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Introduction
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Learning and Reasoning

both needed

• System 1 - thinking fast - can do things like 2+2 = ? and 
recognise objects in image


• System 2 - thinking slow - can reason about solving complex 
problems - planning a complex task 


• alternative terms — data-driven vs knowledge-driven, symbolic 
vs subsymbolic, solvers and learners, neuro-symbolic… 


• A lot of work on integrating learning and reasoning, neural 
symbolic computation to integrate logic / symbols 
reasoning with neural networks  

•
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see also arguments 
by Marcus, Darwiche, Levesque, Tenenbaum, Geffner, 
Bengio, Le Cun, Kautz, …
see also AI Debates



Real-life problems involve two 
important aspects.

5

Who can go first ? 

A. The red car

https://www.theorie-blokken.be/nl/gratis-proefexamen

B. The blue van
C. The white car

https://www.theorie-blokken.be/nl/gratis-proefexamen


Real-life problems involve two 
important aspects.
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Who can go first ? 

A. The red car

https://www.theorie-blokken.be/nl/gratis-proefexamen

B. The blue van
C. The white car

Reasoning
Sub-symbolic perception

https://www.theorie-blokken.be/nl/gratis-proefexamen


Thinking fast 
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NEURAL

MAIN PARADIGM in AI 
Focus on Learning



PROBABILITY

LOGIC

TWO MAIN PARADIGMS in AI

Their integration has been well studied in 
Probabilistic (Logic) Programming and Statistical Relational AI (StarAI)

Thinking slow = reasoning 
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Learning

9

PROBABILITY

LOGIC NEURAL

How to integrate these three paradigms in AI ? 



A lot of ML
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PROBABILITY

Well studied  from a LEARNING perspective 
in Deep Learning

NEURAL



PROBABILITY

LOGIC

TWO MAIN PARADIGMS in AI

Their integration has been well studied in 
Probabilistic (Logic) Programming and Statistical Relational AI (StarAI)

Thinking slow = reasoning 
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State of the Art
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LOGIC

Being studied from a LEARNING perspective  
in Neuro Symbolic Computation

NEURAL



StarAI and NeSy share similar problems 
and thus similar solutions apply 

See also  
De Raedt, Dumancic, Marra, Manhaeve 

From Statistical Relational to Neuro-Symbolic Artificial Intelligence 
IJCAI 20, and long version on AIJ 24

Key Message

LOGICLOGICLOGICNEURALLOGIC
PROBABI

LITYFROM TO

WARNING!
TALK MAY NOT COVER ALL of 

NESY
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Applications



Alpha Geometry



(New) Game Playing
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https://challenge.nukk.ai/

The NeSy NooK system  
defeats eight  

world bridge champions  
in Paris (2022)



Addition

Learn to add the sum of lists of MNIST images





Assume you do not know how to map MNIST images to 
numbers, but do know the rules of addition. Can you lean from 
these examples how to map MNIST to numbers ? 

                           +                 = ?
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PROBABI
LITY

LOGICLOGICLOGICNEURAL

35 962

example multi-addition predicate

DeepProbLog, Manhaeve et al, NeurIPS 2018 



Emerging applications
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From Suchan, Bhatt and Varadarajan, AIJ 21



ROAD-R: The autonomous driving dataset with 
logical requirements

19

Giunchiglia, Eleonora, Mihaela Cătălina Stoian, Salman Khan, Fabio Cuzzolin, and Thomas 
Lukasiewicz. "ROAD-R: The autonomous driving dataset with logical requirements." Machine 
Learning (2023): 1-31.



ROAD-R: The autonomous driving dataset with 
logical requirements

Giunchiglia, Eleonora, Mihaela Cătălina Stoian, Salman Khan, Fabio Cuzzolin, and Thomas 
Lukasiewicz. "ROAD-R: The autonomous driving dataset with logical requirements." Machine 
Learning (2023): 1-31.

• Task: road event-
detection 
multi-label classification 
with constraints 

• Solution: neuro-
symbolic AI 
Calculate most probable 
explanation 
given constraints and 
neural outputs 
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Light is both red and 
green?

Who is moving 
away?



Relational Affordances

● Object Affordance: 
	What can one do with 
	particular object? 

● Relational Affordance: 
	in a particular context? 
 
	with multiple objects and 	 	    	 	 	
relations among them 

● Use of statistical relational learning, 
probabilistic programming for 
learning, reasoning and planning !



Constrained output of LLMs

22

Zhang, Honghua, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. "Tractable control for 
autoregressive language generation." In International Conference on Machine Learning, pp. 
40932-40945. PMLR, 2023.



Probabilistic Logic Shield for Reinforcement Learning

π(𝚊𝚌𝚌𝚎𝚕𝚎𝚛𝚊𝚝𝚎 |s) = 0.5
π(𝚕𝚎𝚏𝚝 |s) = 0.3
π(𝚛𝚒𝚐𝚑𝚝 |s) = 0.2

Shield
Assuming noisy 
sensors 

𝟶 . 𝟻 :: 𝚊𝚌𝚝(𝚊𝚌𝚌𝚎𝚕);
𝟶 . 𝟹 :: 𝚊𝚌𝚝(𝚕𝚎𝚏𝚝);
𝟶 . 𝟸 :: 𝚊𝚌𝚝(𝚛𝚒𝚐𝚑𝚝)

P(𝚜𝚊𝚏𝚎 |a, s) =

What is a safer policy ?π+

π+(𝚊𝚌𝚌𝚎𝚕𝚎𝚛𝚊𝚝𝚎 |s) = 0.24
π+(𝚕𝚎𝚏𝚝 |s) = 0.48
π+(𝚛𝚒𝚐𝚑𝚝 |s) = 0.28

Will  stay undamaged?

Pπ(𝚜𝚊𝚏𝚎 |s) = 0.576

𝚊𝚌𝚌𝚎𝚕𝚎𝚛𝚊𝚝𝚎 → 0.28
𝚕𝚎𝚏𝚝 → 0.92
𝚛𝚒𝚐𝚑𝚝 → 0.8

Probability of  staying 

safe if following ?π

𝟶 . 𝟾 :: 𝚘𝚋𝚜𝚝𝚌(𝚏𝚛𝚘𝚗𝚝) .
𝟶 . 𝟸 :: 𝚘𝚋𝚜𝚝𝚌(𝚕𝚎𝚏𝚝) .
𝟶 . 𝟻 :: 𝚘𝚋𝚜𝚝𝚌(𝚛𝚒𝚐𝚑𝚝) .

𝟶 . 𝟿 :: 𝚌𝚛𝚊𝚜𝚑:− 𝚘𝚋𝚜𝚝𝚌(𝚏𝚛𝚘𝚗𝚝), 𝚊𝚌𝚝(𝚊𝚌𝚌𝚎𝚕) .
𝟶 . 𝟺 :: 𝚌𝚛𝚊𝚜𝚑:− 𝚘𝚋𝚜𝚝𝚌(𝚕𝚎𝚏𝚝), 𝚊𝚌𝚝(𝚕𝚎𝚏𝚝) .
𝟶 . 𝟺 :: 𝚌𝚛𝚊𝚜𝚑:− 𝚘𝚋𝚜𝚝𝚌(𝚛𝚒𝚐𝚑𝚝), 𝚊𝚌𝚝(𝚛𝚒𝚐𝚑𝚝) .
𝚜𝚊𝚏𝚎:− ¬𝚌𝚛𝚊𝚜𝚑 .

DeepProbLog Theory  
(Manhaeve et al. AIJ) 

Wen-chi Yang et al, IJCAI 23 Distinguished paper award 



Visual Reasoning and Question 
Answering 

NS-VQA, Yi et al , NeurIPS 201924

Adding a reasoning component on top of 
the perception can improve performance.



Semantic Image Interpretation

25

LOGICLOGICLOGICNEURAL
LTN, Serafini et al , NeSY@HLAI 2016




(New) Dialog Systems

26

Andreas, Jacob, et al. ACL, 2020

Dialogues represented 
 as symbolic programs  
(e.g. dataflow graphs)  



Emerging applications
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Figure 1: A technical drawing with highlights indicating the
2D CAD drawing and the tabular data

Figure 2: Overview of the technical drawing similarity pro-
posal system.

large amounts of training data. While such data are not al-
ways available, an expert might be capable of summariz-
ing part of the knowledge in just a few abstract concepts.
To exploit this expert knowledge, we also utilize reasoning-
based methods such as inductive logic programming (ILP)
(De Raedt et al. 2008). Such a hybrid approach that com-
bines data-driven methods with knowledge-driven methods
is gaining in popularity since real-world tasks such as pars-
ing technical designs tend to require Hybrid AI (Manhaeve
et al. 2018; Mao et al. 2019). We have developed and de-
ployed this system for learning to parse and search technical
designs for internal use at Saint-Gobain Engineered Com-
ponents (Seals) as part of their Digital Engineer project that
ran from 2017-2019.

Its modular design is explained in more detail in the fol-
lowing sections. This work presents five contributions that
enabled us to surpass the state-of-the-art in parsing technical
designs: First, we introduce the use of ILP to learn parsers
from both data and expert knowledge to interpret technical
drawings. Second, we introduce a novel bootstrapping learn-

ing strategy for ILP that speeds up learning and increases ac-
curacy (Section 3). Third, we propose the use of a siamese
deep learning architecture to meaningfully summarize CAD
drawings (Section 4). Fourth, we introduce a similarity mea-
sure to find related technical drawings in a large database
(Section 5). Finally, the efficacy of this method is demon-
strated in a number of experiments on a real-world data set.
As seen in Figure 2, these contributions are reflected in the
modular structure of our implementation.

2 Identify elements in a technical drawing

The first action is to identify the different elements in a draw-
ing, thus tables and CAD drawings. To design and test the
system, we have access to 5000 archived technical drawings
that need interpreting. Archived technical drawings are dig-
itized to varying degrees. Because of this, we consider the
case where the technical drawing is represented as a bitmap
image (⇡ 3300⇥2300 pixels)

2.1 Segment the image

Segmenting the design into its different elements is achieved
using conventional computer vision methods. The image is
partitioned into its main segments using DBSCAN with ✏ =
30 and minimum points set to 0.001% of total pixels, thus
⇡ 75 points (Ester et al. 1996). Since a technical drawing
employs white space to distinguish central layout elements,
such a density-based method is highly effective. No errors
were observed in the segmentation of the drawings.

2.2 Recognize image segments

Next, the system recognizes what each image segment rep-
resents by classifying them as one of three possible classes:
‘tables’, ‘two-dimensional CAD drawings’, and ‘irrelevant’
segments. Since the classes are visually distinct high pre-
dictive accuracy can be achieved with a small CNN classi-
fier. This classifier is constructed using the PyTorch library
(Paszke et al. 2017) and consists out of three convolution
layers and three fully connected layers. It was trained against
318 randomly selected technical drawings that were anno-
tated by an expert, for a total of 3000 image segments (318
tables, 372 CAD drawings, 2310 irrelevant segments). No
classification errors were made on a randomly selected test
set of 53 technical drawings containing 500 segments.

In case a table is recognized, we additionally identify the
cells by applying a contour detection algorithm provided by
the OpenCV library (Suzuki and Abe 1985). All cells are
then passed to the parser learning-module (see Section 3).
In case a two-dimensional CAD drawing is recognized, the
image data is passed on to the CAD property extraction-
module (see Section 4).

3 Extract properties in tables

The data contained in a technical drawing is laid out in a
manner that facilitates human interpretation. Tabular data in
particular tends to be organised both spatially and through
explicit annotation. Common examples of spatial structuring
involve assigning related cells to common rows or columns,
while positioning unrelated cells further from one another.

automated engineering assistant (IAAI 21) 

 interpret and correct designs and maps 

Intelligent OCR for chemical structures (ICLR 23)  

and forms reasoning and mathematical problem solving JAIR 23, 

IJCAI 2017, EMNLP 21)

planning, reinforcement learning and shielding (AAAI 
24, IJCAI 23 distinguished paper award)



• Structured environments

• objects, and 

• relationships amongst them

• and possibly

• using background knowledge

• cope with uncertainty and/or perception

• learn from data and reason with knowledge

Both StarAI and NeSy 
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The Seven Dimensions

29

1.   Proof vs Model based

2.   Directed vs Undirected

3.   Type of Logic

4.   Symbols vs Subsymbols

5.   Parameter vs Structure Learning

6.   Semantics

7.   Logic vs Probability vs Neural



1. Proof vs Model based

30

LOGIC
PROBABI

LITYLOGIC LOGICLOGICLOGICNEURAL



1. Proof vs Model based

31

LOGIC



• Model- vs proof-based


• First order / relational vs propositional


• Grounding


• Differences important for both StarAI and NeSY

32

1. Proof vs Model based
the logic dimension



Logic Programs

33

burglary. 
hears_alarm_mary. 

earthquake. 
hears_alarm_john. 

alarm :– earthquake. 

alarm :– burglary. 

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john. 

Propositional logic program
as in the programming language Prolog

LOGIC

facts : 
burglary = true   



Logic Programs
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burglary. 
hears_alarm_mary. 

earthquake. 
hears_alarm_john. 

alarm :– earthquake. 

alarm :– burglary. 

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john. 

Propositional logic program
as in the programming language Prolog

LOGIC

rule:  
calls_mary =true IF alarm = true AND hears_alarm_mary = true 

 



Logic Programs
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burglary. 
hears_alarm_mary. 

earthquake. 
hears_alarm_john. 

alarm :– earthquake. 

alarm :– burglary. 

calls_mary :– alarm, hears_alarm_mary.

calls_john :– alarm, hears_alarm_john. 

Propositional logic program Two proofs (by refutation) 

:- calls_mary.

:- alarm, hears_alarm_mary.

:- earthquake, hears_alarm_mary.

 []  

:- hears_alarm_mary.

:- burglary, hears_alarm_mary).

:- hears_alarm_mary.

 []  

as in the programming language Prolog

A proof-theoretic view

LOGIC
backward chaining



Logic as constraints

36

calls(mary) hears_alarm(mary) ∧ alarm←

calls(john)    hears_alarm(john) ∧ alarm←

alarm   earthquake v burglary←

Propositional logic Model / Possible World

{ burglary, 

hears_alarm(john), 

alarm, 

calls(john)}

as in SAT solvers

A model-theoretic view
LOGIC

the facts that are true 
in this model / possible world

IF AND

OR

SAT: Find a model / possible world that satisfies all the constraints 
SAT SOLVERS



Relational/First Order Logic
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LOGIC

burglary. 
hears_alarm(mary). 

earthquake. 
hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 
calls(X) :– alarm, hears_alarm(X). 

burglary. 
hears_alarm(mary). 

earthquake. 
hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 
calls(mary) :– alarm, hears_alarm(mary).
calls(john) :– alarm, hears_alarm(john). 

Introduce Variables and Domains 
The meaning of this is always the GROUNDED theory 

allows to exploit symmetries / templates …

Variable X 
Domain = {mary, john} Grounded Theory 

BOTH for model and proof-based appraoch



Logical Theory                   
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stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X). 
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).

stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(ann) :- stress(ann). 
smokes(bob) :- stress(bob). 
smokes(carl) :- stress(carl). 

smokes(ann) :- influences(ann,ann), smokes(ann).     
smokes(ann) :- influences(bob,ann), smokes(bob).   
smokes(ann) :- influences(carl,ann), smokes(carl). 

smokes(bob) :- influences(ann,bob), smokes(ann).     
smokes(bob) :- influences(bob,bob), smokes(bob).   
smokes(bob) :- influences(carl,bob), smokes(carl). 

smokes(carl) :- influences(ann,carl), smokes(ann).     
smokes(carl) :- influences(bob,carl), smokes(bob).   
smokes(carl) :- influences(carl,carl), smokes(carl). 

GROUNDING OUT

IF INTERESTED ONLY IN
CERTAIN QUERIES,

CLEVER TECHNIQUES EXIST
TO AVOID GROUNDING OUT 

COMPLETELY



Logical Reasoning:  
Model Theoretic
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stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X). 
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).

stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(ann) :- stress(ann).  
-> infer smokes(ann) 

smokes(bob) :- influences(ann,bob), smokes(ann) 
-> infer smokes(bob) 
 
smokes(carl) :- influences(bob,carl), smokes(bob).   
-> infer smokes(carl). 

    
   

FINDING A MODEL 

FINDING A MODEL
here — the least Herbrand model as in Prolog using the Tp Operator (forward reasoning) 



Logical Reasoning:  
Model Theoretic
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stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X). 
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).stress(ann). 

influences(ann,bob). 
influences(bob,carl). 

smokes(ann) <-> stress(ann) 
              v  influences(ann,ann), smokes(ann)     
              v influences(bob,ann), smokes(bob)   
              v influences(carl,ann), smokes(carl) 

smokes(bob) <-> stress(bob) 
              v influences(ann,bob), smokes(ann)     
             v influences(bob,bob), smokes(bob)   
             v influences(carl,bob), smokes(carl) 

smokes(carl) <-> stress(carl) 
              v influences(ann,carl), smokes(ann)     
              v influences(bob,carl), smokes(bob)   
              v influences(carl,carl), smokes(carl) 

    

Clark’s completion  AND call a SAT Solver  

Clark’s completion’s as a 
grounding is incorrect

for Prolog when there are cycles

but it is too hard to explain why 
here



Logical Reasoning

Proofs

stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X). 
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).?- smokes(carl).

?- stress(carl). ?- influences(Y,carl),smokes(Y).

?- smokes(bob).

?- stress(bob). ?- influences(Y1,bob),smokes(Y1).

?- smokes(ann).

?- influences(Y2,ann),smokes(Y2).?- stress(ann).

facts used in successful derivation: 
influences(bob,carl)&influences(ann,bob)&stress(ann)

Y=bob

Y1=ann

41



• Model- vs proof-based


• First order / relational vs propositional


• Grounding


• Differences important for both StarAI and NeSY

42

1. Proof vs Model based
the logic dimension



1. Proof vs Model based
2. Directed vs Undirected

43

LOGIC
PROBABI

LITYLOGIC



0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake. 

alarm :– burglary.

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm. 

alarm

burglary. earthquake. 

calls(mary) calls(john) 

Markov LogicProbabilistic  Logic Programs  
ProbLog

undirected 
Markov Net 

model theoretic
directed 

Bayesian Net 

LOGIC
PROBABI

LITY key representatives

2. Directed vs Undirected
the PGM / StarAI dimension



Bayesian Net
B

A

E

R

P(A|B,E)

alarm (= true) Burglar Earthquake
0.9999 true true
0.99 true false
0.99 false true

0.0001 false true

P(R|E)

radio Earthquake
1 true
0 false

The remaining tables are P (b) = 0.01 and P (e) = 0.000001. The tables and
graphical structure fully specify the joint distribution P(A,R,E,B).

<latexit sha1_base64="hcLPJXbSnFgoKId1kKqCyJhmnZY="></latexit>



Queries

B

A

E

R

P (b|a) = P (b, a)

P (a)
=

P
e,r P (b, e, a, e)

P
b,e,r P (b, e, a, r)

=

P
e,r P (r|b, e)P (b)P (e)P (r|e)

P
b,e,r P (a|b, e)P (b)P (e)P (r|e) ⇡ 0.99

<latexit sha1_base64="Fy5zAEGwfxo+gZ37+oBIlvbTalo=">AAAcC3iczVndc9w0ED/C9/HVwgszeVEIgaS4N+crhULnOlCmMzyGDqWdiW8ysi3faSJ/IMlJrq5feOf/4BV4Y3jlb2D4b1hJdmLL12suTTt1JmdJ+9vV7mq1+rCfMSrkcPjfS2svv/Lqa6+/8Wb/rbffefe9S5ff/0mkOQ/IvSBlKX/gY0EYTcg9SSUjDzJOcOwzct8/+E7R7x8SLmia/CjnGZnEeJrQiAZYQtP+5bX1LU+SY+lHBU2opJghckhDkgTkayRnBGGGeYyoQNBlEtJkWvY9n0xpUgQkkYRDVQSYET89LoaDr0ZlUZElPXiY0UDmnJR74ZTjbDbpe0kakr0gTeQEbd/eQVii7aHj7qDi49sflzcbdE5CgHxrIK4zVJBv2xCg3zH0kRFxp0O/a+jXDP9dTQ85PlJ9X72q5N809TuL63d3gIEkYcua0jTV9tf+wIxOkytlf3fbf4R30Cdj5EUcBwXUHbxTwht+0dg0eiKP9wvi8BIpOnGwQwBjmlWda0GawHdKz+t/0uHc3eaPALEDOPhXb/7IFgKdLsJ4OMt4etyHEfvKWFNr7x2KDAekcMlxuX9pczgY6gd1C25V2OxVz+7+5Q//9cI0yGNwTcCwEHvuMJOTAnNJA0ZAei4IiD/AU7IHxQTHREwKHcYl2oKWEEUph/9EIt3a5ChwLMQ89gEZYzkTNk01LqLt5TK6MYH4znIJgW06inKGZIrUnEAh5SSQbA4FHHCYBQEKZhicDeMr+q1uVBwYM1SJUZ9jPgf7eHoknCwVVE0rNUtQ9bS4SSYiR/3QqSNyH14QT04olL0t5xR6vtDg2DnWw+FoZzgBhnnJVMiFJPICWngZ4Zm3of9UsTSUkGSFJ9OaAiUgJOQoSOMYw2ADawKYcu/apNh0ARFQb2NzpMExDaF8zWZowKGIloIr4aOWcAsDiAYEagbTBmVlUXhqPP0I7ZY2NZ5POSEJBLz2TmFqgOp7anCEnDNS+ODQKVe5C005DcvxnprfDvIZEDauDx0hSTYeuEE86W81+EzGAvjVW86tMcOQJD91kEqz6IiGcjZ2B9chtPuPYVmOzGvkGVASwuAAoE2J1xSyCY0gVgETUcacGBJ5nMdI0IdESY1jp8E6yiTYA0ZjJmdtISpnjkBKQDlMVkf5aXziJoghMyPHRzMqiYO2EEZihtWSAAsFZFlYIzRJZVy1cgDHYDDo+6mUaVzxwuoDqQGDwA0jeQSSlYFtrb9o6+y2dEbQtVKVJnmaC4RUvu/YAcuHb5kCTQ0rVO18NgDnk/S/MXBXtsAyYE4YS49sG0xrw4yq4XyWGObnYIzPcmKbotoahujq+cxQrC0j0AVZsSConlFMmTl1ITNha0WlV5zOW89K74Xx/wKE/1NbosLzybG/caNWA5Lt0wTRouB/ahvM0to2Qrc1rND1F9sMLdoyw3T3fLq2c+DZ+v7SXsNX771ad63uq9bGGNYtzzOL2brihw9z2E9bulatDV3rlueqq63sqZZI7yvPqssz2fR0l9gL3byFmB+YSd5NmTRJCEdwfhnDge9iV9608jNka5qJRgbVli3249lnh7ajPZKW7544UqPVFuUM89O+9I6dkUhqPiDBiRhOnV0900PMVnTCWV2+qCt/hb5Wy092byEVAXSmTuA4mbKF3VmybUt1F0oOB991zfFFdTQyUuuY1VxAJPyQhN2wUwxm76RZ1a5/CafFWK+XmtXMmbMxZzkn7V6X44XEekU7dV9DW82qES2WhkOMau71hmqC/JyrNYCx+RIbz3vebMg4xLwSozPnecVAzumGz+k58zGTY3nIhEQ2xx38Y8k3Z8ClstU0VhShrpM60QXkmbmNoDhOk/B8YhHICEnSFa8858MQ1mN09Uqrg6XXDurobFhjSPjjK456oTRTN1tiXJx4BeTUMkuD0ZoOOwJ1kD1RZL2yNDaXy8Ua/zVydiOIwSPJkrkdkgUp5yzOD6i6Se/ESy4po3K++nBWjAv3bEZJ+9hwKvA0o7lDa6p0cwbCkVpW8IkNljsuxoK+8lFGEohJibRsYVulks9nY3M//xgavCb2ClGRVPFxNM1mJX4VmwsknlJUgrWuFWcEh+WeOynqq/BRHJfejOeMtFqE5Ln+IFBsuqXndW8n6013fT9Z10sbqE+INUpXOhAzhyL1dSWqgCfbMUBvLb0YbSItoHJDDVPlDqA6h9eYqtqBmZNVjTK1BXbCnqphqKpZID/OjO/NNxUVchm4rVQ+tqAEoIX+dnGCshBS6a2+bumJAUROmuQIx5TNQxLhnEn12SSqy31P3cgbepEdAuv+pU3X/vDRLfw0GrifD67/MNr85nb1UeSN3nrvo952z+192fum931vt3evF6z9svbb2u9rf6z/uv7n+l/rfxvo2ksVzwe91rP+z//sVg/8</latexit>

Initial evidence: The alarm is sounding



Logic Programs

47

burglary. 
hears_alarm(mary). 

earthquake. 
hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Propositional logic program Two proofs (by refutation)

:- calls(mary).

:- alarm, hears_alarm(mary).

:- earthquake, hears_alarm(mary).

 []  

:- hears_alarm(mary).

:- burglary, hears_alarm(mary).

:- hears_alarm(mary).

 []  

as in the programming language Prolog

A proof-theoretic view
LOGIC



Probabilistic Logic Programs

48

0.1 :: burglary. 
0.3 ::hears_alarm(mary). 

0.05 ::earthquake. 
0.6 ::hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Propositional logic program

Probabilistic facts

Key Idea (Sato & Poole) 
the distribution semantics:   

 unify the basic concepts in logic 
and probability:  

random variable ~ propositional 
variable  

an interface between logic and 
probability 

as in the probabilistic programming language ProbLog

LOGIC
PROBABI

LITY



0.1 :: burglary. 
0.3 ::hears_alarm(mary). 

0.05 ::earthquake. 
0.6 ::hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Propositional logic program Two proofs (by refutation)

:- alarm

 []  

:- burglary. :- earthquake. 

 []  

Probabilistic Logic Programs

P=0.1 P=0.05

Probability of one proof : ∏
f:fact∈Proof

Pf

49

as in the probabilistic programming language ProbLog
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Probabilistic Logic Programs

50

0.1 :: burglary. 
0.3 ::hears_alarm(mary). 

0.05 ::earthquake. 
0.6 ::hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 

calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

Propositional logic program Disjoint sum problem

:- alarm

 []  

:- burglary. :- earthquake. 

 []  

P=0.1 P=0.05

Probability of one proof : ∏
f:fact∈Proof

Pf

P(alarm) = P(burg OR earth) 
= P(burg) + P(earth) - P(burg AND earth)  

=/= P(burg) + P(earth)

as in the probabilistic programming language ProbLog

LOGIC
PROBABI

LITY



Probabilistic Logic Program 
Semantics 

51

[Vennekens et al, ICLP 04]

probabilistic causal laws

earthquake
alarm

alarm alarm

no alarm

no alarm no alarm

burglary burglaryno burglary no burglary

1.0

0.6 0.4

0.050.05
0.95 0.95

0.80.8
0.20.2

P(alarm)=0.6×0.05×0.8+0.6×0.05×0.2+0.6×0.95+0.4×0.05×0.8

earthquake. 

0.05::burglary. 

0.6::alarm :– earthquake. 

0.8::alarm :– burglary. 



0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake. 

alarm :– burglary. 

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm. 

Propositional logic program Bayesian Network

alarm

burglary. earthquake. 

calls(mary) calls(john) 

Bayesian net encoded as Probabilistic Logic Program 
PLPs correspond to directed graphical models 

LOGIC
PROBABI

LITY ProbLog has both (directed) probabilistic graphic models,  
the programming language Prolog (and probabilistic databases) as special case 

Probabilistic Logic Program 
Semantics 

52



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Flexible and Compact Relational 
Model for Predicting Grades

53

“Program” Abstraction: 
• S, C logical variable representing students, courses

• the set of individuals of a type is called a population

• Int(S), Grade(S, C), D(C) are parametrized random variables

Grounding:

• for every student s, there is a random variable Int(s)

• for every course c, there is a random variable Di(c)

• for every s, c pair there is a random variable Grade(s,c)

• all instances share the same structure and parameters



ProbLog by example: 
Grading

Shows relational structure 

• grounded model: replace variables by constants 


Works for any number of students / classes (for 1000 students 
and 100 classes, you get 101100 random variables); still only few 
parameters 

With SRL / PP 


• build and learn compact models, 

• from one set of individuals - > other sets;

• reason also about exchangeability, 

• build even more complex models, 

• incorporate background knowledge 
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ProbLog by example: 
Grading

Shows relational structure 

• grounded model: replace variables by constants 


Works for any number of students / classes (for 1000 students 
and 100 classes, you get 101100 random variables); still only few 
parameters 

With SRL / PP 


• build and learn compact models, 

• from one set of individuals - > other sets;

• reason also about exchangeability, 

• build even more complex models, 

• incorporate background knowledge 

55



ProbLog by example: 
Grading

56

0.4 :: int(S) :- student(S). 
0.5 :: diff(C):- course(C). 

student(john). student(anna). student(bob). 
course(ai).    course(ml).    course(cs). 

gr(S,C,a) :- int(S), not diff(C). 
0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::gr(S,C,c) :-   
           int(S), diff(C). 
0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-   
           student(S), course(C),  
           not int(S), not diff(C). 
0.3::gr(S,C,c); 0.2::gr(S,C,f) :-  
           not int(S), diff(C).



ProbLog by example: Grading

57

unsatisfactory(S) :- student(S), grade(S,C,f). 

excellent(S):- student(S), not(grade(S,C1,G),below(G,a)), 
  grade(S,C2,a).

0.4 :: int(S) :- student(S). 
0.5 :: diff(C):- course(C). 

student(john). student(anna). student(bob). 
course(ai).    course(ml).    course(cs). 

gr(S,C,a) :- int(S), not diff(C). 
0.3::gr(S,C,a); 0.5::gr(S,C,b);0.2::gr(S,C,c) :-   
           int(S), diff(C). 
0.1::gr(S,C,b); 0.2::gr(S,C,c); 0.2::gr(S,C,f) :-   
           student(S), course(C),  
           not int(S), not diff(C). 
0.3::gr(S,C,c); 0.2::gr(S,C,f) :-  
           not int(S), diff(C).



Dynamic networks

Travian:  A massively multiplayer real-
time strategy game

Can we build a model

of this world ? 

Can we use it for playing

better ?

[Thon et al, MLJ 11]58
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Activity analysis and tracking 
video analysis

• Track people or objects 
over time? Even if 
temporarily hidden?


• Recognize activities?

• Infer object properties?

Fig. 4. Tracking results from experiment 2. In frame 5, two groups are
present. In frame 15, the tracker has correctly split group 1 into 1-0 and 1-1
(see Fig. 3). Between frames 15 and 29, group 1-0 has split up into groups
1-0-0 and 1-0-1, and split up again. New groups, labeled 2 and 3, enter the
field of view in frames 21 and 42 respectively.

Six frames of the current best hypothesis from experiment
2 are shown in Fig. 4, the corresponding hypothesis tree is
shown in Fig. 3. The sequence exemplifies movement and
formation of several groups.

A. Clustering Error

Given the ground truth information on a per-beam basis we
can compute the clustering error of the tracker. This is done
by counting how often a track’s set of points P contains too
many or wrong points (undersegmentation) and how often P
is missing points (oversegmentation) compared to the ground
truth. Two examples for oversegmentation errors can be seen
in Fig. 4, where group 0 and group 1-0 are temporarily
oversegmented. However, from the history of group splits
and merges stored in the group labels, the correct group
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Fig. 5. Left: clustering error of the group tracker compared to a memory-
less single linkage clustering (without tracking). The smallest error is
achieved for a cluster distance of 1.3 m which is very close to the border of
personal and social space according to the proxemics theory, marked at 1.2
m by the vertical line. Right: average cycle time for the group tracker versus
a tracker for individual people plotted against the ground truth number of
people.

relations can be determined in such cases.
For experiment 1, the resulting percentages of incorrectly

clustered tracks for the cases undersegmentation, overseg-
mentation and the sum of both are shown in Fig. 5 (left),
plotted against the clustering distance dP . The figure also
shows the error of a single-linkage clustering of the range
data as described in section II. This implements a memory-
less group clustering approach against which we compare
the clustering performance of our group tracker.

The minimum clustering error of 3.1% is achieved by the
tracker at dP = 1.3 m. The minimum error for the memory-
less clustering is 7.0%, more than twice as high. In the
more complex experiment 2, the minimum clustering error
of the tracker rises to 9.6% while the error of the memory-
less clustering reaches 20.2%. The result shows that the
group tracking problem is a recursive clustering problem that
requires integration of information over time. This occurs
when two groups approach each other and pass from opposite
directions. The memory-less approach would merge them
immediately while the tracking approach, accounting for the
velocity information, correctly keeps the groups apart.

In the light of the proxemics theory the result of a minimal
clustering error at 1.3 m is noteworthy. The theory predicts
that when people interact with friends, they maintain a range
of distances between 45 to 120 cm called personal space.
When engaged in interaction with strangers, this distance is
larger. As our data contains students who tend to know each
other well, the result appears consistent with Hall’s findings.

B. Tracking Efficiency

When tracking groups of people rather than individuals,
the assignment problems in the data association stage are
of course smaller. On the other hand, the introduction of
an additional tree level on which different models hypoth-
esize over different group formation processes comes with
additional computational costs. We therefore compare our
system with a person-only tracker which is implemented by
inhibiting all split and merge operations and reducing the
cluster distance dP to the very value that yields the lowest
error for clustering single people given the ground truth. For

59

[Skarlatidis et al, TPLP 14; 
Nitti et al, IROS 13, ICRA 14, 

MLJ 16]
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[Persson et al, IEEE Trans on 
Cogn. & Dev. Sys. 19;

IJCAI 20]



Learning relational affordances

60

Shelf

   
 

  

push

Shelf
   

 

  tap

Shelf
   

 
  grasp

Moldovan et al.  ICRA 12, 13, 14; Auton. Robots 18
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PROBABI

LITY

(a) Disparity image (b) Segmented image with landmark points

Clip 7: Illustration of the object size computation. Left-hand image shows the disparity map

of the example shown in Figure 5. The orange points in the right-hand image show the points

that intersect with the ellipse’s major axis. The orange points are mapped onto 3D using their

associated disparity value, and the 3D distance between each pair is defined as the object size.

To learn an a↵ordance model, the robot first performs a behavioural babbling
stage, in which it explores the e↵ect of its actions on the environment. For
this behavioural babbling stage, for the single-arm actions the robot uses its
right-arm only. For these actions a model of the left-arm will be later built by
exploiting symmetry as in [3]. We include the simultaneous two-arm push on
the same object in the babbling phase, allowing for a more accurate modelling
of action e↵ects for the iCub.4

The babbling phase consists of placing pairs of objects in front of the robot
at various positions. The robot executes one of its actions A described above on
one object (named: main object, OMain). OMain may interact with the other
object (secondary object, OSec) causing it to also move. Figure 8 shows such
a setting, with the objects’ position before (l) and after (r) a right-arm action
(tap(10)) execution.

Clip 8: Relational O before (l), and E after the action execution (r).

4
As opposed to the two-arm a↵ordance modelling in [3], we also include in the babbling

phase the two-arm simultaneous actions whose e↵ects might not always be well modelled by

the sum of the individual single-arm actions.

15

similar to probabilistic Strips  
(with continuous distributions)



• Discrete- and continuous-valued random variables

Distributional Clauses (DC)

length(Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass). 
stackable(OBot,OTop) :-  
      ≃length(OBot) ≥ ≃length(OTop),  
      ≃width(OBot) ≥ ≃width(OTop). 

[Gutmann et al, TPLP 11; Nitti et al, IROS 13;
Nitti et al. MLJ]

random variable with Gaussian distribution

comparing values of 
random variables

61



codes for

gene

protein

pathway

cellular
component

homologgroup

phenotype

biological
process

locus

molecular
function has

is homologous to

participates in

participates in
is located in

is related to

refers to
belongs to

is found in

subsumes,
interacts with

is found in

participates in

refers to

Biomine 
database @ 

Helsinki

Networks of Uncertain     
Information

62http://biomine.cs.helsinki.fi/



Biology 

  Causes: Mutations 
 All related to similar 

phenotype 
  Effects: Differentially 

expressed genes 
  27 000 cause effect 

pairs

 Interaction network: 
 3063 nodes 

 Genes 
 Proteins 

 16794 edges 
 Molecular interactions 
 Uncertain

 Goal: connect causes to effects 
through common subnetwork 

 = Find mechanism 
 Techniques: 

 DTProbLog 
 Approximate inference

[De Maeyer et al., Molecular Biosystems 13, NAR 15] [Gross et al. Communications Biology, 19]63
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Probabilistic Programming 
Languages outside LP
• IBAL [Pfeffer 01]

• Figaro [Pfeffer 09]

• Church [Goodman et al 08 ]

• BLOG [Milch et al 05]

• Stan & Edward & Anglican 

• and many more appearing recently such 
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functional 
programming

random 
primitives

Church 
probabilistic functional 

programming

Dealing with 
uncertainty

Reasoning with 
relational data

Learning

(define plus5 (lambda (x) (+ x 5))) 

(map plus5 '(1 2 3))

(define randplus5 
 (lambda (x) (if (flip 0.6)  
                 (+ x 5)  
                 x))) 

(map randplus5 '(1 2 3))

one execution 

several 
possible 

executions 

probabilistic primitives + functional program
→ distribution over possible executions

66

[Goodman et al, UAI 08]

http://probmods.org



Church vs ProbLog
(define randplus5 (lambda (x) (if (flip 0.6) (+ x 5) x))) 

(map randplus5 '(1 2))

0.4::p5(N,N);0.6::p5(N,M) :- M is N+5. 
lp5([],[]). 
lp5([N|L],[M|K]) :- 
    p5(N,M), 
    lp5(L,K). 

query(lp5([1,2],_)).

Church result: (1 2) with 0.4×0.4      
(1 7) with 0.4×0.6
(6 2) with 0.6×0.4
(6 7) with 0.6×0.6

67

ProbLog result: (1 2) with 0.4×0.4      
(1 7) with 0.4×0.6
(6 2) with 0.6×0.4
(6 7) with 0.6×0.6



0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake. 

alarm :– burglary.

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm. 

alarm

burglary. earthquake. 

calls(mary) calls(john) 

Markov LogicProbabilistic  Logic Programs  
ProbLog

undirected 
Markov Net 

model theoretic
directed 

Bayesian Net 

LOGIC
PROBABI

LITY key representatives

2. Directed vs Undirected
the PGM / StarAI dimension



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI

Markov Logic: Intuition

• Undirected graphical model 
• A logical KB is a set of hard constraints 

on the set of possible worlds

• Let’s make them soft constraints: 

When a world violates a formula, 
it becomes less probable, not impossible


• Give each formula a weight 
(Higher weight  ⇒  Stronger constraint)

69

( )∑∝ satisfiesit  formulas of weightsexpP(world)



A possible worlds view
Say we have two domain elements Anna and Bob as well as 
two predicates Friends and Happy

70

),( BobAnnaFriends¬

)(BobHappy)(BobHappy¬

),( BobAnnaFriends

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI slides by Pedro Domingos



A possible worlds view
Logical formulas such as    

          not Friends(Anna,Bob) or Happy(Bob) 
exclude possible worlds

71

),( BobAnnaFriends¬

)(BobHappy)(BobHappy¬

),( BobAnnaFriends

)(
),(
BobHappy

BobAnnaFriends
∨

¬

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI slides by Pedro Domingos



A possible worlds view
Instead of excluding worlds, we want them to become less likely, 
e.g.

72

),( BobAnnaFriends¬

)(BobHappy)(BobHappy¬

),( BobAnnaFriends

)(
),(
BobHappy

BobAnnaFriends
∨

¬

P(¬Friends(Anna,Bob)∨Happy(Bob)) = 0.8

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI



A possible worlds view
four times as likely that rule holds
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),( BobAnnaFriends¬

)(BobHappy)(BobHappy¬

),( BobAnnaFriends

1))(),(( =∨¬Φ BobHappyBobAnnaFriends
75.0))(),(( =¬∧Φ BobHappyBobAnnaFriends

1 1

175.0

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI slides by Pedro Domingos



),( BobAnnaFriends¬

)(BobHappy)(BobHappy¬

Or as log-linear model this is:

),( BobAnnaFriends

29.0)75.0/1log(
)))(),(((

==

∨¬Φ BobHappyBobAnnaFriendsw

1 1

175.0

De Raedt, Kersting, Natarajan, Poole: Statistical Relational AIThis can also be viewed as building a graphical model

A possible worlds view
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Cancer(A)

Smokes(A) Smokes(B)

Cancer(B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic
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Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic
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Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos

Markov Logic
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Markov Logic

78

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Suppose we have two constants: Anna (A) and Bob (B)

slides by Pedro Domingos



Markov Logic

• A Markov Logic Network (MLN) is a set of pairs (F, w) where 
• F is a formula in first-order logic 
• w is a real number 

• An MLN defines a Markov network with 
• One node for each grounding of each predicate 

in the MLN 
• One feature for each grounding of each formula F in the 

MLN, with the corresponding weight w 
• Probability of a world 
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Possible Worlds

A vocabulary

Possible worlds 
Logical interpretations
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A logical theory

Interpretations that  
satisfy the theory 
Models

∀x,y, Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)
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A logical theory

First-Order Model Counting

First-order model count 
~#SAT
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∀x,y, Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)
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• MLNs are a template for ground Markov Networks

• Probability of a world/interpretation

• If            then 

Markov Logic

Weight of formula i No. of true groundings of formula i in x
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counting only substitutions for which X =/= Y 
X=Alice, Y=Bob
X=Bob, Y=Alice
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Markov Logic

• A Markov Logic Network (MLN) is a set of pairs (F, w) where 
• F is a formula in first-order logic 
• w is a real number 

• An MLN defines a Markov network with 
• One node for each grounding of each predicate 

in the MLN 
• One feature for each grounding of each formula F in the 

MLN, with the corresponding weight w 
• Probability of a world 
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Parameter Learning

87

No. of times clause i is true in data

Expected no. times clause i is true according to MLN

[ ])()()(log xnExnxP
w iwiw
i

−=
∂

∂

Has been used for generative learning (Pseudolikelihood); 
Many variations (also discriminative); 
applications in networks, NLP, bioinformatics, … 



Applications

▪ Natural language processing, Collective Classification, Social 
Networks, Activity Recognition, …

88



Why StarAI ? 
• Reasoning (Probability + Logic) AND Learning

• SRL : Expressive Probabilistic Graphical Models 

• First order logic results supports entities + relationships + 
background knowledge — abstraction of multiple entities

• Recursion (e.g. smokers cannot be represented by a plate model)

• PP : Power of a universal Turing machine = a prog. language

• you can program in it and have builtin expressive prob. models

• PP can learn -> so bring learning to programming languages

• ProbLog fits both paradigms

89



Inference

90

LOGIC
PROBABI

LITY



Inference / Reasoning
• Most of the work in PP and StarAI is on 

inference

• It is hard (complexity wise)

• Many inference methods

• exact, approximate, sampling and lifted … 

• Inference is the key to learning

91



De Raedt, Kersting, Natarajan, Poole: Statistical Relational AI 

Two Steps
• Logical inference - 

• about a ground logical theory

• proofs or model theoretic … 

• Result:  Weighted Model Counting problem

• Probabilistic propositional inference — 

• Knowledge Compilation

• Backtracking search — DPLL, VE, RC based

• Advanced — lifted inference

92



ProbLog Inference
Answering a query in a ProbLog program happens in four steps
1. Grounding the program w.r.t. the query 
2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit
4. Evaluate the arithmetic circuit

0.1 :: burglary. 
0.5 :: hears_alarm(mary). 

0.2 :: earthquake. 
0.4 :: hears_alarm(john). 

alarm :– earthquake. 

alarm :– burglary. 
calls(mary) :– alarm, hears_alarm(mary).

calls(john) :– alarm, hears_alarm(john). 

calls(mary) 

↔ 

hears_alarm(mary) ∧ (burglary ∨ earthquake) 



ProbLog Inference
Answering a query in a ProbLog program happens in four steps
1. Grounding the program w.r.t. the query 
2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit (knowledge compilation)
4. Evaluate the arithmetic circuit

calls(mary) 

↔ 

hears_alarm(mary) ∧ (burglary ∨ earthquake) 
AND AND

AND

OR

calls(mary)

￢earthquake

0.8

earthquake

0.2

burglary

0.1

hears_alarm(mary)

0.5

0.08 0.1

0.04

0.14
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0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake. 

alarm :– burglary.

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm. 

alarm

burglary. earthquake. 

calls(mary) calls(john) 

Markov LogicProbabilistic  Logic Programs  
ProbLog

undirected 
Markov Net 

model theoretic
directed 

Bayesian Net 

LOGIC
PROBABI

LITY key representatives

2. Directed vs Undirected
the PGM / StarAI dimension

95



1. Proof vs Model based
2. Directed vs Undirected

96
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Two types of Neural Symbolic 
Systems

Logic as a kind of neural 
program 

directed StarAI approach and logic 
programs

97

Logic as the regularizer                             
(reminiscent of Markov Logic 

Networks) 
undirected StarAI approach and 

(soft) constraints

Just like in StarAI 

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing  
knowledge based model construction  KBMC 

where logic is used as a template

Just like in StarAI 

2. Directed vs Undirected
the NeSy dimension



Logic as a neural program

98

A :− B, Z.
B :− C, D.
B :− E, F, G.
Z :− Y, not X.
Y :− S, T.

A   :− B, Z.
B   :− B’.
B   :− B’’.
B’  :− C, D.
B’’ :− E, F, G.
Z   :− Y, not X.
Y   :− S, T.

REWRITE

directed StarAI approach and logic programs

LOGICLOGICLOGICNEURAL

• KBANN (Towell and Shavlik AIJ 94)

• Turn a (propositional) Prolog program into a neural 

network and learn



HIDDEN UNITADD LINKS — ALSO SPURIOUS ONES

and then learn
(Details of activation & loss functions not mentioned)LOGICLOGICLOGICNEURAL

directed StarAI approach and logic programs

Logic as a neural program

99



Lifted Relational Neural Networks

100

LOGICLOGICLOGICNEURAL

[Sourek, Kuzelka, et al JAIR]

directed StarAI approach and logic programs

• Directed (fuzzy) NeSy    

• similar in spirit to the Bayesian Logic Programs and 

Probabilistic Relational Models

• Of course, other kind of (fuzzy) operations for AND, OR 

and Aggregation (cf. later)



Neural Theorem Prover

101[Rocktäschel Riedel, NeurIPS 17; Minervini et al.]
LOGICLOGICLOGICNEURAL

the logic is encoded in the network 
how to reason logically ?

directed StarAI approach and logic programs



Two types of Neural Symbolic 
Systems

Logic as a kind of neural 
program 

directed StarAI approach and logic 
programs

102

Logic as the regularizer                             
(reminiscent of Markov Logic 

Networks) 
undirected StarAI approach and 

(soft) constraints

Just like in StarAI 

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing  
knowledge based model construction  KBMC 

where logic is used as a template

Just like in StarAI 

2. Directed vs Undirected
the NeSy dimension



Logic as constraints

103

figures and example from Xu et al., ICML 2018
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

multi-class classification
This constraint should be satisfied

(¬x1 ^ ¬x2 ^ x3)_ (1)

(¬x1 ^ x2 ^ ¬x3)_ (2)

(x1 ^ ¬x2 ^ ¬x3) (3)

<latexit sha1_base64="XbG4kwy4F1ZEo1s2e3tSfbPsnUI="></latexit>



Logic as constraints
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multi-class classification
Probability that constraint is satisfied

(1� x1)(1� x2)x3+

(1� x1)x2(1� x3)+

x1(1� x2)(1� x3)

<latexit sha1_base64="siUg7I1JwVFi32UgItD2G0F9eAQ="></latexit>

basis for SEMANTIC LOSS
   (weighted model counting)

LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints



Semantic Loss:

• Use logic as constraints (very much like “propositional 

MLNs)

• Semantic loss


• Used as regulariser 


• Use weighted model counting , close to StarAI

Logic as a regularizer

105

SLoss(T ) / � log
X

X|=T

Y

x2X

pi
Y

¬x2X

(1� pi)

<latexit sha1_base64="dER/6fh2D1SpLgkfxgf7GKJqOOM="></latexit>

Loss = TraditionalLoss+ w.SLoss

<latexit sha1_base64="+S53KnNUSBsAI7yKvOjzIEBijB0=">AAACDHicbZDLSsNAGIUn9dbGW9Wlm8EiCEJIRNGNUHTjwkXF3rANZTKZtEMnF2Ymagl9ADfufYpuXCji1gdw59PoJO1CWw8MfJzz/wz/cSJGhTTNLy03N7+wuJQv6Msrq2vrxY3NughjjkkNhyzkTQcJwmhAapJKRpoRJ8h3GGk4/fM0b9wSLmgYVOUgIraPugH1KEZSWZ1iSb8MhYCnsMqRS1MPMZhZ+/DOgNcpqinTMDPBWbAmUCoXoqeb0f13pVP8bLshjn0SSMyQEC3LjKSdIC4pZmSot2NBIoT7qEtaCgPkE2En2TFDuKscF3ohVy+QMHN/byTIF2LgO2rSR7InprPU/C9rxdI7sRMaRLEkAR5/5MUMyhCmzUCXcoIlGyhAmKsuMMQ9xBGWqj9dlWBNnzwL9QPDOjSOrlQbZ2CsPNgGO2APWOAYlMEFqIAawOABjMALeNUetWftTXsfj+a0yc4W+CPt4wf0Wp1n</latexit>

LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints



• Semantic Loss can be used with any logical 
constraint theory


• Examples with semi-supervised learning, 
where the constraint enforces that each 
example should have a class


• very nice properties :


• differentiable, also monotonicity 


• 
if α ⊧ β then SLoss(α) ≥ SLoss(β)

106

Logic as a regularizer




Logic Tensor Networks

107 Serafini & Garcez
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints



Semantic Based Regularization

108 Diligenti et al. AIJ
LOGICLOGICLOGICNEURAL

the logic is encoded in the network 
how to reason logically ?

undirected StarAI approach and (soft) constraints



Two types of Neural Symbolic 
Systems

Logic as a kind of neural 
program 

directed StarAI approach and 
logic programs

109

Logic as the regularizer                             
(reminiscent of Markov Logic 

Networks) 
undirected StarAI approach and 

(soft) constraints

Just like in StarAI 

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing  
knowledge based model construction  KBMC 

where logic is used as a template

Consequence : 
the logic is encoded in the network 
the ability to logically reason is lost 

logic is not a special case 



Two types of Neural Symbolic Systems

Logic as a kind of neural 
program 

directed StarAI approach and 
logic programs

110

Logic as the regularizer                             
(reminiscent of Markov Logic 

Networks) 
undirected StarAI approach and 

(soft) constraints

Just like in StarAI 

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing  
knowledge based model construction  KBMC 

where logic is used as a template

Just like in StarAI 

2. Directed vs Undirected
the NeSy dimension



3. Types of Logic

111

LOGIC LOGICLOGICLOGICNEURAL



• Different types of logic exist


• Different types of logic enable different functionalities

112

3. Types of Logic
Key Messages



3. Types of Logic

113

LOGIC



Various flavours of logic

114

Propositional logic First-order logic

LOGIC



Various flavours of first-order 
logic

115

LOGIC

Logic programs 
= programming language



Logic programming and Prolog

116

LOGIC

structured terms

recursion

Full-fledged programming language



Various flavours of first-order 
logic

117

LOGIC

Logic programs 
= programming language

Datalog 
= Logic programs  
   that always terminate



Datalog

118

LOGIC

Query language for deductive databases

no structured terms
guaranteed to terminate



Various flavours of first-order 
logic

119

LOGIC

Logic programs 
= programming language

Datalog 
= Logic programs  
   that always terminate

Answer-set programs 
= Logic programs with 
   multiple models that  
   always terminate

+ soft/hard constraints

+ preferences



Answer-set programming

120

LOGIC

Prolog with multiple models + interesting features

choice rules

constraint



What can it do?

121

LOGIC

Propositional logic: 
simple propositional reasoning



What can it do?

122

LOGIC

Datalog: 
database queries

Propositional logic: 
simple propositional reasoning



What can it do?

123

LOGIC

Datalog: 
database queries

Answer-set programming: 
database queries, common-sense 
reasoning, preferences

Propositional logic: 
simple propositional reasoning



What can it do?

124

LOGIC

Datalog: 
database queries

Answer-set programming: 
database queries, common-sense 
reasoning, preferences

Logic programming: 
programs manipulating structured 
objects, infinite domains, …

Propositional logic: 
simple propositional reasoning



Logic program vs First-order 
logic

125

LOGIC

edge(1,2).
path(A,B)  edge(A,B).
path(A,B)  edge(A,C), path(C,B).

←
←

Logic programs always 
have one model

{edge(1,2), path(1,2)}

First-order logic can have  
many models

{edge(1,2), path(1,2)}
{edge(1,2), path(1,2), path(1,1)}
{edge(1,2), path(1,2), path(2,1)}

Issues with transitive closure in first-order logic



3. Types of Logic
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Logic in NeSy - Propositional logic

127

Semantic loss

LOGICLOGICLOGICNEURAL



Logic in NeSy - Datalog

128

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂



Logic in NeSy - Answer-set 
programming

129

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂

NeurASP



Logic in NeSy - Logic programming

130

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂

NeurASP

DeepProblog,  
NLProlog



Logic in NeSy - First-order logic

131

Semantic loss

LOGICLOGICLOGICNEURAL

ILP, Neural Theorem  
Provers, LRNN, DiffLog, …
∂

NeurASP

DeepProblog,  
NLProlog

Logic tensor networks, NMLN, 
     SBT, RNM 



• Different types of logic exist


• Different types of logic enable different functionalities

132

3. Types of Logic 
Key Messages



4. Symbolic vs sub-symbolic



• Entities are represented very differently in symbolic and 
sub-symbolic systems, but they are complementary


• NeSy systems can be categorized by how they use 
symbolic and sub-symbolic intermediate representations 

134

4. Symbolic vs sub-symbolic
Key Messages



Symbolic representations
• Atoms: an, bob

• Numbers: 4, -3.5

• Variables: X,Y


• Structured terms: f(t1,...,tn)

• motherOf(an)

• [-0.1,1.2,0.5]

• [[1,2,3],[4,5,6]]

• plus(3,times(2,5))

• ...

135

LOGIC

1 2 3
4 5 6

-0,11,2 0,5

3

2 5

an bob
motherOf



Comparing symbols: unification

• Powerful mechanism for symbol matching

• basis for many logic-based AI systems


• Finds substitution θ such that both symbols match

• mother(X, bob) = mother(an, Y)

• θ = {X = an, Y = bob}


• Not useful to determine similarity

• mother(an,bob) ≈ mother(an,charlie)?

136

LOGIC



Sub-symbolic representations

137

0,1 -0,3 ...

-0,9 -0,2 ...

... ... ...

NEURAL

• Sub-symbolic systems require numerical representation

• Often, entities are already numerical in nature

• Generally, these representations are fixed in size and dimensionality

• Exceptions require special neural architectures, e.g.


• Recurrent neural networks

• Fully convolutional networks

• ...



Sub-symbols in StarAI

• It is possible to represent these sub-symbols in logic

• vectors: [0.1, -0.5, 0.6]

• matrices: [[0.2,0.4], 

                 [0.3, 0.1]]

• ...


• However, they are not part of the computation mechanisms.

• i.e. we cannot learn its parameters


• They are not first class citizens.

138

LOGIC



Comparing sub-symbols

• Similarity can be determined through various metrics

• L1, L2, radial-basis function, ...


• Can only give a degree of similarity

• When is a ≠ b? When is a = b?

139

a b

||a-b||2

NEURAL



4. Symbolic vs sub-symbolic
 Translating between representations

LOGICNEURAL



Symbols to sub-symbols

141

The quick brown fox ...

NEURAL

132 32 204 ... -0,5 0,2 0,1 ...
-0,8 0,4 0,6 ...

• Encoding relations  r(h,t)

• Many ways to structure embedding space

• A lot of deep learning research is on how to represent symbols



Symbols to sub-symbols

142

NEURAL

0

1

2

3

0,3 -0,5 0,2 0,1

0,6

-0,2

-0,4

0 0 0 0

1 1 0 0

1 0 0 1

1 1 0 0

0
2

30

1

2

1

3

?

• What about graphs?



• E.g. in neural network classifiers

• Turn real-valued vector into discrete classes

• Final layer with specific activation function

0,1 -0,3 ...

-0,9 -0,2 ...

... ... ...

Sub-symbols to symbols

143

0,1 -0,3 ...

-0,9 -0,2 ...

... ... ...

0,1 -0,3 ...

-0,9 -0,2 ...

... ... ...

0,1

0,6

...

-0,4

1argmax

p(0) = 0.1, p(1) = 0.5, ...
softmax

Gumbel-

softmax [1] p(0) = 0.02, p(1) = 0.95, ...

approximate 

differentiable sample

NEURAL

[1] Jang et al.:"Categorical Reparameterization with Gumbel-Softmax",  ICLR 2017



4. Symbolic vs sub-symbolic
Representations in NeSy

LOGICNEURAL



• StarAI

• Input = intermediate = output = symbolic representation


• Neural methods

• Input = intermediate = sub-symbolic

• Output = 


• Symbolic (classifier) 

• Or sub-symbolic (auto-encoder, GAN, regression, ...)


• NeSy

• Intermediate representation = symbolic or sub-symbolic

• We discern several approaches

Representation in NeSy

145
LOGICLOGICLOGICNEURAL



4. Symbolic vs sub-symbolic
Single translation step

LOGICNEURAL



Single translation step

• Symbolic input is mapped onto sub-symbols 

• One-hot encoding, relational embeddings, ...


• Afterwards, all reasoning happens in sub-symbolic space

• This approach is seen in most NeSy systems

• Examples include:


• LTNs[1], SBR[2], NLMs[3], TensorLog[4]

147
LOGICLOGICLOGICNEURAL

[1] Serafini, et al.: "Logic Tensor Networks: 

	 	 	 Deep Learning and Logical Reasoning from Data and Knowledge", NeSy@HLAI 2016

[2] Diligenti et al.: "Semantic based regularization for learning and inference", Artificial Intellligence 2017

[3] Dong et al.: "Neural Logic Machines", ICLR 2019

[4] Cohen et al.: "Deep Learning meets Probabilistic DBs" 



Logic Tensor Network

148

LOGICLOGICLOGICNEURAL

• This translations is made explicit in Logic Tensor Networks

Luciano Serafini, Artur S. d'Avila Garcez: Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge. NeSy@HLAI 2016




Logical Theory                   

149

stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(X) :- stress(X). 
smokes(X) :-  
     influences(Y,X),  
     smokes(Y).

stress(ann). 
influences(ann,bob). 
influences(bob,carl). 

smokes(ann) :- stress(ann). 
smokes(bob) :- stress(bob). 
smokes(carl) :- stress(carl). 

smokes(ann) :- influences(ann,ann), smokes(ann).     
smokes(ann) :- influences(bob,ann), smokes(bob).   
smokes(ann) :- influences(carl,ann), smokes(carl). 

smokes(bob) :- influences(ann,bob), smokes(ann).     
smokes(bob) :- influences(bob,bob), smokes(bob).   
smokes(bob) :- influences(carl,bob), smokes(carl). 

smokes(carl) :- influences(ann,carl), smokes(ann).     
smokes(carl) :- influences(bob,carl), smokes(bob).   
smokes(carl) :- influences(carl,carl), smokes(carl). 

GROUNDING OUT

IF INTERESTED ONLY IN
CERTAIN QUERIES,

CLEVER TECHNIQUES EXIST
TO AVOID GROUNDING OUT 

COMPLETELY



Logic Tensor Network

150

Encoding symbols

Sub-symbolic 

computation

LOGICLOGICLOGICNEURAL

Luciano Serafini, Artur S. d'Avila Garcez: Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge. NeSy@HLAI 2016




4. Symbolic vs sub-symbolic
Alternating symbols and sub-symbols

LOGICNEURAL



Alternating symbols and sub-symbols

• Both symbolic and sub-symbolic representations are used

• Not simultaneously by one component

• Some components work on symbols, others on sub-symbols


• Indicative of systems that implement an interface

• Very natural for NeSy systems originating from a logical framework

• Examples include:


• DeepProbLog[1], NeurASP[2], ...

• ABL[3], NeuroLog[4], ..

152
LOGICLOGICLOGICNEURAL

[1] Manhaeve et al: "DeepProbLog: Neural Probablistic Logic Programming", NeurIPS 2018

[2] Yang et al: "NeurASP: Embracing Neural Networks into Answer Set Programming", IJCAI 2020

[3] Dai et al.: "Bridging Machine Learning and Logical Reasoning by Abductive Learning", NeurIPS 2019

[4] Tsamora et al. "Neural-symbolic integration: A compositional perspective"



Neural predicate

• Neural networks have 
uncertainty in their predictions


• A normalized output can be 
interpreted as a probability 
distribution


• Neural predicate models the 
output as probabilistic facts


• No changes needed in the 
probabilistic host language

153

PROBABI
LITY

LOGICLOGICLOGICNEURAL

Key Idea DeepProbLog  

 unify the basic concepts in logic 
and neural networks:  

neural predicate ~ neural net 

an interface between logic and 
neural nets 



DeepProbLog

• DeepProbLog: interface between PLP (ProbLog) and neural networks.


• This interface takes the form of the neural predicate


• Output of neural networks represented as probabilistic facts


nn(mnist_net, [D], N, [0 ... 9] ) :: digit(D,N).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

• In the logic, the images are represented as constants


• Sub-symbolic properties are used in the neural network to make predictions


• This may seem as a limitation, but isn't 

Examples: 
addition(  ,  ,8), addition(  ,  ,4), addition(  ,  ,11), … 
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DTAI research group

DeepProbLog exemplified: 
MNIST addition

Task:  Classify pairs of MNIST digits with their sum


Benefit of DeepProbLog:


• Encode addition in logic


• Separate addition from digit classification

8
4
11

nn(mnist_net, [X], Y, [0 ... 9] ) :: digit(X,Y).

addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

addition(  ,  ,8) :- digit( ,N1), digit(  ,N2), 8 is N1 + N2.

Examples: 
addition(  ,  ,8), addition(  ,  ,4), addition(  ,  ,11), … 



Example
Learn to classify the sum of pairs of MNIST digits

Individual digits are not labeled!

E.g.  (      ,     , 8)

Could be done by a CNN: classify the 
concatenation of both images into 19 classes

However:
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                           +                 = ?



MNIST Addition
• Pairs of MNIST images, labeled 

with sum

• Baseline: CNN

• Classifies concatenation of both 
images into classes 0 ...18

• DeepProbLog:

• CNN that classifies images into 
0 … 9

• Two lines of DeepProblog code
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Multi-digit MNIST 
addition with MNIST

Result

158

number ( [ ] , Result , Result ) .
number ( [H | T ] , Acc , Result) :− 

digit(H, Nr ), Acc2 is Nr +10*Acc , 
number ( T , Acc2 , Result ) . 

number (X,Y) :− number (X, 0 ,Y ) . 

multiaddition(X, Y, Z ) :− 
   number (X, X2 ) , 

number (Y, Y2 ) , 
Z is X2+Y2 .



Noisy Addition
nn(classifier, [X], Y, [0 .. 9]) :: digit(X,Y).
t(0.2) :: noisy.

1/19 :: uniform(X,Y,0) ; ... ; 1/19 :: uniform(X,Y,18).

addition(X,Y,Z) :- noisy, uniform(X,Y,Z).
addition(X,Y,Z) :- \+noisy, digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.

nn(classifier,[a],0) :: digit(a,0); nn(classifier,[a],1) :: digit(a,1).
nn(classifier,[b],0) :: digit(b,0); nn(classifier,[b],1) :: digit(b,1).
t(0.2)::noisy.

1/19::uniform(a,b,1).
addition(a,b,1) :- noisy, uniform(a,b,1).

addition(a,b,1) :- \+noisy, digit(a,0), digit(b,1).
addition(a,b,1) :- \+noisy, digit(a,1), digit(b,0).

(b) The ground DeepProbLog program.

(c) The AC for query addition(a,b,1).

Figure 4: Parameter learning in DeepProbLog. (Example 5)

Figure 5: The learning pipeline.
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Figure 8: The accuracy on the MNIST test set for individual digits while training on (T3).

Fraction of noise
0.0 0.2 0.4 0.6 0.8 1.0

Baseline 93.46 87.85 82.49 52.67 8.79 5.87
DeepProbLog 97.20 95.78 94.50 92.90 46.42 0.88

DeepProbLog w/ explicit noise 96.64 95.96 95.58 94.12 73.22 2.92
Learned fraction of noise 0.000 0.212 0.415 0.618 0.803 0.985

Table 3: The accuracy on the test set for T4.

.

noise tolerant, even retaining an accuracy of 73.2% with 80% noisy labels.
As shown in the last row, it is also able to learn the fraction of noisy labels
in the data. This shows that the model is able to recognize which examples
have noisy labels.

6.2. Program Induction

The second set of problems demonstrates that DeepProbLog can perform
program induction. We follow the program sketching [25] setting of differentiable
Forth (@4) [8], where holes in given programs need to be filled by neural networks
trained on input-output examples for the entire program. As in their work, we
consider three tasks: addition, sorting [26] and word algebra problems (WAPs)
[27].

T5: forth_addition([4], [8], 1, [1, 3])
The input consists of two numbers, represented as lists of digits, and a
carry. The output is the sum of the numbers and the carry. The program
specifies the basic addition algorithm in which we go from right to left over
all digits, calculating the sum of two digits and taking the carry over to
the next pair. The hole in this program corresponds to calculating the
resulting digit (result/4) and carry (carry/4), given two digits and the
previous carry.
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DeepProbLog

⨂

addition( , ,1)

0.8,
[1,0,0,0]

0.6,
[0,0,0,1]

⨂

⨁

0.1,
[0,1,0,0]

0.2,
[0,0,1,0]

0.48,
[0.6,0,0,0.8]

0.02,
[0,0.2,0.1,0]

0.5,
[0.6,0.2,0.1,0.8]

digit( ,0) digit( ,1) digit( ,1) digit( ,0)

nn(mnist_net, [X], Y, [0 ... 9] ) :: 
  digit(X,Y).

addition(X,Y,Z) :- 
digit(X,N1), 
digit(Y,N2), 
Z is N1+N2.

PROBABI
LITY

LOGICLOGICLOGICNEURAL

The ACs are differentiable and 
there is an interface  with the 
neural nets


160



Useful Semirings

•  

From Kimmig, Vanden Broeck and De Raedt, 2016



Program Induction/Sketching
In Neural Symbolic methods 

• Rule Induction — work with templates

P(X) :- R(X,Y), Q(Y) 

• and have the “predicate” variables / slots P,Q, R determined by the NN

• Simpler form, fill just a few slots / holes

Approach similar to ‘Programming with a Differentiable Forth Interpreter’ [1]  ∂4

• Partially defined Forth program with slots / holes

• Slots are filled by neural network (encoder / decoder)

• Fully differentiable interpreter: NNs are trained with input / output 
examples
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[1]: Matko Bosnjak, Tim Rocktäschel, Jason Naradowsky, Sebastian Riedel: Programming with a Differentiable Forth Interpreter. 
ICML 2017: 547-556 
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hole(X,Y,X,Y):-
    swap(X,Y,0).

hole(X,Y,Y,X):-
    swap(X,Y,1).

bubble([X],[],X).
bubble([H1,H2|T],[X1|T1],X):-
    hole(H1,H2,X1,X2),
    bubble([X2|T],T1,X).

bubblesort([],L,L).

bubblesort(L,L3,Sorted) :-
    bubble(L,L2,X),
    bubblesort(L2,[X|L3],Sorted).

sort(L,L2) :- bubblesort(L,[],L2).

bubble sort

Example DeepProbLog

PROBABI
LITY

LOGICLOGICLOGICNEURAL

neural predicate



DeepSeaProbLog

PROBABI
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discrete and continuous distributions [De Smet UAI 23]

length(Obj) ~ normal(dim(Obj,Image)).  

large(Obj) :- length(Obj) > 100.  

dim is neural net returning parameters of normal distribution.

useful for robotics and perception

determining order digits 
to determine year



DeepSeaProbLog

PROBABI
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discrete and continuous distributions [De Smet UAI 23]

generative model with variational autoencoders (see also [Misoni et al NeurIPS 22])

So far from input to output 11 so that    SUM(                    ,11) holds

In DeepSeaProblog, you can query  SUM(          , X, 5) 



DeepProbLog:

Embeddings as symbols

succesor(   ,    ) :- 
	 cnn_embed(    ,e1), 
	 cnn_embed(    ,e2), 
	 embed(“successor”,r), 
	 add(r,e1,e3), 
	 rbf(e2,e3).

CNN

“successor”

embedding

+

RBF

Computational Graph

Idea of TransE [Bordes et al] CNN
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2D MNIST image embeddings



4. Symbolic vs sub-symbolic
Simultaneously symbolic and sub-symbolic 

LOGICNEURAL



Neural Theorem Prover

[Rocktäschel Riedel, NeurIPS 17; Minervini et al.]
LOGICLOGICLOGICNEURAL

directed StarAI approach and logic programs



Simultaneously symbolic and sub-symbolic

• Both symbolic and sub-symbolic representations are used

• All entities have both representations

• Reasoning uses both simultaneously


• Reasoning mechanism is extended

• Only used in a few systems


• E.g. NTP[1], CTP[2]

170
LOGICLOGICLOGICNEURAL

[1] Rocktäschel et al.: "End-to-end differentiable proving.", NeurIPS 2017.

[2] Minervini et al.: "Learning Reasoning Strategies in End-to-End Differentiable Proving", ICML 2020



Neural Theorem Prover

• The neural theorem prover uses both symbols and sub-
symbols simultaneously


• Symbols retain their symbolic nature

• Each symbol has a learnable sub-symbol T


• Symbol comparison:

• Normal unification


• Comparison of sub-symbols:

• sim(x,y) = exp( - ||Tx - Ty||2 )
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Tim Rocktäschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.




Soft unification

• Unify what can be unified

• Use similarity to compare other symbols and use it as a score

172

mother(an, bob) = parent(X, bob)


sim(mother,parent)
 an = X
 bob = bob


mother parent

θ1 = {X = an}
 θ2 = {}


LOGICLOGICLOGICNEURAL

Tim Rocktäschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.




Example

173

mother(an, bob).

r1(X,Y) :- r2(Y,X). child(bob, an)

r2(an, bob).

Unifications


1) mother(an,bob) = child(bob,an)

	 	 sim(mother,child)

	 	 sim(an,bob)

2) r1(X,Y) = child(bob,an)

	 sim(r1,child)

	 X = bob

	 Y = an


3) r2(an, bob) = mother(an, bob)

	 sim(r2,mother)

1
2

3

LOGICLOGICLOGICNEURAL

Tim Rocktäschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.




NTP

Knowledge base completion
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Tim Rocktäschel and Sebastian Riedel. "End-to-end differentiable proving." Advances in Neural Information Processing Systems. 2017.




• Entities are represented very differently in symbolic and 
sub-symbolic systems, but they are complementary


• NeSy systems can be categorized by how they use 
symbolic and sub-symbolic intermediate representations 

175

4. Symbolic vs sub-symbolic
Key Messages



5. Structure vs parameter learning 

LOGIC
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• Learning: finding logical formulas and estimating 
probabilities


• Structure learning: both formulas and probabilities


• Parameter learning: only probabilities


• Many flavours of learning in NeSy

177

5. Learning 
Key Messages



5. Structure vs parameter learning 
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Spectrum of learning paradigms

179
LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

Structure learning Parameter learning

Neurally-guided 
learning

Soft patterns

Neural generation

Program sketching

Structure via 
parameter learning



Structure learning via parameter 
learning

180
LOGICLOGICLOGICNEURAL

DATA and 
STRUCTUREDATA

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

grandparent(abe,lisa).

grandparent(abe,bart).

grandparent(jacqueline,lisa).

grandparent(jacqueline,maggie.)



Program sketching

181
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DATA and 
STRUCTUREDATA

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates
T(X,Y)  P(X,Y).

T(X,Y)  P(Y,X).

T(X,Y)  P(X,Z), Q(Z,Y).

←
←
←

Target:   grandparent


Other predicates: father, mother 



Program sketching
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DATA and 
STRUCTUREDATA

[Su et al, 2019]

Enumerate (lots of) logical formulas from templates
and learn their probabilities/weights

Program templates

T(X,Y)  P(X,Y).

T(X,Y)  P(Y,X).

T(X,Y)  P(X,Z), Q(Z,Y).

←
←
←

Target:   grandparent


Other predicates: father, mother 

grandparent(X,Y)  father(X,Y).

grandparent(X,Y)  mother(X,Y).

←
←

grandparent(X,Y)  father(Y,X).

grandparent(X,Y)  mother(Y,X).

←
←

grandparent(X,Y)  mother(X,Z), mother(Z,Y).

grandparent(X,Y)  mother(Y,X), father(Z,Y).

……

←
←



DeepCoder
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DATA and 
STRUCTUREDATA

[Balog et al, 2017]

StarAI techniques search for clauses/rules systematically



DeepCoder
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DATA and 
STRUCTUREDATA

[Balog et al, 2017]

Explore the subpart of the space with  
primitives that are likely to solve the problem

likely to solve a problem = learned from data

Preferences of learning ‘primitives’



DeepCoder
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DATA and 
STRUCTUREDATA

[Balog et al, 2017]
Preferences of learning ‘primitives’

Learn from pairs 
(examples, program)

Given examples, predict  
which functions to use q(functions |examples)



DreamCoder
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DATA and 
STRUCTUREDATA

[Ellis et al, 2018]

Distribution of primitives defines a generative model of programs

q(programs |examples)

Neural network outputs the posterior distribution over programs 
likely to solve a specific task



Neural Markov Logic Networks
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DATA and 
STRUCTUREDATA

[Marra et al, 2020]

MLNs can be interpreted as log-linear models 

P(X = x) =
1
Z ∏

i

ϕi(x{i})ni(x)

potentials come from formulas 
        provided by the expert 
  (cliques in Markov network)



Neural Markov Logic Networks
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DATA and 
STRUCTUREDATA

[Marra et al, 2020]

Learn neural potentials from fragments of data 

P(X = x) =
1
Z ∏

i

ϕi(x{i})ni(x)

potentials come from fragments 
of data (knowledge graph)

ϕ1ϕ2

ϕ3



Markov Logic

189

𝑪(𝑨) 𝑺(𝑨) 𝑭 (𝑨, 𝑩) 𝑭 (𝑩, 𝑨) 𝑪(𝑩)𝑺(𝑩)

F1(A) F1(B)F2(A,B)

𝑭 (𝑨, 𝑨)

F2(A,A) F2(B,A)

𝑭 (𝑩, 𝑩)

F2(B,B)

represented as a factor graph
 

P(Interpretation) ∝ ∏
i

Fi(X, Y ) = ∏
i

exp(wi𝕀(Interpretation ⊧ Fi))



Neural Markov Logic

190

F3 and F4 are trainable factors
very much like in probabilistic graphical models and embeddings/hidden layers of a NN

F3 and F4 correspond in a sense to the logical rules in the other factors
this gives a kind of structure learning 
F3 and F4 will not be “interpretable”

Marra and Kuzelka

𝑪(𝑨) 𝑺(𝑨) 𝑭 (𝑨, 𝑩) 𝑭 (𝑩, 𝑨) 𝑪(𝑩)𝑺(𝑩)

F1(A) F1(B)F2(A,B)

𝑭 (𝑨, 𝑨)

F2(A,A) F2(B,A)

𝑭 (𝑩, 𝑩)

F2(B,B)

F3(A) F3(B)F4(A,B) F4(B,A)



Relational Neural Machines
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𝑪(𝑨) 𝑺(𝑨) 𝑭 (𝑨, 𝑩) 𝑭 (𝑩, 𝑨) 𝑪(𝑩)𝑺(𝑩)

F1(A) F1(B)F2(A,B)

𝑭 (𝑨, 𝑨)

F2(A,A) F2(B,A)

𝑭 (𝑩, 𝑩)

F2(B,B)F3(A) F3(B)

𝐹3(𝜔𝐶𝑎𝑛𝑐𝑒𝑟(𝐴𝑙𝑖𝑐𝑒),           ) = 1− (𝐶𝑁𝑁𝑐𝑎𝑛𝑐𝑒𝑟(          )  −  𝜔𝐶𝑎𝑛𝑐𝑒𝑟(𝐴𝑙𝑖𝑐𝑒))
2

The Neural Network is trained to become a FACTOR (or a part of it)

[Marra et al ECAI 20]
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Neural guidance

Pros Cons

Soft patterns

Neural generation

Sketching

Structure via params

lots of training datamakes discrete search 
tractable

no explicit structureefficient learning

significant user effort

spurious interactions

lots of training data

removes combinatorial 
search

reduces combinatorial 
search

focused combinatorial 
search



• Learning: finding logical formulas and estimating 
probabilities


• Structure learning: both formulas and probabilities


• Parameter learning: only probabilities


• Many flavours of learning in NeSy
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5. Learning 
Key Messages



The Seven Dimensions

194

1.   Proof vs Model based

2.   Directed vs Undirected

3.   Type of Logic

4.   Symbols vs Subsymbols

5.   Parameter vs Structure Learning

6.   Semantics

7.   Logic vs Probability vs Neural



0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake. 

alarm :– burglary.

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm. 

alarm

burglary. earthquake. 

calls(mary) calls(john) 

Markov LogicProbabilistic  Logic Programs  
ProbLog

undirected 
Markov Net 

model theoretic
directed 

Bayesian Net 

LOGIC
PROBABI

LITY key representatives

2. Directed vs Undirected
the PGM / StarAI dimension

195



196

6. Semantics

LOGIC
PROBABI

LITYLOGIC LOGICLOGICLOGICNEURAL



• StarAI and NeSy share the same underlying semantics


• Semantics can be described in terms of parametric circuits


• Differentiable semantics/circuits allows an easy integration


• NeSy models can be seen as neural reparameterization of 
StarAI models
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6. Semantics 
Key Messages



Semantics

• In Logic, semantics is connected to the interpretations of 
logical sentences


• An interpretation assigns a denotation or a value to each 
symbol in that language. 

“42(47)”  
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Semantics

• In Logic, semantics is connected to the interpretations of 
logical sentences


• An interpretation assigns a denotation or a value to each 
symbol in that language. 

“42(47)”  

42 is the property “being human” (or human/1) 

47 is a constant referring to a particular human “Socrates” 

human(Socrates) = True 
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Semantics

• We are interested in answering the following family of 
questions:


Given a sentence of a propositional (or propositionalized through 
grounding) language, what is its value? 
 

The nature of what value is differs in the different semantics.

200



Semantics

For simplicity,


• labelling function is the function  that assigns, to the 
sentence Q, the value v according to semantics S. 

e.g.

…

ℓS

ℓS(Q) = v

ℓB(human(socrates)) = True
ℓF(tall( john)) = 0.8
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6. Semantics

Boolean logic

LOGIC



Semantics in Boolean Logic
• Defining a semantics for a propositional language L is about 

assigning a truth value to all the sentences of the logic 


• Boolean truth values: 


 

Three steps: 
1. Truth values for propositions 
2. Truth values for operators 
3. Labelling formulas 

{True, False}

203
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Semantics in Boolean Logic

1. Providing the labels for propositions

L = {burglary, earthquake, hears_alarm(john)} 

 

 

 

This is a model or a possible world, a “potential” assignment of 
truth values to all the propositional variables in the language. 

ℓB(burglary) = True
ℓB(earthquake) = False

ℓB(hears_alarm( john)) = True

204
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Semantics in Boolean Logic

2. Providing the semantics for operators 
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LOGIC

ℓ→
Bℓ∧

B



Semantics in Boolean Logic

3. The labels of formulas are defined recursively on the semantics 
of its components


  

This recursive evaluation of formulas is said to be extensional 
approach.

ℓB(earthquake ∧ burglary) = ℓ∧
B (ℓB(earthquake), ℓB(burglary))
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Semantics in Boolean Logic

• Consider:


 

207

(burglary ∨ earthquake) → alarm

→

∨

burglary earthquake

Alarm

ℓ→
B

ℓ∨
B

ℓB(burglary) ℓB(earthquake)

ℓB(alarm)

LOGIC
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6. Semantics

Fuzzy logic

LOGIC



Semantics in Fuzzy Logic

• Still a pure logic semantics: 


• There are many fuzzy logics


• Here we are interested in a subclass, in particular t-norm fuzzy 
logic

209
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Semantics in Fuzzy Logic
• Defining a semantics for a propositional fuzzy language L is 

again about assigning a membership degree to all the 
sentences of the logic 


• Fuzzy truth/membership degrees:


 
Three steps: 
1. Labels for propositions 
2. Labels for operators 
3. Labels for formulas

ℓ𝐹:𝐿 → [0,1]
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Semantics in Fuzzy Logic

1. Providing the labels for propositions

L = {burglary, earthquake, hears_alarm(john)} 

 

 

 

ℓF(burglary) = 0.9
ℓF(earthquake) = 0.1

ℓF(hears_alarm( john)) = 0.8
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LOGIC

Note:  -> very mild earthquake,


(  probability of earthquake = 0.1)

 

 fuzzy is a measure of intensity/vagueness not of uncertainty

ℓF(earthquake) = 0.1
≠



Semantics in Fuzzy Logic

2. Providing the labels for operators: t-norm theory 
• A t-norm is a binary function that extends the conjunction to 

the continuous case 


 

• There are 3 fundamental t-norms:

• Lukasiewicz t-norm: 

• Goedel t-norm: 

• Product t-norm: 

t : [0,1] × [0,1] → [0,1]

tL(x, y) = max(0,x + y − 1)
tG(x, y) = min(x, y)
tP(x, y) = x ⋅ y
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LOGIC They are the continuous version of truth tables!!



Semantics in Fuzzy Logic

• All the other operators can be derived from the t-norm

213

LOGIC

They are the continuous version of truth tables!!



Semantics in Fuzzy Logic

3. The labels of formulas is defined recursively on the semantics 
of its components


  
This recursive evaluation of formulas is said to be extensional 
approach.


e.g.    

 , ,  

 
                          

ℓF(burglary → alarm) = ℓ→
F (ℓF(burglary), ℓF(alarm))

ℓF(burglary) = 0.9 ℓF(alarm) = 0.3
ℓ→

F = min(1,1 − x + y) = min(1,1 − 0.9 + 0,3) = 0.4

214

LOGIC



Semantics in Fuzzy Logic

• Consider:
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(burglary ∨ earthquake) → alarm

→

∨

burglary earthquake

Alarm

ℓ→
F

ℓ∨
F

ℓB(burglary) ℓB(earthquake)

ℓB(alarm)

LOGIC



Fuzzy Logic Semantics

• Most common t-norms are:

• Continuous 
• Differentiable -> This turns to be one of the reason of their 

adoption in NeSY 

• Convex fragments of the logic can be defined (Giannini et al, 
2019)


• But,  ?????


•

ℓF(human(Socrates)) = 0.5
ℓF(bat(Socrates)) = 0.5
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Fuzzy vs Boolean

• Fuzzy and Boolean have different properties

• When fuzzy is used as a “relaxation” (fuzzification) of Boolean 

undesired effects can happen.


• Suppose:                      


• Satisfying assignments (Lukasiewicz)


•  (all true)


•  (at least one true)


•

A ∨ B ∨ C ∨ D ∨ E = 1

A = B = C = D = E = 1
A = 1, B = C = D = E = 0
A = B = C = D = E = 0.2

217

LOGIC



218

Semantics

Probabilistic logic
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Probabilistic Logic Semantics

PROBABI
LITYLOGIC

Given a proposition language L, the basic idea is to introduce a 
probability function  :


 

p

p : L → [0,1]
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Probabilistic Logic Semantics

PROBABI
LITYLOGIC

Two steps: 
• Define a probability distribution over interpretations / 

worlds (i.e. boolean semantics) 
 


(E.g. 


• Define a the probability of sentence Q of L: 

p(ℓB(x1), …, ℓB(xn))
p(ℓB(burglary) = True, ℓB(earthquake) = False, . . . )

p(Q) = ∑
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))
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Probabilistic Logic Semantics

Problog

0.1 :: burglary.   (B) 
0.05 ::earthquake. (E) 
0.6 ::hears_alarm(john).  (H) 
alarm :– earthquake.  
alarm :– burglary. 
calls(john) :- alarm, hears_alarm(john)




 
 
parameters = the labels for propositions (i.e. probabilistic facts) 

p(ℓB(x1), …, ℓB(xn)) = ∏
i:ℓB(xi)=True

p(xi) ∏
i:ℓB(xi)=False

(1 − p(xi))
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e.g. in ProbLog:
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PROBABI
LITYLOGIC

B E H p(B,E,H)
F F F 0,342
F F T 0,513
F T F 0,018
F T T 0,027
T F F 0,038
T F T 0,057
T T F 0,002
T T T 0,003

0.1 x 0.05 x (1- 0.6)

Probabilistic Logic Semantics

Problog

0.1 :: burglary.   (B) 
0.05 ::earthquake. (E) 
0.6 ::hears_alarm(john).  (H) 
alarm :– earthquake.  
alarm :– burglary. 
calls(john) :- alarm, hears_alarm(john)



1.5 : calls(Mary) <- hears_alarm(Mary), alarm

2.0 : alarm <- earthquake

0.5 : alarm <- burglary



p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

wα ℓB(α))
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PROBABI
LITYLOGIC

Weight formula 1 if  is True otherwise 0α

Probabilistic Logic Semantics

Markov Logic



1.5 : calls(Mary) <- hears_alarm(Mary), alarm

2.0 : alarm <- earthquake

0.5 : alarm <- burglary
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PROBABI
LITYLOGIC

Probabilistic Logic Semantics

Markov Logic

B E A H C p
T F T T T 0,05
T F T T F 0,01
… … … … … …

 exp(1.5 + 2.0 + 0.5)∝
 exp(0    + 2.0 + 0.5)∝



Probabilistic Logic Semantics

Given any sentence Q of the propositional language L, with 
variables :


 

WMC - Weighted Model Counting 
(for both ProbLog and Markov Logic)


x1, …, xn

ℓP(Q) = ∑
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))
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Probabilistic Logic Semantics

For example: 
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B E H p(B,E,H)
F F F 0,342
F F T 0,513
F T F 0,018
F T T 0,027
T F F 0,038
T F T 0,057
T T F 0,002
T T T 0,003

PROBABI
LITYLOGIC

Q = B ∧ H

p(Q) = 0.06

0.1 :: burglary.   (B) 
0.05 ::earthquake. (E) 
0.6 ::hears_alarm(john).  (H) 
alarm :– earthquake.  
alarm :– burglary. 
calls(john) :- alarm, hears_alarm(john)

Query = burglary ^ hears_alarm(john)



Probabilistic Logic Semantics

For example: 
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B E H p(B,E,H)
F F F 0,342
F F T 0,513
F T F 0,018
F T T 0,027
T F F 0,038
T F T 0,057
T T F 0,002
T T T 0,003

PROBABI
LITYLOGIC

Q = (B ∧ H ) ∨ E

ℓP(Q) = 0.105

0.1 :: burglary.   (B) 
0.05 ::earthquake. (E) 
0.6 ::hears_alarm(john).  (H) 
alarm :– earthquake.  
alarm :– burglary.



Probabilistic Logic Semantics

Probabilistic Semantics is different from a pure logic semantics


1.  It is built on top of a logical semantics; .


2. Probability is NOT extensional, the probability of a formula

A. cannot be defined recursively by the probabilities of its 

arguments

B. requires WMC

p(ℓB(x1), …, ℓB(xn))
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• Consider:


 

229

(alarm ∧ hears_alarm) → calls

→

∧

alarm hears_alarm

calls

+

+

1 − p(alarm) 1 − p(hears_alarm)

p(calls)

LOGIC

Probabilistic Logic Semantics



Probabilistic Logic Semantics
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(𝐴 ∧ 𝐵) → 𝐶

PROBABI
LITYLOGIC

∨

¬A ∧

A ∨

¬B ∧

B C

+

1 − p(A) ×

p(A) +

1 − p(B) ×

p(B) p(C)

Knowledge Compilation 

The probabilistic structure is now explicit in 
the compiled formula.

→

∧

A B

C

ℓP(Q) = ∑
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))



Probabilistic Logic Semantics

• Consider:
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(𝐴 ∧ 𝐵) → 𝐶

PROBABI
LITYLOGIC

∨

¬A ∧

A ∨

¬B ∧

B C

The circuit is differentiable!

→

∧

A B

C

+

1 − p(A) ×

p(A) +

1 − p(B) ×

p(B) p(C)



Probabilistic Logic Semantics
• WMC:


 

• Another important inference task in MPE inference (connected 
to maxSAT) 

p(Q) = ∑
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))

ℓ⋆
B (x1), …, ℓ⋆

B (xn) = max
ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))
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PROBABI
LITYLOGIC



Boolean vs Fuzzy vs Probability

• Boolean and Fuzzy logic are two alternative logical semantics


• Probability is a semantics that is built on top of a logical one 
(i.e. “which is the probability of a given truth assignments / 
world?”)


• Can we have a probabilistic fuzzy logic as well?
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Probabilistic Soft Logic (PSL)

• Let’s start by an example of a Markov Logic Network:


• In PSL, we relax the Boolean semantics  to a fuzzy 
semantics 


 


p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

wα ℓB(α))
ℓ𝐵

ℓ𝐹

p(ℓF(x1), …, ℓF(xn)) =
1
Z

exp(∑
α

wα ℓF(α))
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Bach, Stephen H., et al. JMLR 2017

Weight formula Each formula contributes 
with a value in [0,1]



Probabilistic Soft Logic (PSL)

MPE:


 

α : burglary → alarm
ℓF(α) = min(1,1−ℓF(burglary + ℓF(alarm)

max
ℓF(burglary),ℓF(alarm)

wαℓF(α)

ℓF(burglary) = ℓF(burglary) + λ
∂wαℓF(α)

∂ℓF(burglary)
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min(1, ∑ 𝑥𝑖)

1  −  𝑥

ℓF(burglary)

ℓF(alarm)

PROBABI
LITYLOGIC

This is soft SAT 

using fuzzy logic

Using Lukasiewicz t-norm:




Probabilistic vs Fuzzy

• Fuzzy is an alternative logical semantics and it can still coupled 
with the probabilistic ones


• Fuzzy logic is sometimes used as an approximation of MPE in 
probabilistic logic


• Fuzzy logic is sometimes used to solve satisfiability faster

• However, it does not guarantee solutions coherent with the 

Boolean logic theory.

• (Remember )A = B = C = D = E = 0.2
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6. Semantics

Neural Symbolic

PROBABI
LITYLOGIC LOGIC NEURAL



Neural Symbolic

How to carry over concepts from the semantics of StarAI to 
neural symbolic?


 

Labelling functions      =       Parametric circuit 
     (semantics)

ℓ(Q)

238

ℓF((A ∧ B) → C)
The query Q determine 
the structure (potentially 
after knowledge 
compilation)

ℓ→
F

ℓ∧
F

ℓF(A) ℓF(B)

ℓF(C)



Neural Symbolic

How to carry over concepts from the semantics of StarAI to 
neural symbolic?


 

             Labelling functions      =       Parametric circuit 
                  (semantics)

ℓ(Q)

239

ℓF((A ∧ B) → C)
The leaves 
represent the 
scalar parameters

ℓ→
F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)

ℓ→
F

ℓ∧
F

ℓF(A) ℓF(B)

ℓF(C)



Neural Symbolic

How to carry over concepts from the semantics of StarAI to 
neural symbolic?


• Atomic labels are just scalar tables of parameters
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L
Burglary 0,1
Earthquake 0,05
…

p0.1 :: burglary.   (B) 
0.05 ::earthquake. (E) 
0.6 ::hears_alarm(john).  (H) 
alarm :– earthquake.  
alarm :– burglary.



Neural Symbolic

How to carry over concepts from the semantics of StarAI to 
neural symbolic?


• What if atomic labels are just neural networks?

241

? :: burglary(.     )    
? ::earthquake. (        ) 
? ::hears_alarm(john).   
alarm :– earthquake.  
alarm :– burglary.



StarAI to Neural Symbolic
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ℓ→
F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

ℓ→
F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)

NN NN

NN

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

NN

NN

NN

NN NN

LOGIC NEURAL

PROBABI
LITYLOGIC

PROBABI
LITYLOGIC

NEURAL

LOGIC

REPARAMETERIZATION

StarAI

NeSy



Fuzzy Reparameterization

243

Parameters of 
the neural nets

min(1, ∑ 𝑥𝑖)

1  −  𝑥

ℓF(burglary)

ℓF(alarm)

NN 
θburglary

X

NN 
θalarm

X

max
ℓF(stress(X)),ℓF(smokes(X))

wαℓF(α)

max
θburglary,θalarm

wαℓF(α)

LOGIC NEURAL

StarAI (PSL)

NeSy (SBR, LTN) 

min(1, ∑ 𝑥𝑖)

1  −  𝑥

ℓF(burglary)

ℓF(alarm)

Semantic Based 
Regularization  (Diligenti 
et al, AI 2017)


Logic Tensor Network 
(Donadello et at, IJCAI 
2017)

α : burglary → alarm



Probabilistic Reparameterization

• ProbLog: 


 

• Markov Logic:





WMC

p(ℓB(x1), …, ℓB(xn)) = ∏
i:ℓB(xi)=True

p(xi) ∏
i:ℓB(xi)=False

(1−p(xi))

p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

wαℓB(α))
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Probabilistic parameters

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)
p(Q) = ∑

ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))
LOGICNEURAL

PROB



Probabilistic Reparameterization

• DeepProbLog (Manhaeve et al, NeurIPS (2018))


 

• Relational Neural Machines (Marra et al, ECAI 2020)





WMC

p(ℓB(x1), …, ℓB(xn)) = ∏
i:ℓB(xi)=True

p(xi) ∏
i:ℓB(xi)=False

(1−p(xi))

p(ℓB(x1), …, ℓB(xn)) =
1
Z

exp(∑
α

wαℓB(α))
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Neural parameters

LOGICNEURAL

PROB
p(Q) = ∑

ℓB(x1),…,ℓB(xn)⊧Q

p(ℓB(x1), …, ℓB(xn))

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

NN

NN

NN

NN NN



Probabilistic Reparameterization
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LOGICNEURAL

PROB

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

NN

NN

NN

NN NN

• DeepProbLog (Manhaeve et al, NeurIPS (2018))

nn(mnist_net, [X], Y, [0 ... 9] ) :: digit(X,Y).

 :: burglary.
0.01

Neural Predicate

Probabilistic fact

Interface



• StarAI and NeSy share the same underlying semantics


• Semantics can be described in terms of parametric circuits


• Differentiable semantics/circuits allow an easy integration


• NeSy models can be seen as neural reparameterization of 
StarAI models
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6. Semantics 
Key Messages



A Recipe for NeSy

248



A recipe for NeSy

1. Take your favorite 
symbolic (logic / rule 
based) representation 

STEP 1

layout Pieter Robberechts

(applied on DeepProbLog)

© Luc De Raedt



A recipe for NeSy

1. Take your favorite 
symbolic (logic / rule 
based) representation 

2. Interpret neural networks 
as neural predicates 

STEP 1

layout Pieter Robberechts

(applied on DeepProbLog)

© Luc De Raedt



A recipe for NeSy

1. Take your favorite 
symbolic (logic / rule 
based) representation 

2. Interpret neural networks 
as neural predicates 

3. Turn the 0/1 or True/False 
into Probabilistic or Fuzzy 
Interpretation 

STEP 1

layout Pieter Robberechts

(applied on DeepProbLog)

© Luc De Raedt



A recipe for NeSy

4. Construct logical proof / 
explanation for example 

STEP 2

layout Pieter Robberechts

© Luc De Raedt



A recipe for NeSy

4. Construct logical proof / 
explanation for example 

5. Add the neural networks to 
the corresponding 
predicates (reparametrise) 

STEP 2

layout Pieter Robberechts

© Luc De Raedt



A recipe for NeSy

4. Construct logical proof / 
explanation for example 

5. Add the neural networks 
to the corresponding 
predicates (reparametrise) 

6. Replace OR and AND by   
 and  

7. Differentiate 

⊕ ⊗

STEP 3

layout Pieter Robberechts

© Luc De Raedt



DeepStochLog

▪ Little sibling of DeepProbLog [Winters, Marra, et al 
AAAI 22] 

▪ Based on a different semantics  
▪ probabilistic graphical models vs grammars 
▪ random graphs vs random walks 

▪ Underlying StarAI representation is Stochastic 
Logic Programs (Muggleton, Cussens) 
▪ close to Probabilistic Definite Clause Grammars, 

ako probabilistic unification based grammar 
formalism  

▪ again the idea of neural predicates  
▪ Scales better, is faster than DeepProbLog



CFG: Context-Free Grammar

       E --> N  
       E --> E, P, N  
 
       P --> [“+”]

       N --> [“0”]  
       N --> [“1”]  
       …  
       N --> [“9”]

2     +     3     +     8

N 

E     

E     

P     N     

E     

P     N     

Useful for: 
- Is sequence an element of the specified language? 
- What is the “part of speech”-tag of a terminal 
- Generate all elements of language



PCFG: Probabilistic Context-Free Grammar

0.5 :: E --> N  
0.5 :: E --> E, P, N  
 
1.0 :: P --> [“+”]

0.1 :: N --> [“0”]  
0.1 :: N --> [“1”]  
       …  
0.1 :: N --> [“9”]

2     +     3     +     8

N 

E     

E     

P     N     

E     

P     N     

Useful for: 
- What is the most likely parse for this sequence of terminals? (useful for ambiguous grammars) 

- What is the probability of generating this string?

0.5

0.1

1
1

0.1
0.1

0.5

0.5

Probability of this parse = 0.5*0.5*0.5*0.1*1*0.1*1*0.1 
= 0.000125

A
lw

ay
s 

su
m

s 
to

 1
 p

er
 n

on
-

te
rm

in
al



DCG: Definite Clause Grammar

       e(N) --> n(N).  
       e(N) --> e(N1), p, n(N2),  
                {N is N1 + N2}.  
       p    --> [“+”].

       n(0) --> [“0”].  
       n(1) --> [“1”].  
       …  
       n(9) --> [“9”].

2     +     3     +     8

n(2) 

e(2)     

e(5)     

p     n(3)     

e(13)     

p     n(8)     

Useful for: 
- Modelling more complex languages (e.g. context-sensitive) 
- Adding constraints between non-terminals thanks to Prolog power (e.g. through unification) 
- Extra inputs & outputs aside from terminal sequence (through unification of input variables)



SDCG: Stochastic Definite Clause Grammar

0.5 :: e(N) --> n(N).  
0.5 :: e(N) --> e(N1), p, n(N2),  
                {N is N1 + N2}.  
1.0 :: p    --> [“+”].

0.1 :: n(0) --> [“0”].  
0.1 :: n(1) --> [“1”].  
       …  
0.1 :: n(9) --> [“9”].

2     +     3     +     8

n(2) 

e(2)     

e(5)     

p     n(3)     

e(13)     

p     n(8)     

Useful for: 
- Same benefits as PCFGs give to CFG (e.g. most likely parse) 

- But: loss of probability mass possible due to failing derivations

0.5

0.1

1
1

0.1
0.1

0.5

0.5

Probability of this parse = 0.5*0.5*0.5*0.1*1*0.1*1*0.1 
= 0.000125



NDCG: Neural Definite Clause Grammar (= DeepStochLog)

Useful for: 
- Subsymbolic processing: e.g. tensors as terminals 
- Learning rule probabilities using neural networks

0.5 :: e(N) --> n(N).  
0.5 :: e(N) --> e(N1), p, n(N2),  
                {N is N1 + N2}.  
1.0 :: p    --> [“+”].

nn(number_nn,[X],[Y],[digit]):: 

        n(Y) —> [X].

digit(Y) :- 

      member(Y,[0,1,2,3,4,5,6,7,8,9]).

2     +     3     +     8

n(2) 

e(2)     

e(5)     

p     n(3)     

e(13)     

p     n(8)     

0.5

pnumber_nn(  =2)

1
1

0.5

0.5

pnumber_nn(  =3)
pnumber_nn(  =8)

Probability of this parse =  
0.5*0.5*0.5*pnumber_nn(  =2)*1*pnumber_nn(  =3)*1*pnumber_nn(  =8)



DeepStochLog 
Inference



Proof derivations d(e(1), [         ] ) then turn it into and/or tree+

Deriving probability of goal for given terminals in NDCG



Probability of goal Most likely derivation

MAX
0.96

0.5

0.5

0.5 0.5 0.5 0.5

0.5

0.5

0.04

0.020.98

0.96 0.04

0.020.98

PG(derives(e(1), [    , +,    ]) = 0.1141 dmax(e(1), [   , +,   ] ) = argmaxd(e(t))=[      , +,      ]PG(d(e(1))) = [0,+,1]

And/Or tree + semiring for different inference types



Inference optimisation

▪ Inference is optimized using 
▪ SLG resolution: Prolog tables the returned proof tree(s), and thus creates 

forest 
	 → Allows for reusing probability calculation results from intermediate 
nodes 

▪ Batched network calls: Evaluate all the required neural network queries 
first 
	 → Very natural for neural networks to evaluate multiple instances at once 
using batching 
	      & less overhead in logic & neural network communication



Mathematical expression outcome

T1: Summing MNIST numbers 
with pre-specified # digits

T2: Expressions with images 
representing operator or single 
digit number.

+ = 137 

= 19



Classic grammars, but with MNIST images as terminals 

T3: Well-formed brackets as input 
(without parse). Task: predict parse. 

T4: inputs are strings akblcm (or 
permutations of [a,b,c], and 

(k+l+m) mod 3=0). Predict 1 if 
k=l=m, otherwise 0.

→ parse = ( ) ( ( ) ( ) ) 

= 1

= 0



Citation networks

T5: Given scientific paper set with only few labels & citation 
network, find all labels



7. Logic vs Probability vs Neural



• We have three paradigms in the NeSy spectrum: Logic, 
Probability and Neural Networks


• An integration of the three should have the original 
paradigms as special cases 

• Computationally complex


• The integration is usually achieved by sacrificing the base 
paradigms

• More scalable

269

7. Logic vs Probability vs Neural
Key Messages



About integration in neural 
symbolic

270

Probability Logic

Neural Networks



Probability Logic

Neural Networks

Statistical Relational AI

271

They perfectly integrate 
probability theory (Probabilistic 
Graphical Models) and Logic. 



Probability Logic

Neural Networks

Knowledge Graph Embeddings

272

They use latent spaces, typical 
of neural computation to 
encode a relational structure of 
the data. 
 
Neural networks cannot be 
recovered. 
 
Logic is declined to encoding 
relations


Probabilistic modelling is 
strongly approximated (e.g. 
atom mean field)


Most scalable solutions.

TransE (Bordes 2013) 

DistMult (Yang, 2014)

ComplEx (Trouillon, 2016)

NTN (Socher, 2013) 



Probability Logic

Neural Networks

Relaxed theorem provers

273

They sacrifice a bit the pure 
boolean semantics to obtain 
some soft neural capabilities 
(weighted reasoning, 
embeddings).


KBANN (Tawell 1994)

LRNN (Sourek, 2017)

NTPs (Rocktäschel, 2017)

DiffLog (Si et al, 2018)

NN for Relational Data ( 2019)



Probability Logic

Neural Networks

Regularization methods

274

They sacrifice the logic and 
probability a lot by pushing 
everything inside the weights of 
the neural network.


Logic and probability are used 
only at training time. At inference 
time, only the neural net is used.


SBR (Diligenti et al, AI 2017)

LTN (Donatello et al, IJCAI 2017)

SL (Xu et al, ICML 2018)



Probability Logic

Neural Networks

Graph Neural Networks

275

They extend neural network 
to provide some relational 
and multihop reasoning. 
 
Logical semantics is not 
preserved. 

R-GCN - Schlichtkrull et al, 
2017



Probability Logic

Neural Networks

Probabilistic reparameterization

276

They extend StarAI with 
perception capabilities.  

Subsymbols at the level of the 
constants only 
• Not at the level of the atoms 

(like KGE) 
• Not at the level of the rules (like 

GNNs) 

One of the most promising 
direction for NeSy. 

Main problem is scalability. 

DeepProbLog (Manhaeve, 2018) 
RNM (Marra, 2020)



• We have three paradigms in the NeSy spectrum: Logic, 
Probability and Neural Networks


• An integration of the three should have the original 
paradigms as special cases 

• Computationally complex


• The integration is usually achieved by sacrificing the base 
paradigms

• More scalable
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7. Logic vs Probability vs Neural
Key Messages



Challenges 
• For NeSy, 


• scaling up 


• which models and which knowledge to use  


• large scale life applications 


• peculiarities of neural nets & fuzzy logic


• dynamics / continuous 


• This is an excellent area for starting researchers / PhDs



Conclusions



StarAI and NeSy share similar problems 
and thus similar solutions apply 

See also [De Raedt et al., IJCAI 20] 

Key Message

LOGICLOGICLOGICNEURALLOGIC
PROBABI

LITYFROM TO



The Seven Dimensions

281

1.   Proof vs Model based

2.   Directed vs Undirected

3.   Type of Logic

4.   Symbols vs Subsymbols

5.   Parameter vs Structure Learning

6.   Semantics

7.   Logic vs Probability vs Neural



Many questions to ask

 

• What properties should integrated representations satisfy ?

• Should one representation take over ? (As in most 

approaches to NeSy — push the logic inside and forget 
about it afterwards)


• Should one build a pipeline or an interface between the 
integrated representations ? 


• Should one have the originals as a special case ? 

• (yes we believe you should be able to do all what you can 

do with the original representations)
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Many questions to ask

 

• Which learning and reasoning techniques apply  ?

• Can you still reason  logically  / probabilistically ? 

• Can you still apply standard learning methods (like gradient 

descent) ?

• Is everything explainable / trustworthy ?


• How to evaluate integrated representations ?

• 1 + 1 = 3 ?

• Can they do what the originals can do, and can they do more ?

• Can they do something different ? 

283



Challenges 

• For NeSy, 

• scaling up 

• which models to use  

• real life applications 

• peculiarities of neural nets 

• logical inference can be expensive


• This is an excellent area for starting researchers / PhDs
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• Sebastijan Dumanˇci ć, Tias Guns, Wannes Meert, and Hendrik Blockeel. Learning relational representations with 

auto-encoding logic programs.InIJCAI, 2019. 
• Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-Lezama, and Josh Tenenbaum.  Learning libraries 

of subroutines forneurally-guided bayesian program induction. InNeurIPS, 2018. 
• Kevin Ellis, Maxwell I. Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama. Write, execute, 

assess: Program synthesiswith a REPL.CoRR, abs/1906.04604, 2019. 
• Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data.J. Artif. Intell. Res., 61, 2018. 

287



References

• Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens, 
and Luc De Raedt.Inference and learning in probabilistic logic programs using weighted boolean formulas.Theory 
and Practice of Logic Programming, 15, 2015. 

• Peter Flach.Simply Logical: Intelligent Reasoning by Example. John Wiley & Sons, Inc., 1994. 
• Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational models. InIJCAI, 1999. 
• Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer set solving in practice.Synthesis 

lectures on artificialintelligence and machine learning, 6, 2012. 
• L. Getoor and B. Taskar, editors.An Introduction to Statistical Relational Learning. MIT Press, 2007. 
• Francesco Giannini, Michelangelo Diligenti, Marco Gori, and Marco Maggini. On a convex logic fragment for 

learning and reasoning.IEEETFS, 27, 2018.CV Radhakrishnan et al.:Preprint submitted to Elsevier 
• Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for 

quantum chemistry.arXivpreprint arXiv:1704.01212, 2017. 
• Goldman, O., Latcinnik, V., Naveh, U., Globerson, A., & Berant, J.. Weakly-supervised semantic parsing with 

abstract examples. ACL 2018 
• Bernd Gutmann, Angelika Kimmig, Kristian Kersting, and Luc De Raedt.  Parameter learning in probabilistic 

databases:  A least squaresapproach. InECML&PKDD, 2008. 
• Manfred Jaeger. Model-theoretic expressivity analysis. In Luc De Raedt, Paolo Frasconi, Kristian Kersting, and 

Stephen Muggleton, editors,Probabilistic Inductive Logic Programming - Theory and Applications, volume 4911 of 
LNCS. Springer, 2008. 

288



References

• Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gulwani. Neural-guided 
deductive search forreal-time program synthesis from examples. InICLR, 2018. 

• Kristian Kersting and Luc De Raedt. Bayesian logic programming: Theory and tool. In L. Getoor and B. Taskar, 
editors,An introduction toStatistical Relational Learning. MIT Press, 2007. 

• Stanley Kok and Pedro Domingos. Learning the structure of markov logic networks. InICML, 2005. 
• Daphne Koller and Nir Friedman.Probabilistic Graphical Models - Principles and Techniques. MIT Press, 2009. 
• Marco Lippi and Paolo Frasconi.  Prediction of protein beta-residue contacts by markov logic networks with 

grounding-specific weights.Bioinform., 25, 2009. 
• John W Lloyd.Foundations of logic programming. Springer Science & Business Media, 2012. 
• Daniel Lowd and Pedro Domingos. Efficient weight learning for markov logic networks. InECML&PKDD, 2007. 
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