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0



DeepSeaProbLog

dim is neural net returning parameters of normal distribution.

length (Obj) ~ normal (dim(Ob7j,Image)) .

large (Obj) :- length(Obj) > 100.

determining order digits
to determine year

PROBABI

&




DeepSeaProbLog

So far from input 3 to output 11 so that SUM( ﬂ ,11) holds

In DeepSeaProblog, you can query SUM( , X, 5)

fs

vae latent dlglt

el B L

recon_loss )

recon_loss )

B

Figure 4: Given example pairs of images and the value of their subtraction, e.g., (I, ) and 3, the CVAE encoder
vae_latent first encodes each image into a multivariate normal NDF ( ) and a latent vector. The latter is
the input of a categorical NDF digit, completing the CVAE latent space. Supervision is dual; generated images are
compared to the original ones in a probabilistic reconstruction loss, while both digits need to subtract to the given value.

LOG RAL




DeepProblog:
Embeddings as symbols

Computational Graph

RBF succesor(ElL, &) :-

— \ cnn_embed(H ,e1),

| cnn_embed(E,e?),
% embed(“successor”,r),
: add(r,e1,e3),
T T_ | T rbf(e2,e3).
ﬂ embefdmg i@ Idea of TransE [Bordes et all
I

A
|
“successor”

166



2D MNIST image embeddings

SN

5.0 - o

™ o _° - @ 2.5 k‘“

S e o 0.0 - .

q L) ad) 7€ 4] ve ¢
0.10 - Yo, 8 "\
¢ ) e P

0.12 A

0.11 A

O 0O ~NO WU WN = O
(s}

0.09 - 9 o -5.0 1 ®

751 \

0.08 A

O 00O NO WL & WN K O

—0.09 —0.08 —0.07 —0.06 —0.05 —0.6 -0.4 -0.2 0.0 0.2 0.4



4. Symbolic vs sub-symbolic
Simultaneously symbolic and sub-symbolic




directed StarAl approach and logic programs

Neural T heorem Prover

Towards Neural Theorem Proving at Scale

Example Knowledge Base: Q ' 1.0
@ fatherOf(ABE, HOMER). s
parentOf(HOMER, BART). grandpaOf ABE BART

E' grandfatherOf(X,Y) :- -

fatherOI(X,Z),

parentO£(Z,Y). I8 2. 3
%) . On %) . On Xnse 4 Oh 3.1 fathero£(X,Z)
. ' 40 Vieawr 40 3.2 parentO£(Z,Y)
o’
“
o’
- s ) “‘u'
fatherOf ABE .‘_,-
SeeRARAZAAAS2Lassesassenane, Launt
Z .‘llllllll-“-
. .
. L]
~ ) X/ABE : O, 20 X/ABE : 0 ~ )
32 parentO£f(Z,Y)]| vmarr Y/BART 4 3.2 parent0f(Z,Y)
Ky ZMOMER : Oa FAIL ZIBART : .
. ' 40 B ' 40 2
=. :
“ .'
g {.L;—‘t‘:’c‘fl'_':if HOMER BART parent Of BART BART ‘00
v g e Y v . JEaRg === e "
008 QO .
1. 2. 1. 2.
v 3. . . 3.
: N N ' o
: 40 - 40 : 40 : 40
X/ABE X/ABE X/ABE X/ABE
Y/BART : FAIL Y/BART : O Y/BART : Ca, FAIL Y/BART : Oa
ZIMOMER 4 40 ZIHOMER 40 ZIBART 40 Z/BART 40
: “© : Oﬁ : Oﬁ : 40

denote proof states (left: substitutions, right: proof score -generating neural network). All the non-FAIL proof states are
to obtain the final proof success (depicted in Figure 2). Colours and indices on arrows correspond to the respective KB rule

[Rocktdschel Riedel, NeurIPS 17; Minervini et al.]



Simultaneously symbolic and sub-symbolic

* Both symbolic and sub-symbolic representations are used
* All entities have both representations
* Reasoning uses both simultaneously

* Reasoning mechanism is extended

* Only used in a few systems
* E.g. NTP[1], CTPJ2]

[1] Rocktéschel et al.: "End-to-end differentiable proving.”, NeurlPS 2017.
u [2] Minervini et al.: "Learning Reasoning Strategies in End-to-End Differentiable Proving", ICML 2020



Neural Theorem Prover

* The neural theorem prover uses both symbols and sub-
symbols simultaneously

* Symbols retain their symbolic nature
* Each symbol has a learnable sub-symbol T

* Symbol comparison:
* Normal unification

* Comparison of sub-symbols:
* sim(x,y) = exp( - [[Tx - Ty|2)

g

Tim Rocktaschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.



Soft unification

* Unify what can be unified
* Use similarity to compare other symbols and use it as a score

mother(an, bob) = parent(X, bob)

—

sim(mother,parent) an =X bob = bob
— —, 01 = {X = an} B2 = {}
mother parent

Tim Rocktaschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.



Example

mother(an, bob).
r1(X,Y) - r2(Y,X). child(bob, an) 5

/ \‘ r2(an,l bob).
3

v,
Unifications Q

1) mother(an,bob) = child(bob,an) 2) r1(X,Y) = child(bob,an)
sim(mother,child) sim(r1,child)
sim(an,bob) X =bob

Y =an

3) r2(an, bob) = mother(an, bob)
sim(r2,mother)
173

Tim Rocktaschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.



NTP
Knowledge base completion

Table 1: AUC-PR results on Countries and MRR and HITS @m on Kinship, Nations, and UMLS.

Corpus | Metric Model | Examples of induced rules and their confidence
| ComplEx NTP NTPA |
S1 | AUC-PR 9937+ 0.4 90.83+15.4 100.00-+£ 0.0 | 0.90 locatedIn(X,Y) :—locatedIn(X,Z), locatedIn(Z,Y).
Countries S2 | AUC-PR 87.95+ 2.8 &87.40+11.7 93.04 £+ 0.4 | 0.63 locatedIn(X,Y) :—neighbor0f(X,Z), locatedIn(Z,Y).
S3 | AUC-PR 48.44 £ 6.3 56.68 = 17.6 77.26 = 17.0 | 0.32 locatedIn(X,Y) :—
neighbor0f(X,Z), neighbor0£f(Z,W), locatedIn(W,Y).
MRR 0.81 0.60 0.80 | 0.98 term15(X,Y) :— term5(Y,X)
Kinshi HITS@1 0.70 0.48 0.76 | 0.97 term18(X,Y) :— term18(Y,X)
Stip HITS@3 0.89 0.70 0.82 | 0.86 term4(X,Y) :—termd(Y.,X)
HITS@10 0.98 0.78 0.89 | 0.73 term12(X,Y) :—terml10(X, 7), term12(Z, Y).
MRR 0.75 0.75 0.74 | 0.68 blockpositionindex(X,Y) :—blockpositionindex(Y, X).
Nations HITS@1 0.62 0.62 0.59 | 0.46 expeldiplomats(X,Y) :—negativebehavior(X,Y).
) HITS@3 0.84 0.86 0.89 | 0.38 negativecomm(X,Y) :— commonblocO(X,Y).
HITS@10 0.99 0.99 0.99 | 0.38 intergovorgs3(X,Y) :— intergovorgs(Y,X).
MRR 0.89 (.88 0.93 | 0.88 interacts_with(X,Y) :—
UMLS HITS@1 0.82 0.82 0.87 interacts_with(X,7), interacts_with(Z,Y).
HITS@3 0.96 0.92 0.98 | 0.77 isa(X,Y) —isa(X,7), isa(Z,Y).
HITS@10 1.00 0.97 1.00 | 0.71 derivative_of(X,Y) :—
derivative_of(X,7), derivative_of(Z,Y).
174

Tim Rocktaschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.



4. Symbolic vs sub-symbolic
Key Messages

e Entities are represented very differently in symbolic and
sub-symbolic systems, but they are complementary

e NeSy systems can be categorized by how they use
symbolic and sub-symbolic intermediate representations

175



5. Structure vs parameter learning




5. Learning
Key Messages

Learning: finding logical formulas and estimating
probabillities

Structure learning: both formulas and probabilities
Parameter learning: only probabilities

Many flavours of learning in NeSy

|77



5. Structure vs parameter learning




Spectrum of learning paradigms

Soft patterns

Neural generation Structure via
parameter learning

Neurally-guided
learning Program sketching

DATA and

STRUCTURE

Structure learning Parameter learning

(oo



Structure learning via parameter
learning

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

grandparent(abe,lisa).
grandparent(abe,bart).
grandparent(jacqueline,lisa).
grandparent(jacqueline,maggie.)

DATA and
STRUCTURE
180




Program sketching

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates
TX,Y) < P(X,Y).
T(X,Y) <« P(Y,X).
T(X,Y) < P(X,2), Q(Z,Y).

Target: grandparent

Other predicates: father, mother

l

DATA and

STRUCTURE

181




Program sketching

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

grandparent(X,Y) « father(X,Y).
grandparent(X,Y) < mother(X,Y).

Program templates
T(X,Y) < P(X,Y).

T(X,Y) < P(Y,X). grandparent(X,Y) « father(Y,X).
TX,Y) < P(X,2), QZ,Y). grandparent(X,Y) < mother(Y,X).

grandparent(X,Y) < mother(X,Z), mother(Z,Y).
grandparent(X,Y) < mother(Y,X), father(Z,Y).

Target: grandparent

Other predicates: father, mother

DATA and
= STRUCTURE




DeepCoder

[Balog et al, 2017]

O
e e
/‘\ /‘\ /‘\ /'\
O O O O O O O O

StarAl techniques search for clauses/rules systematically

>
183




DeepCoder

[Balog et al, 2017]
Preferences of learning ‘primitives’

/\
0\ O O

rd N
o O O

Explore the subpart of the space with
primitives that are likely to solve the problem

likely to solve a problem = learned from data

l DATA and
STRUCTURE
184



DeepCoder

[Balog et al, 2017]
Preferences of learning ‘primitives’

i a<+ [int] An input-output example:
| earn from pairs b « FILTER (<0) a Input:
c + MAP (x4) b [-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11]
(examp|es, program) d ¢ SORT ¢ Output:
e < REVERSE d [-12, -20, -32, -36, -68]

o | SCANL] e

—_ = s
— o L T =
1o = & o @ E 5 2 =
— o~ * m M <t = ° ° wi < - o o Q = < (@) = <
20 @ £ £ ¥ 2 F 2 A A2 E S s £ 3 &2 38 2K + «x = = O = = @
0 0 1 0 0 0 .0 .o..o .o..o > 0 .o_.o 1 0 4 6o 1 0 2 1 0 0 0 0

DATA and

STRUCTURE

185




DreamCoder

[Ellis et al, 2018]

Distribution of primitives defines a generative model of programs

g(programs | examples)

Neural network outputs the posterior distribution over programs
likely to solve a specific task

l DATA and
STRUCTURE
186



Neural Markov Logic Networks

[Marra et al, 2020]

MLNs can be interpreted as log-linear models

o 11-I oo
(Friend(AA)  (Smokes(A) (Smokes(B) Friends(@8) :

potentials come from formulas
provided by the expert
cliques in Markov network)

l DATA and
STRUCTURE
187



Neural Markov Logic Networks

[Marra et al, 2020]

Learn neural potentials from fragments of data

1
® P =2 =2 [ [l
\ i
potentials come from fragments
¢3 of data (knowledge graph)

l DATA and
STRUCTURE
188



Markov Logic

F2(A,A) F2(A,B) F2(B,A) F2(B,B)

@ C(A) S(A) @ F(B, A) S(B) @

represented as a factor graph

P(Interpretation) « HFi(X, Y) = Hexp(wi[l(lnterpretation FF)))

[
189



Neural Markov Logic

F2(A,A) F1(A) F2(A,B) F2(B,A) F1(B) F2(B,B)

F3 and F4 are trainable factors
very much like in probabilistic graphical models and embeddings/hidden layers of a NN

F3 and F4 correspond in a sense to the logical rules in the other factors
this gives a kind of structure learning
F3 and F4 will not be “interpretable”

Marra and Kuzelka
190



Relational Neural Machines

[Marra et al ECAI 20]

T ?

n

. . 2
F 3<wCancer(Alice)’ 4\ > = 1= <CN Neance| S0 )~ wCancer(Alice>>

The Neural Network is trained to become a FACTOR (or a part of it)

191



Neural guidance

Soft patterns

Neural generation

Sketching

Structure via params

Pros

makes discrete search
tractable

efficient learning

focused combinatorial
search

reduces combinatorial
search

removes combinatorial
search

192

cCons

lots of training data

no explicit structure

lots of training data

significant user effort

spurious interactions



5. Learning
Key Messages

Learning: finding logical formulas and estimating
probabillities

Structure learning: both formulas and probabilities
Parameter learning: only probabilities

Many flavours of learning in NeSy

193



The Seven Dimensions

1.
2.
3.
4.
5.
6.
/.

Proof vs Model based

Directed vs Undirected

Type of Logic

Symbols vs Subsymbols
Parameter vs Structure Learning
Semantics

Logic vs Probability vs Neural

194



V MORGAN &CLAYPOOL PUBLISHERS
m m .
Statistical Relational
I v I Artificial Intelligence
| Laogic, Probability,

and Computation

[ u Luc de Racdt
Kristian Kersting
Sriraam Natarajan
David Poole
Syvraests LECTURES ON ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING
Reashd ) Bencheman, Wihao W. Coben, and

@nds(A,B)

@;@ 473\0@5(@ Smokes(B)
A
Ly

@;(A) v

Friends(/B,@

0.1 ::burglary.
Friends(B,B)

Car:c_e;@

0.05 :: earthquake.

alarm :— earthquake.

alarm :— burglary.

0.7:calls(mary) :— alarm.

0.6::calls(john) :— alarm.

1.5 Vvx Smokes(x) = Cancer(x)
1.1 vx,y Friends(x,y) = (Smokes(x) & Smokes(y))

Probabilistic Logic Programs
ProblLog

directed undirected
B |re_c eN : Markov Net
ayesian Ne model theoretic

key representatives
195

Markov Logic




196



6. Semantics
Key Messages

* StarAl and NeSy share the same underlying semantics
* Semantics can be described in terms of parametric circuits
* Differentiable semantics/circuits allows an easy integration

* NeSy models can be seen as neural reparameterization of
StarAl models

197



Semantics

* In Logic, semantics is connected to the interpretations of
logical sentences

* An interpretation assigns a denotation or a value to each
symbol in that language.

“42(47)”



Semantics

* In Logic, semantics is connected to the interpretations of
logical sentences

* An interpretation assigns a denotation or a value to each
symbol in that language.

“42(47)”
42 is the property “being human” (or human/1)
47 is a constant referring to a particular human “Socrates”

human(Socrates) = True



Semantics

* \We are interested in answering the following family of
questions:

Given a sentence of a propositional (or propositionalized through
grounding) language, what is its value?

The nature of what value is differs in the different semantics.



Semantics

For simplicity,

* |labelling function is the function fS that assigns, to the
sentence Q, the value v according to semantics S.

?/ﬂs(Q) =V

e.g.
£ g(human(socrates)) = True
£ p(tall(john)) = 0.8



6. Semantics

Boolean logic

202



Semantics in Boolean Logic

* Defining a semantics for a propositional language L is about
assigning a truth value to all the sentences of the logic

 Boolean truth values:

{True, False}

Three steps:

1. Truth values for propositions
2. Truth values for operators

3. Labelling formulas



Semantics in Boolean Logic

1. Providing the labels for propositions
L = {burglary, earthquake, hears alarm(john)}

£ p(burglary) = True
. p(earthquake) = False

. p(hears_alarm(john)) = True

This is a model or a possible world, a “potential” assignment of
truth values to all the propositional variables in the language.

204



Semantics in Boolean Logic

2. Providing the semantics for operators

p q PAQ P q pP—q
T T T T T T
T F F T F F
F T F F T T
F | F F F | F T
—
£ £

205



Semantics in Boolean Logic

3. The labels of formulas are defined recursively on the semantics
of its components

¢ g(earthquake A burglary) = (¢ g(earthquake), € 5(burglary))

This recursive evaluation of formulas is said to be extensional
approach.



Semantics in Boolean Logic

* Consider: (burglary V earthquake) — alarm

.
-

o
X




6. Semantics

Fuzzy logic

208



Semantics in Fuzzy Logic

 Still a pure logic semantics:

* There are many fuzzy logics

* Here we are interested in a subclass, in particular t-norm fuzzy
logic



Semantics in Fuzzy Logic

* Defining a semantics for a propositional fuzzy language L is
again about assigning a membership degree to all the

sentences of the logic
* Fuzzy truth/membership degrees:

£ p: L — [0,1]

Three steps:

1. Labels for propositions
2. Labels for operators

3. Labels for formulas

210




Semantics in Fuzzy Logic

1. Providing the labels for propositions
L = {burglary, earthquake, hears alarm(john)}

£ (burglary) = 0.9
£ (earthquake) = 0.1
£ (hears_alarm(john)) = 0.8

Note: £ (earthquake) = 0.1 -> very mild earthquake,
(;'é probability of earthquake = 0.1)

fuzzy is a measure of intensity/vagueness not of uncertainty
211



Semantics in Fuzzy Logic

2. Providing the labels for operators: t-norm theory

* A t-norm is a binary function that extends the conjunction to
the continuous case

t: 10,11 x[0,1] — [0O,1]
* There are 3 fundamental t-norms:

- Lukasiewicz t-norm: #; (x, y) = max(0,x +y — 1)
» Goedel t-norm: f(x, y) = min(x, y)

e Product t-norm: tp(xa y)=Xx-Yy
They are the continuous version of truth tables!!
212



Semantics in Fuzzy Logic

* All the other operators can be derived from the t-norm

Product tukasiewicz Godel
XAy Xy max(0,x + y—1) | min(x, y)
XVy X+y—x-y min(1l, x + y) max(x, y)
—X l — x l —x l —x
x=>y (x>y) y/x min(1,1 — x + y) y

They are the continuous version of truth tables!!

@ 213



Semantics in Fuzzy Logic

3. The labels of formulas is defined recursively on the semantics
of its components

£ (burglary — alarm) = ¢ (£ .(burglary), ¢ .(alarm))

This recursive evaluation of formulas is said to be extensional
approach.

e.g.
F(burglary) = 0.9, fr(alarm) = 0.3,
7 =min(l,l —x+y)=min(l,1 —0.9 +0,3) =

214



Semantics in Fuzzy Logic

* Consider: (burglary V earthquake) — alarm

.
-

a
.




Fuzzy Logic Semantics

* Most common t-norms are:
« Continuous

 Differentiable -> This turns to be one of the reason of their
adoption in NeSY

* Convex fragments of the logic can be defined (Giannini et al,
2019)

(bat(Socrates)) = 0.5

H




Fuzzy vs Boolean

* Fuzzy and Boolean have different properties

* When fuzzy is used as a “relaxation” (fuzzification) of Boolean
undesired effects can happen.

e Suppose: AVBVCVDVE=1

e Satisfying assignments (Lukasiewicz)
e A=B=C=D=FE =1 (all true)
e A=1, B=C=D=EFE =0 (at least one true)
e A=B=C=D=E=0.2

217



Semantics

Probabilistic logic

218



Probabilistic Logic Semantics

Given a proposition language L, the basic idea is to introduce a
probability function p :

p:L—[01]

B OBABI
X LITY



Probabilistic Logic Semantics

Two steps:

e Define a probability distribution over interpretations /
worlds (i.e. boolean semantics)

p(Cp(xy), ..., Cp(x,))

(E.g. p(€g(burglary) = True, ¢ g(earthquake) = False, . ..)

e Define a the probability of sentence Q of L:

p@ = D psx).....E5x))

Cp(x)),...,Cg(x,)FQ
B OBABI
X LITY



Probabilistic Logic Semantics

Problog

0.1 ::burglary. (B)

0.05 ::earthquake. (E)

0.6 ::hears_alarm(john). (H)

alarm :— earthquake.

alarm :— burglary.

calls(john) :- alarm, hears_alarm(john)

psx). ... )= || pey ]| O -p@)

1:0g(x))=True 1:0g(x)=False

parameters = the labels for propositions (i.e. probabilistic facts)

(oo




Probabilistic Logic Semantics

Problog

_ 0.1 ::burglary. (B)
e.g. in ProblLog: 0.05 ::earthquake. (E)
0.6 ::hears_alarm(john). (H)

alarm :— earthquake.
“ﬂ“ alarm :— burglary.

F F F 0,342 calls(john) :- alarm, hears_alarm(john)
F F T 0,513

F T F 0,018

F T T 0,027

T F F 0,038

T F T 0,057

T T F 0,002 0.1 x0.05 x (1- 0.6)

T T T 0,003

ROBABI

LITY
222



Probabilistic Logic Semantics

Markov Logic

calls(Mary) <- hears_alarm(Mary), alarm
2.0 : alarm <- earthquake
0.5 : alarm <- burglary

1if a is True otherwise 0

£ £ _ ! £
p(En(x)), ..., Cg(x,)) = Eexp( Za:wa B(a)>

B OBABI
X LITY
223



Probabilistic Logic Semantics

Markov Logic

: calls(Mary) <- hears_alarm(Mary), alarm
2.0 : alarm <- earthquake
0.5 : alarm <- burglary

“ﬂ““-n
0,05 xexp(l.5+2.0+0.5)
T F T T F 0,01 xexp(0 +2.0+0.5)

LOGICw | 11y
224



Probabilistic Logic Semantics

Given any sentence Q of the propositional language L, with

variables x, ..., X,

Q)= ) P, ... £hx,)

Cp(X1)s. . L p(X,)FQ

WMC - Weighted Model Counting
(for both ProbLog and Markov Logic)

B OBABI
X LITY



Probabilistic Logic Semantics

0.1 ::burglary. (B)

0.05 ::earthquake. (E)

0.6 ::hears_alarm(john). (H)
For example: alarm :— earthquake.

alarm :— burglary.

“ﬂ“ p(B,E,H) calls(john) :- alarm, hears_alarm(john)

Query = burglary ” hears_alarm(john)

O=BAH

T F T 0,057

p(Q) = 0.06
T T T 0,003

ROBABI
X LITY
226



Probabilistic Logic Semantics

For example:

B | _E____H_[pBEH
F T 0,018
F T 0,027
T F 0,057
T T 0,003

227

0.1 ::burglary. (B)

0.05 ::earthquake. (E)

0.6 ::hears_alarm(john). (H)
alarm :— earthquake.

alarm :— burglary.

O=MBANH)VE

£x(Q) = 0.105



Probabilistic Logic Semantics

Probabilistic Semantics is different from a pure logic semantics

1. Itis built on top of a logical semantics; p(£5(x,), ..., £ 5(x,)).

2. Probability is NOT extensional, the probability of a formula

A. cannot be defined recursively by the probabilities of its
arguments

B. requires WMC

B OBABI
X LITY



Probabilistic Logic Semantics

(alarm A hears_alarm) — calls

‘— " -

 Consider:




Probabilistic Logic Semantics

Q)= D, pEpx) .. Ch5)

Cp(x)),....0g(x,)EQ

| |
—:A - 1—}9(A) -

| | | | | |
o1

| | | | | |

o BT

| | | | | |
B C p(B) p(C)

v

Knowledge Compilation
‘ SITB¢BI The probabilistic structure is now explicit in
the compiled formula. .,



Probabilistic Logic Semantics

* Consider:

I
of BT
.
= [

B C p(B) p(C )

The circuit is differentiable!
BEROBABI
LITY
231



Probabilistic Logic Semantics

« WMC:

p@ = D pEsx)....L5x))

Cp(x)),...,Cg(x)FQ

e Another important inference task in MPE inference (connected
to maxSAT)

£r(x), .., C5(x,) = max p(€p(x)), ..., Cp(x))

£p(x1),...,05(x,)FQ
B OBABI
X LITY



Boolean vs Fuzzy vs Probability

* Boolean and Fuzzy logic are two alternative logical semantics

* Probability is a semantics that is built on top of a logical one

(i.,e. “which is the probability of a given truth assignments /
world?”)

* Can we have a probabilistic fuzzy logic as well?



Probabillistic Soft Logic (PSL)

Bach, Stephen H., et al. JIMLR 2017

* Let’s start by an example of a Markov Logic Network:

% £ _ ! %
p(Cp(x)), ..., Cg(x,)) = Eexp( gwa B(a)>

- In PSL, we relax the Boolean semantics ¢’ to a fuzzy
semantics £ .

£ £ _ ! £
(X)), s (X)) = Eexp( Za:wa F(a))

Each formula contributes
ROBABI with a value in [0,1]
e
234



Probabillistic Soft Logic (PSL)

Using Lukasiewicz t-norm:

s Q%

a . burglary —

m )
I I

(o) = min(1,1-7,(burglary + )
MPE:
max W £ @) Thls IS soft SAT
¢ (burglary), using fuzzy IOglC
ow,C (a)

2 b [ =¢(b [ - A
rburglary) plourglary) 0¢ p(burglary)

: ROBABI
LITY
235



Probabilistic vs Fuzzy

* Fuzzy is an alternative logical semantics and it can still coupled
with the probabilistic ones

* Fuzzy logic is sometimes used as an approximation of MPE In
probabillistic logic

* Fuzzy logic is sometimes used to solve satisfiability faster

* However, it does not guarantee solutions coherent with the
Boolean logic theory.

 (RememberA =B=C=D =FE=0.2)



6. Semantics

Neural Symbolic

237



Neural Symbolic

How to carry over concepts from the semantics of StarAl to
neural symbolic?

£(Q)

Labelling functions = Parametric circuit

(semantics)

| | The query Q determine
r F(C) the structure (potentially

C((AAB) = CO)
after knowledge

| | | compilation)

c{(A)  Cp(B)

238




Neural Symbolic

How to carry over concepts from the semantics of StarAl to
neural symbolic?

£(Q)

Labelling functions = Parametric circuit

(semantics)

' The leaves
£H{(ANB) - C) fF(C) represent the
scalar parameters

c{(A)  Cp(B)

239




Neural Symbolic

How to carry over concepts from the semantics of StarAl to
neural symbolic?

« Atomic labels are just

0.1 ::burglary. (B) L p
0.05 ::earthquake. (E) Burglary 0,1
0.6 ::hears_alarm(john). (H) Earthquake 0:05
alarm :— earthquake.
alarm :— burglary.




Neural Symbolic

How to carry over concepts from the semantics of StarAl to
neural symbolic?

- What if atomic labels are just neural networks

! :burglary( e )

! :earthquake. (i)

) ::hears_alarm(john). o —
alarm :— earthquake. —0
alarm :— burglary.

241



StarAl to Neural Symbolic

— KO StarAl
£r(A)  Zr(B)
Cp(B) ¢p(C)
& REPARAMETERIZATION &

| B '_I_|
@ ma - %n
24(A) 2F<B) m NeSy -
— Cp(B) ¢p(C)

mE~  Eog

I




Fuzzy Reparameterization

a : burglary —

Semantic Based
Regularization (Diligenti
et al, Al 2017)

Logic Tensor Network
(Donadello et at, IJCAI
2017)

nin{( 1, X;
|

¢ p(burglary)

|
¢ plalarm)

nin( 1, X;
[

¢ p(burglary)

N[N

Hbui‘gl ary

¢ p(alarm)

243

StarAl (PSL)

max w, ()
£ p(stress(X)),

NeSy (SBR, LTN)

max w, Q)
0

Qburglary’ alarm

Parameters of
the neural nets



Probabilistic Reparameterization

* ProblLog:

p(Csx). ... ) =[] I a-

1:0p(x;)=True i:0p(x;)=False

* Markov Logic:

4 A = : 4
P, ..., C5(x,)) = Eexp(Za‘, B(a))

WMC

£p(x)),...,Cg(x,)FQ
244

p@= )  pEyx)...

L Cp(x,)) —

[l Probabilistic parameters

S —

——
O8N

l—|—|

1 — £,(B)

p(B)  £p(C)



Probabilistic Reparameterization

B Neural parameters
* DeepProbLog (Manhaeve et al, NeurlPS (2018))

pCsx). .t =[] pe ] A-pGo)

1:0p(x;)=True i:0g(x;)=False

* Relational Neural Machines (Marra et al, ECAI 2020) -

oy

l—|—|
mm s
l—|—|
x
l—|—|

fP(B) fP(C)

% % _ 1 %
p(Ep(x)), ..., Chx,)) = Eexp( Za: w, B(a))

WMC

p@Q = ) P, ... Chx,)

Cp(x)),...,Cg(x,)FQ
245




Probabilistic Reparameterization

° DeepProbLog (Manhaeve et al, NeurlPS (2018))

e Probabilistic fact
I — ..
o - :: burglary.
[ | -
O8N
X i
1= 44(B) _
—— Neural Predicate
8 @9 |nterface
— — < nn(mnist_net, [X], Y, [0 ... 9] ) :: digit(X,Y).

g1

246



6. Semantics
Key Messages

* StarAl and NeSy share the same underlying semantics
* Semantics can be described in terms of parametric circuits
* Differentiable semantics/circuits allow an easy integration

* NeSy models can be seen as neural reparameterization of
StarAl models

247



A Recipe for NeSy

248



A recipe for NeSy

STEP 1

1. Take your favorite
symbolic (logic / rule
based) representation

(applied on DeepProblog)

layout Pieter Robberechts

© Luc De Raedt

/

NeSy Data Point

A\

calls(image32,

image32 = L"

signald2, mary)

signald2 =

( \'Q,A»‘NMWVA—'»-

NeSy Model

Logic Rules

alarm(B,E) IF burglary(B) OR earthquake(E).
calls(B,E,X) IF alarm(B,E) AND hears_alarm(X).

Logic Facts

hears_alarm(mary).
hears_alarm(john).

Neural Net Modules

image perception =

N
7

signal_analysis = ‘gfq

J




A recipe for NeSy

STEP 1

Take your favorite
symbolic (logic / rule
based) representation

Interpret neural networks
as neural predicates

(applied on DeepProblog)

layout Pieter Robberechts

© Luc De Raedt

4 : A
NeSy Data Point
calls(image32, signald2, mary)
image32 = L" signal42 = oaw-u%%—m—o»

L /
4 N
NeSy Model

Logic Rules

alarm(B,E) IF burglary(B) OR earthquake(E).

calls(B,E,X) IF alarm(B,E) AND hears_alarm(X).

Logic Facts

hears_alarm(mary).

hears_alarm(john).

Neural Predicates

burglary(B) IF

earthquake(E) IF

Neural Net Modules

image perception = é@;: signal_analysis = \g;&
N - U




A recipe for NeSy

STEP 1

Take your favorite
symbolic (logic / rule
based) representation

Interpret neural networks
as neural predicates

Turn the 0/1 or True/False
into Probabilistic or Fuzzy
Interpretation

(applied on DeepProblog)

layout Pieter Robberechts

© Luc De Raedt

4 : D
NeSy Data Point

calls(image32, signald2, mary)

image32 = L" signald2 = °“V-"M*NF~*—~
i J
s R

NeSy Model

Logic Rules

alarm(B,E) IF burglary(B) OR earthquake(E).

calls(B,E,X) IF alarm(B,E) AND hears_alarm(X).

Logic Facts Probability

hears _alarm(mary). 0.3

hears_alarm(john). 0.6

Neural Predicates

burglary(B) IF

earthquake(E) IF

Neural Net Modules

image perception ='é€}; signal_analysis = \ggﬁ
N - //




A recipe for NeSy

NeSy Network
STEP 2
Logic Circuit
P[calls(image32, signal42, mary)] = 0.2406
4. Construct logical proof /
explanation for example

earthquake burglary hears_alarm(mary)

layout Pieter Robberechts

© Luc De Raedt



A recipe for NeSy

STEP 2

4. Construct logical proof /
explanation for example

5. Add the neural networks to
the corresponding
predicates (reparametrise)

layout Pieter Robberechts

© Luc De Raedt

NeSy Network

Logic Circuit

P[calls(image32, signal42, mary)] = 0.2406

earthquake burglary hears_alarm(mary)
t t
0.8 0.01 0.3
| !
N .




A recipe for NeSy

STEP 3

Construct logical proof /
explanation for example

Add the neural networks
to the corresponding
predicates (reparametrise)

Replace OR and AND by
@ and @

Differentiate

layout Pieter Robberechts

© Luc De Raedt

-
NeSy Network

Logic Circuit

Pl[calls(image32,

==
|G

signald2, mary)]

= 0.2406

earthquake burglary hears _alarm(mary)
¢ ¢
0.8 0.01 0.3
| !
AN <,
|\
@)+ % |L"
Algebraic Structure
AND = * OR = + NOT = 1 - x
\ |




DeepStochlLog

Little sibling of DeepProblLog [Winters, Marra, et al
AAAI 22]

Based on a different semantics
probabilistic graphical models vs grammars
random graphs vs random walks

Underlying StarAl representation is Stochastic
Logic Programs (Muggleton, Cussens)

close to Probabilistic Definite Clause Grammars,
ako probabilistic unification based grammar
formalism

again the idea of neural predicates
Scales better, is faster than DeepProblLog



CFG: Context-Free Grammar

4 === N —_—
E --> E, P, N E
7 I
E P
P —=> [u_|_"] I
N
N —==> [uon] I
N _> [ “ 1 4 ] 2 +
N __> [ 1 9 {4 ]
Useful for:
- Is sequence an the specified language”?
- What is the “part of speech™tag of a terminal

- all elements of language




terminal

o

Always sums to 1 per non-

PCFG: Probabilistic Context-Free Grammar

0.1 ::

Useful for:

- What is the
- What is the

N

—-_

E, P,

[ll_l_ll]

IIOII]

|
[lllll]

[llgll]

E
/G\
N £ P N
7 ols N
E P N
0.5] 1 0.1
N 1 0.1
0.1]
2 + 3 + 8
Probability of this parse = 0.570.5*0.5"0.17170.1*170.1
= 0.000125

fOr th'S Sequence Of term|na|S? (useful for ambiguous grammars)
this string”?



DCG: Definite Clause Grammar

e(N) -—> e(N:!')I pl n(NZ)I e(5) p n(8)
{N 1s N1 + N2}. 7 1N
D —_—> [”'l‘"]. 6(2) P n(3)
I
n(0) --> [“0"]. n(2)
n(l) --> [“1"]. |
. 2 + 3 + 8
n(9) --> [“9"].
Useful for:
- Modelling languages (e.g. context-sensitive)
- Adding constraints between non-terminals thanks to POWET (e.g. through unification)

aside from terminal Sequence (through unification of input variables)



SDCG: Stochastic Definite Clause Grammar

0.5 :: e(N) —-=-> e(N%), p, n(N2), e(5) 5 n(8)
{N 1s N1 + N2}. 7 b.5N
1.0 <o D —_—> [”'l‘"]. 6(2) P n(3)
0.} 1 0.1
0.1 22 n(0) =-=> [“0"]. n(2) O-f
0.1 22 n(l) -—> [“1"] 0.]
2 + 3 + 8
0.1 ¢: n(9) -=-> [“9"]. Probability of this parse = 0.50.5*0.5*0.11*0.1*170.1
= 0.000125
Useful for:

- as PCFGs give to CFG (e.g. most likely parse)
- But: possible due to failing derivations



NDCG: Neural Definite Clause Grammar

0.5 :: e(N) ==> n(N).
0.5 :: e(N) --> e(N1), p, n(N2),
{N is N1 + N2}. e(13)
1.0 <o p —_> [u+n]. /U\
nn ( L [%1,[71, [digit]):: e(>) P n(ag)
7 ol N
n(y) —> [X]. 2) n(3)
e
digit(Vv) :- ( B
member (v,[0,1,2,3,4,5,6,7,8,9]). O.IS =31) Prumber oh B =8)
n(2) 1 pnumber_nl‘
P |8 -2)
' . &
Probability of this parse =
0.5*0.5"0.5"p (B =2)"1p (B=3)"1"p (B=8)
Useful for:

- processing: e.g. tensors as terminals
- Learning rule probabilities using



DeepStochLog
Inference



Deriving probability of goal for given terminals in NDCG

Proof derivations d(e(1),[ o+/7]) then turn it into and/or tree

e(l1 )
e(E1), [+], n(E%), {1 is E1+E2}

n(E1), [+], n(E2), {1 is E1+E2}

2+, n(E2)1 {1 is O+E2} E+1, n(E2)1 {1 is 1+E2}
=+H . i{1 is 0+1} =+ . f1 is 140}
108 /] 108 /] o.=1 p,.(H=0)




And/Or tree + semiring for different inference types

Probability of goal Most likely derivation

P.(derives(e(1), [, +, H) = 0.1141 dmax(€(1), [B, +, A ) = argmaXye()-[ g+ g1Pe(d(e(1))) = [0,+,1]




Inference optimisation

Inference is optimized using

SLG resolution: Prolog tables the returned proof tree(s), and thus creates

forest
— Allows for reusing probability calculation results from intermediate

nodes
Table 6: Q4 Parsing time in seconds (T2). Com-

parison of the DeepStochLog with and without
tabling (SLD vs SLG resolution).

Lengths # Answers No Tabling Tabling

1 10 0.067 0.060
3 95 0.081 0.096
5) 1066 3.78 0.95
7 10386 30.42 10.95
9 68298 1494.23 132.26
11 416517 timeout 1996.09

Batched network calls: Evaluate all the required neural network queries

first
— Very natural for neural networks to evaluate multiple instances at once

using batching
& less overhead in logic & neural network communication



Mathematical expression outcome

T1: Summing MNIST numbers

with pre-specified # digits

+ =137

T2: Expressions with images
representing operator or single
digit number.

v + ) <3 =19

Table 1: The test accuracy (%) on the MNIST addition (T1).

Number of digits per number (N)

Methods 1 2 3 4
NeurASP 97.3+0.3 93.9£0.7 timeout timeout
DeepProbLog  97.24+0.5 952+ 1.7 timeout timeout
DeepStochLog 97.94+0.1 9644+0.1 945+1.1 92.7+0.6
Table 2: The accuracy (%) on the HWF dataset (T2).
Expression length
Method 1 3 5! 7
NGS 90.2+1.6 &85.7x1.0 91.7+£1.3 204437.2
DeepProbLog  90.8+ 1.3 85.6+1.1 timeout timeout
DeepStochLog 90.8+1.0 86.3+1.9 921+14 94.84+0.9




Classic grammars, but with MNIST images as terminals

T3: Well-formed brackets as input

(without parse). Task: predict parse.

Table 3: The parse accuracy (%) on the well-formed parentheses dataset (T3).

ol/lololHol 1]/

— parse =()(()())

T4: inputs are strings akblcm (or
permutations of [a,b,c], and

(k+l+m) mod 3=0). Predict 1 if
k=l=m, otherwise 0.

nopREeE -
/1 110]10]0] 2 I

Maximum expression length
Method 10 14 18

DeepProbLog  100.0£0.0 994 +0.5  99.2+£0.8
DeepStochLog 100.0 0.0 100.0 £0.0 100.0 £ 0.0

Table 4: The accuracy (%) on the a"b"¢" dataset (T4).

Expression length
Method 3-12 3-15 3-18

DeepProbLog  99.8 +£0.3 timeout timeout
DeepStochLog 99.44+0.5 99.2+0.4 98.8+0.2




Citation networks

T5: Given scientific paper set with only few labels & citation
network, find all labels

Table 5: Q3 Accuracy (%) of the classifica-

tion on the test nodes on task T5

Method Citeseer Cora
ManiReg 60.1 59.5
SemilEmb 59.6 59.0
LP 45.3 68.0
DeepWalk 43.2 67.2
ICA 69.1 75.1
GCN 70.3 81.5
DeepProbLog timeout timeout

DeepStochLog 65.0 69.4




7. Logic vs Probability vs Neural




7. Logic vs Probability vs Neural
Key Messages

* We have three paradigms in the NeSy spectrum: Logic,
Probability and Neural Networks

* An integration of the three should have the original
paradigms as special cases

e Computationally complex

* The integration is usually achieved by sacrificing the base
paradigms

e More scalable

269



About integration in neural
symbolic

Neural Networks




Statistical Relational Al

Neural Networks
b

They perfectly integrate
probability theory (Probabilistic
Graphical Models) and Logic.

L

Probability Logic



Knowledge Graph Embeddings

Neural Networks

\

y — .

Probability

Transk (Bordes 2013)
DistMult (Yang, 2014)
ComplEx (Trouillon, 2016)
NTN (Socher, 2013)

LOQIC

They use latent spaces, typical
of neural computation to
encode a relational structure of
the data.

Neural networks cannot be
recovered.

Logic is declined to encoding
relations

Probabilistic modelling is
strongly approximated (e.qg.
atom mean field)

Most scalable solutions.



Relaxed theorem provers

L
Probability

Neural Networks

273

LOQIC

They sacrifice a bit the pure
boolean semantics to obtain
some soft neural capabilities
(weighted reasoning,
embeddings).

KBANN (Tawell 1994)

LRNN (Sourek, 2017)

NTPs (Rocktéaschel, 2017)
DiffLog (Si et al, 2018)

NN for Relational Data ( 2019)



Regularization methods

y— .

Probability

Neural Networks

LOQIC

They sacrifice the logic and
probability a lot by pushing
everything inside the weights of
the neural network.

Logic and probability are used
only at training time. At inference
time, only the neural net is used.

SBR (Diligenti et al, Al 2017)
LTN (Donatello et al, IJCAI 2017)
SL (Xu et al, ICML 2018)



Graph Neural Networks

g .
Probability

Neural Networks

LOQIC

They extend neural network
to provide some relational
and multinop reasoning.

Logical semantics is not
preserved.

R-GCN - Schlichtkrull et al,
2017



Probabilistic reparameterization

Neural Networks
A

Probability

LOQIC

They extend StarAl with
perception capabillities.

Subsymbols at the level of the

constants only

e Not at the level of the atoms
(like KGE)

e Not at the level of the rules (like
GNNs)

One of the most promising
direction for NeSy.

Main problem is scalability.

DeepProbLog (Manhaeve, 2018)
RNM (Marra, 2020)



7. Logic vs Probability vs Neural
Key Messages

* We have three paradigms in the NeSy spectrum: Logic,
Probability and Neural Networks

* An integration of the three should have the original
paradigms as special cases

e Computationally complex

* The integration is usually achieved by sacrificing the base
paradigms

e More scalable

277



Challenges

e For NeSy,
e scaling up
 which models and which knowledge to use
e |arge scale life applications
e peculiarities of neural nets & fuzzy logic
e dynamics / continuous

 This is an excellent area for starting researchers / PhDs



Conclusions




Key Message

StarAl and NeSy share similar problems
and thus similar solutions apply

TO

See also [De Raedt et al., IJCAI 20]



The Seven Dimensions

1.
2.
3.
4.
5.
6.
/.

Proof vs Model based

Directed vs Undirected

Type of Logic

Symbols vs Subsymbols
Parameter vs Structure Learning
Semantics

Logic vs Probability vs Neural

281



Many questions to ask

* What properties should integrated representations satisfy ?

* Should one representation take over ? (As in most
approaches to NeSy — push the logic inside and forget
about it afterwards)

* Should one build a pipeline or an interface between the
integrated representations ?

* Should one have the originals as a special case ?

* (yes we believe you should be able to do all what you can
do with the original representations)



Many questions to ask

* Which learning and reasoning techniques apply ?
* Can you still reason logically / probabilistically ?

* Can you still apply standard learning methods (like gradient
descent) ?

* |s everything explainable / trustworthy ?
* How to evaluate integrated representations ?
*1+1=37
* Can they do what the originals can do, and can they do more ?
* Can they do something different ?



Challenges

* For NeSy,
* scaling up
* which models to use
* real life applications
* peculiarities of neural nets
* |ogical inference can be expensive
* This is an excellent area for starting researchers / PhDs

284



THANKS



References

Tarek R. Besold, Artur S. d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro M. Domingos, Pascal Hitzler, Kai-
Uwe Kiihnberger, Luis C.Lamb, Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung
Poon, and Gerson Zaverucha. Neural-symboliclearning and reasoning: A survey and interpretation.CoRR, abs/
1711.03902, 2017.

Matko BosSnjak, Tim Rocktaschel, Jason Naradowsky, and Sebastian Riedel. Programming with a differentiable forth
interpreter. INICML,2017.

William W. Cohen, Fan Yang, and Kathryn Mazaitis. Tensorlog: Deep learning meets probabilistic dbs.CoRR, abs/
1707.05390, 2017.

Andrew Cropper. Playgol: Learning programs through play. InlJCAI 2019, 2019.

Andrew Cropper and Stephen H. Muggleton. Metagol system. https://github.com/metagol/metagol, 2016.

Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge bases. InlJCAI, 2011.

Artur S. d’Avila Garcez, Marco Gori, Luis C. Lamb, Luciano Serafini, Michael Spranger, and Son N. Tran. Neural-
symbolic computing: An effective methodology for principled integration of machine learning and reasoning.FLAP,
6, 2019.

Luc De Raedt, Sebastian Dumancic., Robin Manhaeve and Giuseppe Marra. From statistical relational to neuro-
symbolic artificial intelligence. In [JCAI 2020.

Luc De Raedt.Logical and relational learning. Springer, 2008.

Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole.Statistical Relational Artificial Intelligence:
Logic, Probability, andComputation. Morgan & Claypool Publishers, 2016.



References

Luc De Raedt and Angelika Kimmig. Probabilistic (logic) programming concepts.Machine Learning, 100, 2015.

Luc De Raedt, Robin Manhaeve, Sebastijan Duman~ci’c, Thomas Demeester, and Angelika Kimmig. Neuro-
symbolic= neural+ logical+probabilistic. InNeSy @ 1JCAl, 2019.

Thomas Demeester, Tim Rocktaschel, and Sebastian Riedel. Lifted rule injection for relation embeddings. INEMNLP,
2016.

Michelangelo Diligenti, Marco Gori, and Claudio Sacca. Semantic-based regularization for learning and
inference.Artif. Intell., 244, 2017.

lvan Donadello, Luciano Serafini, and Artur S. d’Avila Garcez. Logic tensor networks for semantic image
interpretation. In 1JCAI, 2017.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic machines. InICLR,
20109.

Sebastijan Duman’ci’c, Tias Guns, Wannes Meert, and Hendrik Blockeel. Learning relational representations with
auto-encoding logic programs.InlJCAI, 2019.

Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-Lezama, and Josh Tenenbaum. Learning libraries
of subroutines forneurally-guided bayesian program induction. InNeurlPS, 2018.

Kevin Ellis, Maxwell I. Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama. Write, execute,
assess: Program synthesiswith a REPL.CoRR, abs/1906.04604, 2019.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data.J. Artif. Intell. Res., 61, 2018.



References

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens,
and Luc De Raedt.Inference and learning in probabilistic logic programs using weighted boolean formulas.Theory
and Practice of Logic Programming, 15, 2015.

Peter Flach.Simply Logical: Intelligent Reasoning by Example. John Wiley & Sons, Inc., 1994.

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational models. InlJCAI, 1999.
Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer set solving in practice.Synthesis
lectures on artificialintelligence and machine learning, 6, 2012.

L. Getoor and B. Taskar, editors.An Introduction to Statistical Relational Learning. MIT Press, 2007.

Francesco Giannini, Michelangelo Diligenti, Marco Gori, and Marco Maggini. On a convex logic fragment for
learning and reasoning.IEEETFS, 27, 2018.CV Radhakrishnan et al.:Preprint submitted to Elsevier

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for
guantum chemistry.arXivpreprint arXiv:1704.01212, 2017.

Goldman, O., Latcinnik, V., Naveh, U., Globerson, A., & Berant, J.. Weakly-supervised semantic parsing with
abstract examples. ACL 2018

Bernd Gutmann, Angelika Kimmig, Kristian Kersting, and Luc De Raedt. Parameter learning in probabilistic
databases: A least squaresapproach. INECML&PKDD, 2008.

Manfred Jaeger. Model-theoretic expressivity analysis. In Luc De Raedt, Paolo Frasconi, Kristian Kersting, and
Stephen Muggleton, editors,Probabilistic Inductive Logic Programming - Theory and Applications, volume 4911 of
LNCS. Springer, 2008.



References

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gulwani. Neural-guided
deductive search forreal-time program synthesis from examples. InICLR, 2018.

Kristian Kersting and Luc De Raedt. Bayesian logic programming: Theory and tool. In L. Getoor and B. Taskar,
editors,An introduction toStatistical Relational Learning. MIT Press, 2007.

Stanley Kok and Pedro Domingos. Learning the structure of markov logic networks. InICML, 2005.

Daphne Koller and Nir Friedman.Probabilistic Graphical Models - Principles and Techniques. MIT Press, 2009.
Marco Lippi and Paolo Frasconi. Prediction of protein beta-residue contacts by markov logic networks with
grounding-specific weights.Bioinform., 25, 20009.

John W Lloyd.Foundations of logic programming. Springer Science & Business Media, 2012.

Daniel Lowd and Pedro Domingos. Efficient weight learning for markov logic networks. InECML&PKDD, 2007.
Robin Manhaeve, Sebastijan Dumanci’c, Angelika Kimmig, Thomas Demeester, and Luc De Raedt. Deepproblog:
Neural probabilistic logicporogramming. InNeurlPS, 2018.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The neuro-symbolic concept
learner: Interpreting scenes,words, and sentences from natural supervision. In ICLR, 2019.

Giuseppe Marra, Michelangelo Diligenti, Francesco Giannini, Marco Gori, and Marco Maggini. Relational neural
machines. In ECAI, 2020.

Giuseppe Marra and Ondrej Kuzelka. Neural markov logic networks. CoRR, abs/1905.13462, 2019.



References

Pasquale Minervini, Matko Bosnjak, Tim Rocktaschel, Sebastian Riedel, and Edward Grefenstette. Differentiable
reasoning on large knowledgebases and natural language. InAAAI, 2020.

Pasquale Minervini, Thomas Demeester, Tim Rocktaschel, and Sebastian Riedel. Adversarial sets for regularising
neural link predictors. InUAI, 2017.

Stephen Muggleton. Stochastic logic programs.Advances in inductive logic programming, 32, 1996.

Maxwell I. Nye, Armando Solar-Lezama, Josh Tenenbaum, and Brenden M. Lake. Learning compositional rules via
neural program synthesis.In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors,Advances in Neural InformationProcessing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurlPS 2020, December 6-12, 2020, virtual,2020.

David Poole. The independent choice logic and beyond. InProbabilistic Inductive Logic Programming - Theory and
Applications, volume4911 ofLNCS. Springer, 2008.

Matthew Richardson and Pedro M. Domingos. Markov logic networks.Machine Learning, 62, 2006.

Tim Rocktaschel and Sebastian Riedel. End-to-end differentiable proving. InNIPS, 2017.

Tim Rocktaschel, Sameer Singh, and Sebastian Riedel. Injecting logical background knowledge into embeddings for
relation extraction. INNAACL HLT, 2015.

Stuart Russell. Unifying logic and probability.Communications of the ACM, 58, 2015.



References

Xujie Si, Mukund Raghothaman, Kihong Heo, and Mayur Naik. Synthesizing datalog programs using numerical
relaxation. InlJCAI, 2019.

Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles A. Sutton, and Swarat Chaudhuri. Houdini: Lifelong
learning as program synthesis.InNeurlPS, 2018.

Guy Van den Broeck, Dan Suciu, et al. Query processing on probabilistic data: A survey.Foundations and Trends® in
Databases, 7, 2017.

Emile van Krieken, Erman Acar, and Frank van Harmelen. Analyzing differentiable fuzzy logic operators.CoRR, abs/
2002.06100, 2020.

Wenya Wang and Sinno Jialin Pan. Integrating deep learning with logic fusion for information extraction.CoRR, abs/
1912.03041, 2019.

Wang, P., Wu, Q., Shen, C., Hengel, A. V. D., & Dick, A. . Explicit knowledge-based reasoning for visual question
answering. IJCAI 2017

Leon Weber, Pasquale Minervini, Jannes Munchmeyer, Ulf Leser, and Tim Rocktaschel. Nlprolog: Reasoning with
weak unification forquestion answering in natural language. InACL, 2019.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss function for deep
learning with symbolicknowledge. InICML, 2018.

Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for knowledge base reasoning.
InNIPS, 2017.

Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: Embracing neural networks into answer set programming.
InProceedings of theTwenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI, pages 1755-1762,



References

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum. Neural-symbolic vga:
Disentangling reasoningfrom vision and language understanding. InNeurlPS, 2018.

Lotfi A Zadeh. Fuzzy logic and approximate reasoning.Synthese, 30(3-4):407-428, 1975.

Pedro Zuidberg Dos Martires, Vincent Derkinderen, Robin Manhaeve, Wannes Meert, Angelika Kimmig, and Luc De
Raedt. Transformingprobabilistic programs into algebraic circuits for inference and learning. InProgram
Transformations for ML Workshop at NeurlIPS, 2019.

Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezny, Steven Schockaert, and Ondrej KuZelka. Lifted relational
neural networks: Efficientlearning of latent relational structures.). Artif. Intell. Res., 62, 2018



