Experiment Databases: Towards an Improved
Experimental Methodology in Machine Learning

Hendrik Blockeel and Joaquin Vanschoren

Computer Science Dept., K.U.Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

Abstract. Machine learning research often has a large experimental
component. While the experimental methodology employed in machine
learning has improved much over the years, repeatability of experiments
and generalizability of results remain a concern. In this paper we propose
a methodology based on the use of experiment databases. Experiment
databases facilitate large-scale experimentation, guarantee repeatability
of experiments, improve reusability of experiments, help explicitating the
conditions under which certain results are valid, and support quick hy-
pothesis testing as well as hypothesis generation. We show that they have
the potential to significantly increase the ease with which new results in
machine learning can be obtained and correctly interpreted.

1 Introduction

Experimental assessment is a key aspect of machine learning research. Indeed,
many learning algorithms are heuristic in nature, each making assumptions
about the structure of the given data, and although there may be good reason to
believe a method will work well in general, this is difficult to prove. In fact, it is
impossible to theoretically prove that one algorithm is superior to another [15],
except under specific conditions. Even then, it may be difficult to specify these
conditions precisely, or to find out how relevant they are for real-world problems.
Therefore, one usually verifies a learning algorithm’s performance empirically, by
implementing it and running it on (real-world) datasets.

Since empirical assessment is so important, it has repeatedly been argued
that care should be taken to ensure that (published) experimental results can
be interpreted correctly [8]. First of all, it should be clear how the experiments
can be reproduced. This involves providing a complete description of both the
experimental setup (which algorithms to run with which parameters on which
datasets, including how these settings were chosen) and the experimental proce-
dure (how the algorithms are run and evaluated). Since space is limited in paper
publications, an online log seems the most viable option.

Secondly, it should be clear how generalizable the reported results are, which
implies that the experiments should be general enough to test this. In time
series analysis research, for instance, it has been shown that many studies were
biased towards the datasets being used, leading to ill-founded or contradictory
results [8]. In machine learning, Perlich et al. [10] describe how the relative

performance of logistic regression and decision trees depends strongly on the size
of dataset samples. Similarly, Hoste and Daelemans [6] show that in text mining,
the relative performance of lazy learning and rule induction is dominated by
the effect of parameter optimization, data sampling, feature selection, and their
interaction. As such, there are good reasons for strongly varying the conditions
under which experiments are run, and projects like Statlog [12] and METAL [11]
made the first inroads into this direction.

In light of the above, it would be useful to have an environment for machine
learning research that facilitates storage of the exact conditions under which
experiments have been performed as well as large-scale experimentation under
widely varying conditions. To achieve this goal, Blockeel [1] proposed the use of
experiment databases. Such databases are designed to store detailed information
on large numbers of learning experiments, selected to be highly representative for
a wide range of possible experiments, improving reproducibility, generalizability
and interpretability of experimental results. In addition, they can be made avail-
able online, forming “experiment repositories” which allow other researchers to
query for and reuse the experiments to test new hypotheses (in a way similar to
how dataset repositories are used to test the performance of new algorithms).

Blockeel introduced the ideas behind experiment databases and discussed
their potential advantages, but did not present details on how to construct such a
database, nor considered whether it is even realistic to assume this is possible. In
this paper, we answer those questions. We propose concrete design guidelines for
experiment databases, present a specific implementation consistent with these
guidelines, and illustrate the use of this database. By querying it for specific
experiments, we can directly test a wide range of hypotheses on the covered
algorithms and verify or refine existing results. Finally, the database itself is
a contribution to the machine learning community: this database, containing
the results of 250,000 runs of well-known classification systems under varying
conditions, is publicly accessible on the web to be queried by other researchers.

The remainder of this paper is structured as follows. In Sect. 2 we summarize
the merits of experiment databases. In Sect. 3 we discuss the structure of such
a database, and in Sect. 4 methods for populating it with experiments. Section
5 presents a case study: we implemented an experimental database and ran a
number of queries in order to evaluate how easily it allows verification of existing
knowledge and discovery of new insights. We conclude in Sect. 6.

2 Experiment Databases

An experiment database is a database designed to store a (large) number of
experiments, containing detailed information on the datasets, algorithms, and
parameter settings used, as well as the evaluation procedure and the obtained
results. It can be used as a log of performed experiments, but also as a repository
of experimental results that can be reused for further research.

The currently most popular experimental methodology in machine learning
is to first come up with an hypothesis about the algorithms under study, then

perform experiments explicitly designed to test this hypothesis, and finally in-
terpret the results. In this context, experiment databases make it easier to keep
an unambiguous log of all the performed experiments, including all information
necessary to repeat the experiments.

However, experiment databases also support a new methodology: instead
of designing experiments to test a specific hypothesis, one can design them to
cover, as well as possible, the space of all experiments that are of interest in the
given context. A specific hypothesis can then be tested by querying the database
for those experiments most relevant for the hypothesis, and interpreting the re-
turned results. With this methodology, many more experiments are needed to
evaluate the learning algorithms under a variety of conditions (parameter set-
tings, datasets,...), but the same experiments can be reused for many different
hypotheses. For instance, by adjusting the query, we can test how much the ob-
served performance changes if we add or remove restrictions on the datasets or
parameter settings. Furthermore, as the query explictly mentions all restrictions,
it is easy to see under which conditions the returned results are valid.

As an example, say Ann wants to test the effect of dataset size on the com-
plexity of trees learned by C4.5. To do this, she selects a number of datasets of
varying sizes, runs C4.5 (with default parameters) on those datasets, and inter-
prets the results. Bob, a proponent of the new methodology proposed here, would
instead build a large database of C4.5 runs (with various parameter settings) on
a large number of datasets, possibly reusing a number of experiments from exist-
ing experiment databases. Bob then queries the database for C4.5 runs, selecting
the dataset size and tree size for all runs with default parameter settings (ex-
plicitly mentioning this condition in his query), and plotting them against each
other. If Ann wants to test whether her results on default settings for C4.5 are
representative for C4.5 in general, she needs to set up new experiments. Bob,
on the other hand, only has to ask a second query, this time not including the
condition. This way, he can easily investigate under which conditions a certain
effect will occur, and be more confident about the generality of his results.

The second methodology requires a larger initial investment with respect to
experimentation, but may pay off in the long run, especially if many different
hypotheses are to be tested, and if many researchers make use of experiments
stored in such databases. For instance, say another researcher is more interested
in the runtime (or another performance metric) of C4.5 on these experiments.
Since this is recorded in the experiment database as well, the experiments will not
have to be repeated. A final advantage is that, given the amount of experiments,
Bob can train a learning algorithm on the available meta-data, gaining models
which may provide further insights in C4.5’s behavior.

Note that the use of experiment databases is not strongly tied to the choice
of methodology. Although experiment databases are necessary for the second
methodology, they can also be used with the first methodology, allowing exper-
iments to be more easily reproduced and reused.

3 Database Structure

An experiment database should be designed to store experiments in such de-
tail that they are perfectly repeatable and maximally reusable. In this section,
we consecutively discuss how the learning algorithms, the datasets, and the ex-
perimental procedures should be described to achieve this goal. This discussion
does not lead to a single best way to design an experiment database: in many
cases several options remain, and depending on the purpose of the experiment
database different options may be chosen.

3.1 Algorithm

In most cases, storing a complete symbolic description of the implementation
of an algorithm is practically impossible. It is more realistic to store name and
version of a system, together with a pointer to source code or an executable, so
the experiment can be rerun under the same conditions. Some identification of
the environment (e.g. the required operating system) completes this description.

As most algorithms have parameters that change their behavior, the values
of these parameters must be stored as well. We call an algorithm together with
specific values for its parameters an algorithm instantiation. For randomized
algorithms, we store the seed for the random generator they use also as a pa-
rameter. As such, an algorithm instantiation is always a deterministic function.

Optionally, a characterization of the algorithm could be added, consisting of
generally known or calculated properties [13,7]. Such a characterization could
indicate, for instance, the class of approaches the algorithm belongs to (naive
bayes, neural net, decision tree learner,. ..), whether it generally has high or low
bias and variance, etc. Although this characterization is not necessary to ensure
repeatability of the experiment, it may be useful when interpreting the results
or when investigating specific types of algorithms.

3.2 Dataset

To describe datasets, one can store name, version and a pointer to a represen-
tation of the actual dataset. The latter could be an online text file (possibly in
multiple formats) that the algorithm implementations can read, but it could also
be a dataset generator together with its parameters (including the generator’s
random seed) or a data transformation function (sampling instances, selecting
features, defining new features, etc.) together with its parameters and a pointer
to the input dataset. If storage space is not an issue, one could also store the
dataset itself in the database.

As with algorithms, an optional characterization of the dataset can be added:
number of examples, number of attributes, class entropy, etc. These are useful
to investigate how the performance of an algorithm is linked to properties of the
training data. Since this characterization depends only on the dataset, not on
the experiment, new features can be added (and computed for each dataset), and
subsequently used in future analysis, without rerunning any experiments. The

same holds for the algorithm characterisation. This underlines the reusability
aspect of experiment databases.

3.3 Experimental Procedure

To correctly interpret (and repeat) the outcome of the experiment, we need to
describe exactly how the algorithm is run (e.g. on which machine) and evaluated.
For instance, in case we use a cross-validation procedure to estimate the predic-
tive performance of the algorithm on unseen data, this implies storing (a seed
to generate) the exact folds'. Also the exact functions used to compute these
estimates (error, accuracy,...) should be described. To make the experiments
more reusable, it is advisable to compute a variety of much used metrics, or to
store the information from which they can be derived. In the case of classifiers,
this includes storing the full contingency table (i.e., for each couple of classes
(i,7), the number of cases where class i was predicted as class j).2

Another important outcome of the experiment is the model generated by the
algorithm. As such, we should at least store specific properties of these models,
such as the time to learn the model, its size, and model-specific properties (e.g.
tree depth) for further analysis. If storage space allows this, also a full representa-
tion of the model could be stored for later visualisation®. For predictive models,
it might also be useful to store the individual (probabilities of) predictions for
each example in the dataset. This allows to add and compute more evaluation
criteria without rerunning the experiment.

4 Populating the Database

Next to storing experiment in a structured way, one also needs to select the right
experiments. As we want to use this database to gain insight in the behavior of
machine learning algorithms under various conditions, we need to have experi-
ments that are as diverse as possible. To achieve this in practice, we first need
to select the algorithm(s) of interest from a large set of available algorithms.
To choose its parameter settings, one can specify a probability distribution for
each different parameter according to which values should be generated (in the
simplest case, this could be a uniformly sampled list of reasonable values).
Covering the dataset space is harder. One can select a dataset from a large
number of real-world datasets, including for instance the UCI repository. Yet, one
can also implement a number of data transformation methods (e.g., sampling
the dataset, performing feature selection,...) and derive variants of real-world
datasets in this way. Finally, one could use synthetic datasets, produced by

! Note that although algorithms should be compared using the same folds, these folds
(seeds) should also be varied to allow true random sampling.

? Demsar [3] comments that it is astounding how many papers still evaluate classifiers
based on accuracy alone, despite the fact that this has been advised against for many
years now. Experiment databases may help eradicate this practice.

3 Some recent work focuses on efficiently storing models in databases [4].

dataset generators. This seems a very promising direction, but the construction
of dataset generators that cover a reasonably interesting area in the space of all
datasets is non-trivial. This is a challenge, not a limitation, as even the trivial
approach of only including publicly available datasets would already ensure a
coverage that is equal to or greater than that of many published papers on
general-purpose machine learning techniques.

At the same time however, we also want to be able to thoroughly investigate
very specific conditions (e.g. very large datasets). This means we must not only
cover a large area within the space of all interesting experiments*, but also
populate this area in a reasonably dense way. Given that the number of possible
algorithm instantiations and datasets (and experimental procedures) is possibly
quite large, the space of interesting experiments might be very high-dimensional,
and covering a large area of such a high-dimensional space in a “reasonably
dense” way implies running many experiments.

A simple, yet effective way of doing this is selecting random, but sensible,
values for all parameters in our experiments. With the term parameter we mean
any stored property of the experiment: the used algorithm, its parameters, its
algorithm-independent characterization, the dataset properties, etc.

To imagine how many experiments would be needed in this case, assume
that each of these parameter has on average v values (numerical parameters
are discretized into v bins). Running 100v experiments with random values for
all parameters implies that for each value of any single parameter, the average
outcomes of about 100 experimental runs will be stored. This seems sufficient
to be able to detect most correlations between outcomes and the value of this
parameter. To detect n-th order interaction effects between parameters, 100v™
experiments would be needed. Taking, for example, v =20 and n = 2 or n = 3,
this yields a large number of experiments, but (especially for fast algorithms)
not infeasible with today’s computation power.

Note how this contrasts to the number of experimental runs typically reported
on machine learning papers. Yet, when keeping many parameters constant to test
a specific hypothesis, there is no guarantee that the obtained results generalize
towards other parameter settings, and they cannot easily be reused for testing
other hypotheses. The factor 100 is the price we pay for ensuring reusability
and generalizability. Especially in the long run, these benefits easily compensate
for the extra computational expense. The v™ factor is unavoidable if one wants
to investigate n’th order interaction effects between parameters. Most existing
work does not study effects higher than the second order.

Finally, experiments could in fact be designed in a better way than just
randomly generating parameter values. For instance, one could look at techniques
from active learning or Optimal Experiment Design (OED) [2] to focus on the
most interesting experiments given the outcome of previous experiments.

4 These are the experiments that seem most interesting in the studied context, given
the available resources.

Learner_parval Learner_parameter

iidfpid| value pid[lid| name alias learner_inslkernel_inst Hefaul§ min | max [(sugg)
15|64| 0.25 15|64 C conf. threshold false false 0.25 | 0.01 | 0.99
15|65 2 15|65 M min nr inst/leaf] false false 2 2 20
Learner_inst Learner Machine
e N
iid|lid|is_default lid| name version url class (charact) L~ mach_id | corr_fact| (props)
615 13 true 15 J4a8 1.2 http://... tree ng-06-04 1
Exmnt /
eidflearner_inst{ data_inst [eval_meth| type status priority | machine error |(backgr_info)
13 15 1 1 lassificat done 9 ng-06-04
-
Data_jns Dataset
[diid|didlrandomization| value did| name origin url klass_inde size def_acc |(charact)
1 R3 23 anneal uci http://... -1 898 0.7617
Eval_meth_in t/ Eval_meth_parval Testset _df
emiid method emiid | Param | value trainset testset
1 cross-validation 1 nbfolds 10
aluation Predictio
eid| cputime [memory | pred_acc jmn_abs_erd conf_mat | (metrics) eid| inst | class | prob |predicted
13]0:0:0:0.55| 226kb 0.9844 0.0056 [([.I,[.],---] 13| 1 3 |0.7235] true

Fig. 1. A possible implementation of an experiment database.

5 A Case Study

In this section we discuss one specific implementation of an experiment database.
We describe the structure of this database and the experiments that populate it.
Then, we illustrate its use with a few example queries. The experiment database
is publicly available on http://www.cs.kuleuven.be/"dtai/expdb.

5.1 A Relational Experiment Database

We implemented an experiment database for classifiers in a standard RDBMS
(MySQL), designed to allow queries about all aspects of the involved learning
algorithms, datasets, experimental procedures and results. This leads to the
database schema shown in Fig. 1. Central in the figure is a table of experiments
listing the used instantiations of learning algorithms, datasets and evaluation
methods, the experimental procedure, and the machine it was run on.

First, a learner instantiation points to a learning algorithm (Learner), which
is described by the algorithm name, version number, a url where it can be down-
loaded and a list of characteristics. Furthermore, if an algorithm is parameter-
ized, the parameter settings used in each learner instantiation (one of which is
flagged as default) are stored in table Learner_parval. Because algorithms have
different numbers and kinds of parameters, we store each parameter value as-
signment in a different row (in Fig. 1 only two are shown). The parameters are
further described in table Learner_parameter with the learner it belongs to, its
name and a specification of sensible values. If a parameter’s value points to a
learner instantiation (as occurs in ensemble algorithms) this is indicated.

Secondly, the used dataset, which can be instantiated with a randomization of
the order of its attributes or examples (e.g. for incremental learners), is described
in table Dataset by its name, download url(s), the index of the class attribute
and 56 characterization metrics, most of which are mentioned in [9]. Information
on the origin of the dataset can also be stored (e.g. whether it was taken from a
repository or how it was preprocessed or generated).

Finally, we must store an evaluation of the experiments. The evaluation
method (e.g. cross-validation) is stored together with its (list of) parameters
(e.g. the number of folds). If a dataset is divided into a training set and a test
set, this is defined in table Testset_of. The results of the evaluation of each
experiment is described in table Evaluation by a wide range of evaluation met-
rics for classification, including the contingency tables®. The last table in Fig. 1
stores the (non-zero probability) predictions returned by each experiment.

5.2 Populating the Database

To populate the database, we first selected 54 classification algorithms from the
WEKA platform[14] and inserted them together with all their parameters. Also,
86 commonly used classification datasets were taken from the UCI repository
and inserted together with their calculated characteristics®.

To generate a sample of classification experiments that covers a wide range of
conditions, while also allowing to test the performance of some algorithms under
very specific conditions, a number of algorithms were explored more thoroughly
than others. In a first series of experiments, we ran all experiments with their
default parameter settings on all datasets. In a second series, we defined at most
20 suggested values for the most important parameters of the algorithms SMO,
MultilayerPerceptron, J48 (C4.5), 1R and Random Forests. We then varied each
of these parameters one by one, while keeping all other parameters at default. In
a final series, we defined sensible ranges for all parameters of the algorithms J48
and 1R, and selected random parameter settings (thus fully exploring their pa-
rameter spaces) until we had about 1000 experiments of each algorithm on each
dataset. For all randomized algorithms, each experiment was repeated 20 times
with different random seeds. All experiments (about 250,000 in total) where
evaluated with 10-fold cross-validation, using the same folds on each dataset.

5.3 Querying and Mining

We will now illustrate how easy it is to use this experiment database to test a
wide range of hypotheses on the behavior of these learning algorithms by simply
writing the right queries and interpreting the results, or by applying data mining
algorithms to model more complex interactions. In a first query, we compare the
performance of all algorithms on a specific dataset:

5 To help compare cpu times, a diagnostic test might be run on each machine and its
relative speed stored as part of the machine description.

5 As the database stores a ‘standard’ description of the experiments, other algorithm
(implementations) or datasets can be used just as easily.

xx ’n'x ¥ " I T N

predictive accuracy
predictive accuracy

— ——T 0 5 10 15 20 25 30

T PP PR FURIURIRPUR A N T
23032, 232 2 E S S S ROORERR 12 QAL 52 S8 O R DA AL 8 2 PNE GG
ROt SRR A PR T SRS R ot S s e gamma
SES T BT G F&F IF & PRSP E K A
OSSR LV N o & Q> S S EFLLLE
N R & X O PO
P 2 $ & 2 S S
& ch%\ & S < & v“‘% » %%,\(\

Fig. 2. Performance comparison of all algorithms on the Fig.3. Impact of the ~-
waveform-5000 dataset. parameter on SMO.

SELECT 1.name, v.pred_acc

FROM experiment e, learner_inst 1li, learner 1, data_inst di, dataset d,
evaluation v

WHERE e.learner_inst = 1i.liid and 1li.lid = 1.1id and e.data_inst =
di.diid and di.did = d.did and d.name=’waveform-5000’ and v.eid = e.eid

In this query, we select the algorithm used and the predictive accuracy reg-
istered in all experiments on dataset waveform-5000. We visualize the returned
data in Fig. 2, which shows that most algorithms reach over 75% accuracy, al-
though a few do much worse. Some do not surpass the default accuracy of 34%:
besides SMO and ZeroR, these are ensemble methods that use ZeroR by default.

It is also immediately clear how much the performance of these algorithms
varies as we change their parameter settings, which illustrates the generality of
the returned results. SMO varies a lot (from default accuracy up to 87%), while
J48 and (to a lesser extent) MultiLayerPerceptron are much more stable in this
respect. The performance of RandomForest (and to a lesser extent that of SMO)
seems to jump at certain points, which is likely bound to a different parameter
value. These are all hypotheses we can now test by querying further.

For instance, we could examine which bad parameter setting causes SMO to
drop to default accuracy. After some querying, a clear explanation is found by se-
lecting the predictive accuracy and the gamma-value (kernel width) of the RBF
kernel from all experiments with algorithm SMO and dataset waveform-5000 and
plotting them (Fig. 3). We see that accuracy drops sharply when the gamma
value is set too high, and while the other modified parameters cause some vari-
ation, it is not enough to jeopardize the generality of the trend.

We can also investigate combined effects of dataset characteristics and pa-
rameter settings. For instance, we can test whether the performance ‘jumps’ of
RandomForest are linked to the number of trees in a forest and the dataset
size. Therefore, we select the dataset name and number of examples, the pa-
rameter value of the parameter named nb of trees in forest of algorithm

ol od T XX
! 1 ! &
: il 'y
T ! ! I "
3
8
© A i L]
[}
=
g !
°
o
S
- l
®
1-tree forest
3-tree forest
10-tree forest
11-tree forest
33-tree forest
101-tree forest;
TTTTT
X @@9’};}@

datasets (in order of increasing size)

Fig. 4. The effect of dataset size and the number of trees for random forests.

RandomForest and the corresponding predictive accuracy. The results are re-
turned in order of dataset size:

SELECT d.name, d.nr_examples, lv.value, v.pred_acc

FROM experiment e, learner_inst 1li, learner 1, learner_parval 1lv,
learner_parameter p, data_inst di, dataset d, evaluation v

WHERE e.learner_inst = 1i.liid and 1i.lid = 1.1id and
1.name=’RandomForest’ and 1lv.liid = 1li.liid and 1lv.pid = p.pid and
p.alias=’nb of trees in forest’ and v.eid = e.eid

ORDER BY d.nr_examples

When plotted in Fig. 4, this clearly shows that predictive accuracy increases
with the number of trees, usually leveling off between 33 and 101 trees, but with
one exception: on the monks-problems-2_test dataset the base learner performs
so badly (less than 50% accuracy, though there are only two classes) that the
ensemble just performs worse when more trees are included. We also see that as
the dataset size grows, the accuracies for a given forest size vary less, which is
indeed what we would expect as trees become more stable on large datasets.

As said before, an experiment database can also be useful to verify or refine
existing knowledge. To illustrate this, we verify the result of Holte [5] that very
simple classification rules (like 1R) perform almost as good as complex ones (like
C4, a predecessor of C4.5) on most datasets. We compare the average predictive
performance (over experiments using default parameters) of J48 with that of
OneR for each dataset. We skip the query as it is quite complex. Plotting the
average performance of the two algorithms against each other yields Fig. 5.

1
N T DR classvalues<=5
x * * 1

Ed
%
\\%

e
N

g B | default-acc<=76% | (large win _J48)
E 06 . : ;<

$o0 . /*/ -

B / | nb_examples<=768

3 0.

N\

| classentropy<=0.96 | (win _J48)

of 02 03 04 05 06 07 08 09 1
OneR predictive accuracy draw Y(win _J48

Fig. 5. Relative performance of J48 Fig. 6. A meta-decision tree on dataset
and OneR. characteristics.

N\

AN

We see that J48 almost consistently outperforms OneR, in many cases per-
forming a little bit better, and in some cases much better. This is not essentially
different from Holte’s results, though the average improvement does seem a bit
larger here (which may indicate an improvement in decision tree learners and/or
a shift towards more complex datasets).

We can also automatically learn under which conditions J48 clearly out-
performs OneR. To do this, we queried for the difference in predictive accuracy
between J48 and OneR for each dataset, together with all dataset characteristics.
Discretizing the predictive accuracy yields a classification problem with 3 class
values: “draw”, “win_J48” (4% to 20% gain), and “large_win_J48” (20% to 70%
gain). The tree returned by J48 on this meta-dataset is shown in Fig. 6, showing
that a high number of class values often leads to a large win of J48 over 1R.
Interestingly, Holte’s study contained only one dataset with more than 5 class
values, which might explain why smaller accuracy differences were reported.

Yet these queries only scratched the surface of all possible hypotheses that
can be tested using the experiments generated for this case study. One could
easily launch new queries to request the results of certain experiments, and gain
further insights into the behavior of the algorithms. Also, one can reuse this data
(possibly augmented with further experiments) when researching the covered
learning techniques. Finally, one can also use our database implementation to
set up other experiment databases, e.g. for regression or clustering problems.

6 Conclusions

We advocate the use of experiment databases in machine learning research.
Combined with the current methodology, experiment databases foster repeata-
bility. Combined with a new methodology that consists of running many more
experiments in a semi-automated fashion, storing them all in an experiment
database, and then querying that database, experiment databases in addition
foster reusability, generalizability, and easy and thorough analysis of experimen-
tal results. Furthermore, as these databases can be put online, they provide a

detailed log of performed experiments, and a repository of experimental results
that can be used to obtain new insights. As such, they have the potential to
speed up future research and at the same time make it more reliable, especially
when supported by the development of good experimentational tools. We have
discussed the construction of experiment databases, and demonstrated the feasi-
bility and merits of this approach by presenting an publicly available experiment
database containing 250,000 experiments and illustrating its use.

Acknowledgements

Hendrik Blockeel is Postdoctoral Fellow of the Fund for Scientific Research -
Flanders (Belgium) (F.W.0O.-Vlaanderen), and this research is further supported
by GOA 2003/08 “Inductive Knowledge Bases”.

References

1. Blockeel, H.: Experiment databases: A novel methodology for experimental research.
Lecture Notes in Computer Science 3933, Springer (2006) 72-85

2. Cohn, D.A.: Neural Network Exploration Using Optimal Experiment Design. Ad-
vances in Neural Information Processing Systems 6 (1994) 679-686

3. Demsar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal
of Machine Learning Research 7 (2006) 1-30

4. Fromont E. and Blockeel H. and Struyf J.: Integrating Decision Tree Learning into
Inductive Databases. In Revised selected papers of the workshop KDID’06, Lecture
Notes in Computer Science (to appear), Springer (2007)

5. Holte, R.: Very simple classification rules perform well on most commonly used
datasets. Machine Learning 11 (1993) 63-91

6. Hoste, V. and Daelemans, W.: Comparing Learning Approaches to Coreference Res-
olution. There is More to it Than ’'Bias’. Proceedings of the Workshop on Meta-
Learning (ICML-2005) (2005) 20-27

7. Kalousis, A. and Hilario, M.: Building Algorithm Profiles for prior Model Selection
in Knowledge Discovery Systems. Engineering Intelligent Systems 8(2) (2000)

8. Keogh, E. and Kasetty, S.: On the Need for Time Series Data Mining Benchmarks:
A Survey and Empirical Demonstration. Proceedings of the 8th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (2002) 102-111

9. Peng, Y. et al.: Improved Dataset Characterisation for Meta-Learning. Lecture
Notes in Computer Science 2534 (2002) 141-152

10. Perlich, C. and Provost, F. and Siminoff, J.: Tree induction vs. logistic regression:
A learning curve analysis. Journal of Machine Learning Research 4 (2003) 211-255

11. METAL-consortium: METAL Data Mining Advisor. http://www.metal-kdd.org

12. Michie, D. and Spiegelhalter D. J. and Taylor C. C.: Machine Learning, Neural
and Statistical Classification. Ellis Horwood, New York (1994)

13. Van Someren, M.: Model Class Selection and Construction: Beyond the Pro-
crustean Approach to Machine Learning Applications. Lecture Notes in Computer
Science 2049 (2001) 196217

14. Witten, [.LH. and Frank, E.: Data Mining: Practical Machine Learning Tools and
Techniques (2nd edition). Morgan Kaufmann (2005)

15. Wolpert, D. and Macready, W.: No free lunch theorems for search. SFI-TR-95-
02-010 Santa Fe Institute (1995)

