
Investigating Classifier Learning Behavior with
Experiment Databases

Joaquin Vanschoren and Hendrik Blockeel

Computer Science Dept., K.U.Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

Abstract. Experimental assessment of the performance of classification algorithms
is an important aspect of their development and application on real-world problems.
To facilitate this analysis, large numbers of such experiments can be stored in an
organized manner and in complete detail in an experiment database. Such databases
serve as a detailed log of previously performed experiments and a repository of ver-
ifiable learning experiments that can be reused by different researchers. We present
an existing database containing 250,000 runs of classifier learning systems, and show
how it can be queried and mined to answer a wide range of questions on learning be-
havior. We believe such databases may become a valuable resource for classification
researchers and practitioners alike.

1 Introduction

Supervised classification is the task of learning from a set of classified training
examples (x, c(x)), where x ∈ X (the instance space) and c(x) ∈ C (a finite
set of classes), a classifier function f : X → C such that f approximates
c (the target function) over X. Most of the existing algorithms for learning
f are heuristic in nature, and try to (quickly) approach c by making some
assumptions that may or may not hold for the given data. They assume c to
be part of some designated set of functions (the hypothesis space), deem some
functions more likely than others, and strictly consider consistency with the
observed training examples (not with X as a whole). While there is theory
relating such heuristics to finding c, in many cases this relationship is not so
clear, and the utility of a certain algorithm needs to be evaluated empirically.

As in other empirical sciences, experiments should be performed and de-
scribed in such a way that they are easily verifiable by other researchers. How-
ever, given the fact that the exact algorithm implementation used, its chosen
parameter settings, the used datasets and the experimental methodology all
influence the outcome of an experiment, it is practically not self-evident to
completely describe such experiments. Furthermore, there exist complex in-
teractions between data properties, parameter settings and the performance



2 Joaquin Vanschoren and Hendrik Blockeel

of learning algorithms. Hence, to thoroughly study these interactions and to
assess the generality of observed trends, we need a sufficiently large sample
of experiments, covering many different conditions, organized in a way that
makes their results easily accessible and interpretable.

For these reasons, Blockeel (2006) proposed the use of experiment databases:
databases describing a large number of learning experiments in complete de-
tail, serving as a detailed log of previously performed experiments and an
(online available) repository of learning experiments that can be reused by dif-
ferent researchers. Blockeel and Vanschoren (2007) provide a detailed account
of the advantages and disadvantages of experiment databases, and give guide-
lines for designing them. As a proof of the concept, they present a concrete
implementation that contains a full description of the experimental conditions
and results of 250,000 runs of classifier learning systems, together with a few
examples of its use and results that were obtained from it.

In this paper we provide a more detailed discussion of how this database
can be used in practice to store the results of many learning experiments and
to obtain a clear picture of the performance of the involved algorithms and the
effects of parameter settings and dataset characteristics. We believe that this
discussion may be of interest to anyone who may want to use this database
for their own purposes, or set up a similar databases for their own research.

We describe the structure of the database in Sect. 2 and the experiments
in Sect. 3. In Sect. 4 we illustrate the power of this database by showing how
SQL queries and data mining techniques can be used to investigate classifier
learning behavior. Section 5 concludes.

2 A Database for Classification Experiments

To efficiently store and allow queries about all aspects of previously performed
classification experiments, the relationships between the involved learning
algorithms, datasets, experimental procedures and results are captured in
the database structure, shown in Fig. 1. Since many of these aspects are
parameterized, we use instantiations to uniquely describe them. As such,
an Experiment (central in the figure) consists of instantiations of the used
learner, dataset and evaluation method.

First, a Learner instantiation points to a learning algorithm (Learner),
which is described by the algorithm name, version number, a url where it
can be downloaded, and some generally known or calculated properties (Van
Someren (2001), Kalousis & Hilario (2000)), like the used approach (e.g. neu-
ral networks) or how susceptible it is to noise. Then, if an algorithm is pa-
rameterized, the parameter settings used in each learner instantiation (one
of which is set as default) are stored in table Learner parval. Because al-
gorithms have different numbers and kinds of parameters, we store each pa-
rameter value assignment in a different row (in Fig. 1 only two are shown). A



Investigating Classifier Learning Behavior with Experiment Databases 3

Learner parval

liidpid value

15 64 0.25

15 65 2

Learner parameter

pid lid name alias learner inst kernel inst default min max (sugg)

15 64 C conf. threshold false false 0.25 0.01 0.99 ...

15 65 M min nr inst/leaf false false 2 2 20 ...

Learner inst
liid lid is default

15 13 true

Learner
lid name version url class (charact)

15 J48 1.2 http://... tree ...

Machine
mach id corr fact (props)

ng-06-04 1 ...

Experiment
eidlearner inst data inst eval meth type status priority machine error (backgr info)

13 15 1 1 classificat. done 9 ng-06-04 ...

Data inst
diiddidrandomization value

1 230

Dataset
did name origin url class index size def acc (charact)

230 anneal uci http://... -1 898 0.7617 ...

Eval meth inst
emiid method

1 cross-validation

Eval meth parval
emiid param value

1 nbfolds 10

Testset of
trainset testset

Evaluation
eid cputime memory pred acc mn abs err conf mat (metrics)

13 0:0:0:0.55 226kb 0.9844 0.0056 [[.],[.],. . . ] ...

Prediction

eid inst class prob predicted

13 1 3 0.7235 true

Fig. 1. A simplified schema of the experiment database.

Learner parameter is described by the learner it belongs to, its name and a
specification of sensible or suggested values, to facilitate experimentation.

Secondly, the used Dataset, which can be instantiated with a randomiza-
tion of the order of its attributes or examples (e.g. for incremental learners),
is recorded by its name, download url(s), the index of the class attribute and
some information on its origin (e.g. to which repository it belongs or how it
was generated artificially). In order to investigate whether the performance of
an algorithm is linked to certain kinds of data, a large set of dataset charac-
terization metrics is stored, most of which are described in Peng et al. (2002).
These can be useful to help gain insight into an algorithm’s behavior and,
conversely, assess a learner’s suitability for handling new learning problems1.

Finally, we must store an evaluation of the experiments. The evaluation
method (e.g. cross-validation) is stored together with its parameters (e.g. the
number of folds). If a dataset is divided into a training set and a test set, this
is defined in table Testset of. The result of the evaluation of each experiment
is described in table Evaluation by a wide range of evaluation metrics for
classification, including the contingency tables. To compare cpu times, a factor
describing the relative speed of the used Machine is stored as part of the
machine description. The last table in Fig. 1 stores the (probabilities of the)
predictions returned by each experiment, which may be used to calculate new
performance measures without rerunning the experiments.
1 New data and algorithm characterizations can be added at any time by adding

more columns and calculating the characterizations for all datasets or algorithms.



4 Joaquin Vanschoren and Hendrik Blockeel

3 The Experiments

To populate the database with experiments, we selected 54 classification al-
gorithms from the WEKA platform (Witten and Frank (2005)) and inserted
them together with all their parameters. Also, 86 commonly used classifica-
tion datasets were taken from the UCI repository and inserted together with
their calculated characteristics. Then, to generate a sample of classification
experiments that covers a wide range of conditions, while also allowing to
test the performance of some algorithms under very specific conditions, some
algorithms were explored more thoroughly than others.

First, we ran all experiments with their default parameter settings on all
datasets. Secondly, we defined sensible values for the most important param-
eters of the algorithms SMO (a kernel method), MultilayerPerceptron, J48
(C4.5), 1R and Random Forests and varied each of these parameters one by
one, while keeping all other parameters at default. Finally, we further explored
the parameter spaces of J48 and 1R by selecting random parameter settings
until we had about 1000 experiments on each dataset. For all randomized
algorithms, each experiment was repeated 20 times with different random
seeds. All experiments (about 250,000 in total) where evaluated using 10-fold
cross-validation, using the same folds for each dataset.

An online interface is available at http://www.cs.kuleuven.be/~dtai/expdb/
for those who want to reuse experiments for their own purposes, together with
a full description and code which may be of use to set up similar databases, for
example to store, analyse and publish the results of large benchmark studies.

4 Using the database

We will now illustrate how easy it is to use this experiment database to in-
vestigate a wide range of questions on the behavior of learning algorithms by
simply writing the right queries and interpreting the results, or by applying
data mining algorithms to model more complex interactions.

4.1 Comparing different algorithms

A first question may be “How do all algorithms in this database compare on
a specific dataset D?” To investigate this, we query for the learning algorithm
name and evaluation result (e.g. predictive accuracy), linked to all experiments
on (an instance of) dataset D, which yields the following query:

SELECT l.name, v.pred_acc

FROM experiment e, learner_inst li, learner l, data_inst di,

dataset d, evaluation v

WHERE v.eid = e.eid and e.learner_inst = li.liid and li.lid = l.lid

and e.data_inst = di.diid and di.did = d.did and d.name=’D’



Investigating Classifier Learning Behavior with Experiment Databases 5

Fig. 2. Algorithm performance comparison on the monks-problems-2 test dataset.

We can now interpret the returned results, e.g. by drawing a scatterplot.
For dataset monks-problems-2 (a near-parity problem), this yields Fig. 2,
giving a clear overview of how each algorithm performs and (for those al-
gorithms whose parameters where varied) how much variance is caused by
different parameter settings. Only a few algorithms surpass default accuracy
(67%) and while some cover a wide spectrum (like J48), others jump to 100%
accuracy for certain parameter settings (SMO with higher-order polynomial
kernels and MultilayerPerceptron when enough hidden nodes are used).

We can also compare two algorithms A1 and A2 on all datasets by joining
their performance results (with default settings) on each dataset, and plotting
them against each other, as shown in Fig. 3. Moreover, querying also allows
us to use aggregates and to order results, e.g. to directly build rankings of all
algorithms by their average error over all datasets, using default parameters:

SELECT l.name, avg(v.mn_abs_err) AS avg_err

FROM experiment e, learner l, learner_inst li, evaluation v

WHERE v.eid = e.eid and e.learner_inst = li.liid and li.lid = l.lid

and li.default = true GROUP BY l.name ORDER BY avg_err asc

SELECT s1.name, avg(s1.pred_acc) AS

A1_acc, avg(s2.pred_acc) AS A2_acc

FROM (SELECT d.name, e.pred_acc FROM ..

WHERE l.name = ’A1’ ... ) AS s1

JOIN (SELECT d.name, e.pred_acc FROM ..

WHERE l.name = ’A2’ ... ) AS s2

ON s1.name = s2.name

GROUP BY s1.name

Fig. 3. Comparing relative performance of J48 and OneR with a single query.



6 Joaquin Vanschoren and Hendrik Blockeel

Similar questions can be answered in the same vein. With small adjust-
ments, we can query for the variance,. . . of each algorithm’s error (over all or
a single dataset), study how much error rankings differ from one dataset to
another, or study how parameter optimization affects these rankings.

4.2 Querying for parameter effects

Previous queries generalized over all parameter settings. Yet, starting from
our first query, we can easily study the effect of a specific parameter P by
“zooming in” on the results of algorithm A (by adding this constraint) and
selecting the value of P linked to (an instantiation of) A, yielding Fig. 4a:

SELECT v.pred_acc, lv.value

FROM experiment e, learner_inst li, learner l, data_inst di,

dataset d, evaluation v, learner_parameter lp, learner_parval lv

WHERE v.eid = e.eid and e.learner_inst = li.liid and li.lid = l.lid

and l.name=’A’ and lv.liid=li.liid and lv.pid = lp.pid and lp.

name=’P’ and e.data_inst = di.diid and di.did = d.did and d.name=’D’

Sometimes the effect of a parameter P may be dependent on the value
of another parameter. Such a parameter P2 can however be controlled (e.g.
by demanding its value to be larger than V) by extending the previous query
with a constraint requiring that the learner instances additionally are amongst
those where parameter P2 obeys those constraints.

WHERE ... and lv.liid IN

(SELECT lv.liid FROM learner_parval lv, learner_parameter lp

WHERE lv.pid = lp.pid and lp.name=’P2’ and lv.value>V)

Launching and visualizing such queries yield results such as in Fig. 4,
clearly showing the effect of the selected parameter and the variation caused by
other parameters. As such, it is immediately obvious how general an observed
trend is: all constraints are explicitly mentioned in the query.

Fig. 4. The effect of the minimal leafsize of J48 on monks-problems-2 test (a),
after requiring binary trees (b), and after also suppressing reduced error pruning (c)



Investigating Classifier Learning Behavior with Experiment Databases 7

4.3 Querying for the effect of dataset properties

It also becomes easy to investigate the interactions between data properties
and learning algorithms. For instance, we can use our experiments to study
the effect of a dataset’s size on the performance of algorithm A2:

SELECT v.pred_acc, d.nr_examples

FROM experiment e, learner_inst li, learner l, data_inst di,

dataset d, evaluation v

WHERE v.eid = e.eid and e.learner_inst = li.liid and li.lid = l.lid

and l.name=’A’ and e.data_inst = di.diid and di.did = d.did

4.4 Applying data mining techniques to the experiment database

There can be very complex interactions between parameter settings, dataset
characteristics and the resulting performance of learning algorithms. However,
since a large number of experimental results are available for each algorithm,
we can apply data mining algorithms to model those interactions.

For instance, to automatically learn which of J48’s parameters have the
greatest impact on its performance on monks-problems-2 test (see Fig. 4),
we queried for the available parameter settings and corresponding results. We
discretized the performance with thresholds on 67% (default accuracy) and
85%, and we used J48 to generate a (meta-)decision tree that, given the used
parameter settings, predicts in which interval the accuracy lies. The resulting
tree (with 97.3% accuracy) is shown in Fig. 5. It clearly shows which are the
most important parameters to tune, and how they affect J48’s performance.

Likewise, we can study for which dataset characteristics one algorithm
greatly outperforms another. Starting from the query in Fig. 3, we addition-
ally queried for a wide range of data characteristics and discretized the per-
formance gain of J48 over 1R in three classes: “draw”, “win J48” (4% to 20%
gain), and “large win J48” (20% to 70% gain). The tree returned by J48 on
this meta-dataset is shown in Fig. 6, and clearly shows for which kinds of
datasets J48 has a clear advantage over OneR.

Fig. 5. Impact of parameter settings. Fig. 6. Impact of dataset properties.

2 To control the value of additional dataset properties, simply add these constraints
to the list: WHERE ... and d.nr attributes>5.



8 Joaquin Vanschoren and Hendrik Blockeel

4.5 On User-Friendliness

The above SQL queries are relatively complicated. Part of this is however a
consequence of the relatively complex structure of the database. A good user
interface, including a graphical query tool and an integrated visualization tool,
would greatly improve the usability of the database.

5 Conclusions

We have presented an experiment database for classification, providing a well-
structured repository of fully described classification experiments, thus allow-
ing them to be easily verified, reused and related to theoretical properties of
algorithms and datasets. We show how easy it is to investigate a wide range of
questions on the behavior of these learning algorithms by simply writing the
right queries and interpreting the results, or by applying data mining algo-
rithms to model more complex interactions. The database is available online
and can be used to gain new insights into classifier learning and to validate and
refine existing results. We believe this database and underlying software may
become a valuable resource for research in classification and, more broadly,
machine learning and data analysis.

Acknowledgements

We thank Anneleen Van Assche and Celine Vens for their useful comments
and help building meta-decision trees and Anton Dries for implementing the
dataset characterizations. Hendrik Blockeel is Postdoctoral Fellow of the Fund
for Scientific Research - Flanders (Belgium) (FWO-Vlaanderen), and this re-
search is further supported by GOA 2003/08 “Inductive Knowledge Bases”.

References

Blockeel, H. (2006): Experiment databases: A novel methodology for experimental
research. Lecture Notes in Computer Science, 3933, 72-85.

Blockeel, H. and Vanschoren J. (2007): Experiment Databases: Towards an Improved
Experimental Methodology in Machine Learning. Lecture Notes in Computer
Science, 4702, to appear.

Kalousis, A. and Hilario, M. (2000): Building Algorithm Profiles for prior Model
Selection in Knowledge Discovery Systems. Engineering Intelligent Syst., 8(2).

Peng, Y. et al. (2002): Improved Dataset Characterisation for Meta-Learning. Lec-
ture Notes in Computer Science, 2534, 141-152.

Van Someren, M. (2001): Model Class Selection and Construction: Beyond the Pro-
crustean Approach to Machine Learning Applications. Lecture Notes in Com-
puter Science, 2049, 196-217.

Witten, I.H. and Frank, E. (2005): Data Mining: Practical Machine Learning Tools
and Techniques (2nd edition). Morgan Kaufmann.


