Classifying Relational Data
with Neural Networks

Werner Uwents and Hendrik Blockeel

Katholieke Universiteit Leuven,
Department of Computer Science,
Celestijnenlaan 200A, B-3001 Leuven
{werner.uwents, hendrik.blockeel}@cs.kuleuven.be

Abstract. We introduce a novel method for relational learning with
neural networks. The contributions of this paper are threefold. First, we
introduce the concept of relational neural networks: feedforward networks
with some recurrent components, the structure of which is determined
by the relational database schema. For classifying a single tuple, they
take as inputs the attribute values of not only the tuple itself, but also of
sets of related tuples. We discuss several possible architectures for such
networks. Second, we relate the expressiveness of these networks to the
‘aggregation vs. selection’ dichotomy in current relational learners, and
argue that relational neural networks can learn non-trivial combinations
of aggregation and selection, a task beyond the capabilities of most cur-
rent relational learners. Third, we present and motivate different possible
training strategies for such networks. We present experimental results on
synthetic and benchmark data sets that support our claims and yield in-
sight in the behaviour of the proposed training strategies.

1 Introduction

Neural networks are a very popular learning method. However, their use is still
mainly limited to propositional data. A number of approaches exist to extend
them to structured domains, such as logical terms, trees and graphs [9] 18] [g].
However, none of them is specifically oriented to relational databases. Other
research focuses on the combination of neural networks and first-order logic
[3, 1], but the relational problem should be simpler to solve. In this paper, we
will discuss a possible extension of propositional neural networks to relational
databases.

In general, learning concepts over relational data can be considered as learn-
ing a combination of aggregation and selection. The distinction between ag-
gregation and selection is basically a distinction between two different ways of
handling sets. The difficulties for current relational learners to make combina-
tions of both are an important motivation for our relational neural networks
(RNNs).

This problem of combining aggregation and selection will be elaborated in
section 21 In the context of neural networks, these combinations can be learned

S. Kramer and B. Pfahringer (Eds.): ILP 2005, LNAI 3625, pp. 384-{396] 2005.
© Springer-Verlag Berlin Heidelberg 2005

Classifying Relational Data with Neural Networks 385

using a neural network consisting of feedforward and recurrent parts. The pre-
cise structure of relational neural networks will be explained in section Bl The
training method for the networks is based on the well-known backpropagation
algorithm. Some specific issues for training relational neural networks are dis-
cussed in section @l To test our approach, four experiments were conducted and
the results are presented in section bl Finally, some conclusions will be formu-
lated in section [Gl

2 Aggregation Versus Selection

In propositional learning, an example is described by a single tuple of a fixed type
(i.e., each example is described by the same attributes). In relational learning,
an example is essentially described by a set of tuples that are somehow related
to each other. The tuples may be of different types and the size of such a set is in
general not constrained. Because of the latter property, the set cannot be reduced
to a single tuple without loss of information. Thus, we can say that the essential
difference between propositional and relational learning is that relational learners
need to be able to handle sets in some way. They need to be able to construct
tests on sets rather than on scalar attributes.

Some relational learners use what is called a propositionalisation approach:
they transform the data into a propositional format using a number of predefined
features, and let the propositional learner choose those features that are most
relevant. Other relational learners integrate the construction of such features in
the learning process.

Independent of the question whether feature construction happens before or
during learning, we can also look at the type of features that are constructed.
In relational algebra terminology, we can say that such features are of the form
F(oc(S)) where F is some aggregate function, o maps the set S into its subset
of elements that fulfill condition C, and S is the natural join of all the tuples
linked by foreign keys to the tuple to be classified [2].

We can classify symbolic relational learners according to what kind of ag-
gregate functions and selection conditions they consider. It then turns out that
many propositionalisation approaches choose F from a predefined set of func-
tions (typically count, sum, average, max, min; note that except for count, one
has to specify an attribute in combination with the function, which means the
actual number of features to be considered is linear in the number of attributes),
and use for C a trivial or very simple condition.

Many propositionalisation approaches consider C' to be true. The number
of possible features then derived is still O(fa) with f the number of aggregate
functions and a the number of attributes. For instance, the RELAGGS approach
[12] [13] considers several aggregate functions, and atomic conditions of the form
Afv with A an attribute, v a value, and 6 a comparison operator. This makes
the number of possible features O(fa?). Building a more complex C, for instance,

386 W. Uwents and H. Blockeel

one involving multiple conjuncts, is difficult because the number of possible
conjunctions grows exponentially in the number of conjuncts.

Inductive logic programming systems can be considered as constituting the
other side of the spectrum: they build complex conditions C' but a trivial ag-
gregate function F that returns true if o¢(S) is non-empty. Indeed, a clause
such as

pos(X) :- page(X), hub(X), linked(X,Y), hub(Y).

can be seen as constructing a boolean feature that expresses whether the page is
linked to by a hub. (In other words, the set of pages linking to this page that are
hubs, is non-empty.) An ILP system could add further conditions on Y to the
clause, possibly introducing more variables somehow linked to Y, thus making
the C' condition arbitrarily complex.

As ILP systems focus on the construction of the selection condition, we call
them selection-oriented. Systems that include aggregate functions with only very
simple selection conditions, can be called aggregation-oriented. The question
then arises whether systems could be built that look for patterns involving both
aggregation and non-trivial selection conditions.

It turns out that this is difficult because of several reasons. First, clearly,
the feature space that has to be searched becomes much larger. Second, it is
more difficult to navigate this space in an efficient and structured way. One
approach towards combining aggregation and selection is the work by Knobbe
et al. [T1]. They propose a method to search this more complex feature space for
aggregations over complex selections. In order to keep the search well-behaved,
however, they have to restrict the aggregate functions to monotone ones. Vens et
al. [20] propose an approach where any aggregate functions can be combined with
complex selections; their random forests [4] based approach involves a random
sampling of the feature space, which makes the search feasible.

Perlich and Provost [16] provide an alternative characterization of relational
learners in terms of probability distributions; what we call an aggregate over a
complex conjunction, in their terminology boils down to summarizing statistics
of a joint distribution over multiple variables. They essentially arrive at the
same conclusion with respect to the position of ILP and aggregation-oriented
relational learning approaches: both are at different sides of a spectrum that is
very sparsely populated (if at all) in between.

The relational learning approach that we propose here, is a non-symbolic
approach, and as such does not make a distinction between searching for aggre-
gate functions and searching for complex conditions. It does both in parallel,
and yields models that may be closer to selection-oriented models, or closer to
aggregation-oriented ones, depending on what seems most fit for the dataset un-
der consideration. In addition, they are not constrained to using only predefined
aggregation functions, or to using a specific kind of conditions. Our approach is
unique in this respect and makes it possible to learn patterns that none of the
current relational learners can model.

Classifying Relational Data with Neural Networks 387

3 The Structure of Relational Neural Networks

The structure of a relational neural network (RNN) is based on the schema of
the relational database. More specifically, it is influenced by the different types
of tuples in the data set, the number of attributes for each tuple type and the
relationships that are allowed. It is important that every attribute should be
a real value, because these are the only values a neural network can process.
Other types of attributes require a transformation to a fixed number of real
values. Standard transformations for this are known.

A good starting point to address the relational learning task, is the typical
setting for solving propositional learning tasks. The usual method to construct
a neural network for a propositional data set is illustrated in figure In a
propositional data set, only one type of tuple is present, in this case account
tuples. All tuples of this kind are characterized by three attributes, X7, X5 and
X7, as is shown on the left side of the figure. On the right side, a corresponding
neural network is depicted. More specifically, a standard feedforward neural net-
work with two layers is used. X; and X5 are used as inputs to this network. X
is a special attribute, because it is the target attribute, which must be predicted.
This value is used to train the neural network at the output.

Xr
Xr
Q
X1 X
i Y
(a) Propositional case. (b) One-to-one or many-to-one relation-

ship, complete participation.

Xr Xr

i » z i » oz
(c) One-to-one or many-to-one relation- (d) One-to-many or many-to-many rela-
ship, partial participation. tionship.

Fig. 1.

388 W. Uwents and H. Blockeel

Starting from this propositional case, an extension can now be proposed to
solve relational tasks. This extension is developed in three steps. The first step
is to handle one-to-one relationships with complete participation. Figure
shows how a new type of tuple, client, is added to the original data set. This
new type of tuple has a one-to-one relationship with account tuples. It means
that each account is related to exactly one client. This case could easily be
transformed into a propositional case by adding some extra inputs for the related
client tuple to the original network.

However, we will follow a different approach here, that is more similar to
the use of combinations of aggregation and selection. When using such a com-
bination, the related tuples are actually summarized and the result is used in
predicting the target. Similarly, we can use a neural network, representing a com-
bination of aggregation and selection, to summarize related tuples. The outputs
of this network are then used as extra inputs into the original network so that
it can predict the target.

In the case of a one-to-one relationship, this summarizing is performed by a
feedforward network. On the right side of figure the original propositional
network, indicated by the white neurons, can still be distinguished. However,
a new neural network, indicated by the black neurons, has been added. The
attributes Y7 and Y5 of the client tuples are used as inputs to this network and
the outputs are used as extra inputs to the original propositional network.

More generally, we are assuming that we have a data set with a target relation
Ry and some other relations Ry,..., Ras. The attribute set of R; is denoted by
U;. S1(R) can now be defined as the set of all relations R; with which R has a
one-to-one or many-to-one relationship with complete participation. For all R;
in S1(Rr), where Ry is the target relation, a feedforward neural network N; is
created. The inputs I; of N; are equal to U; in this case. The outputs O; of N;
are used as inputs for Ny, so It = Ur U (U;.r,es, (rp)Oi)-

The second step is very similar to the first one. Instead of a one-to-one or
many-to-one relationship with complete participation, a one-to-one or many-to-
one relationship with only partial participation is considered here. This could
be a relationship between account and card tuples for example, as shown in
figure Compared to the neural network for the first relational extension,
only a new input Z is added. As there is only a partial participation between
account and card, not every account has a card tuple related to it. The variable Z
is therefore used to indicate whether there is a card tuple related to the account
tuple or not. This variable has two possible values, for instance zero and one.

Again, this result can be described more formally for a target relation Ry
and a number of other relations Ry, ..., Ry. Now we define Sp1(R) as the set of
all relations R; with which R has a one-to-one or many-to-one relationship with
partial participation. For all R; in So1(Rr) we define a feedforward network N,
with inputs I; = U; U{Z}. The domain of Z is {0,1}. The outputs O; of N; are
used again as inputs for Nr, so I = Ur U (Us.R, €8, (Rr)uSo: (Rr)Oi) SO far.

A third step is required to facilitate handling sets, which involves recurrent
neural networks. Instead of a one-to-one relationship, a one-to-many relationship

Classifying Relational Data with Neural Networks 389

is now added to the data set in the form of a relationship between account and
transaction tuples. An account can not only have one or zero transactions, as
with cards, but also multiple transactions. An extra variable Z is used to indicate
whether or not there is at least one transaction present. To be able to process
multiple transactions, the added network is now a recurrent network. It contains
recurrent connections which feed signals from the second layer back into the first
layer. This enables the processing of a sequence of input vectors, so the set of
transaction tuples is fed in the recurrent network as a sequence.

Formally, we define the set Sj(R) of all relations R; with a one-to-many or
many-to-many relationship from R to R;. This time a recurrent network N; is
constructed for each R; in Syps(Rr). The inputs for N; are I; = U; U{Z}, where
Z € {0, 1}. The outputs O; of N; are added again to the inputs of Ny, resulting
in I1 = Uz U (U, €8, (Rr)USo1 (Rr)USar (Rr) Oi)-

The described method of constructing a new neural network and using its
outputs as extra inputs to the original network, can also be applied to further
relationships. If transaction tuples have a relationship with a bank, for instance,
a new network to process this bank tuple can be added and the outputs used
as extra inputs to the recurrent network for transaction tuples. This results in a
tree structure, where every node is a network that processes tuples of some type
and its children process tuples involved in some relationship with the parent
tuple. The signals are propagated from bottom to top.

The most expressive recurrent networks are fully connected networks in which
each neuron is connected to all other neurons. However, this makes the number
of connections increase quadratically with respect to the number of neurons
and therefore we prefer the Jordan recurrent network [I0]. In the latter type of
recurrent network, each neuron in the second layer is connected to all neurons in
the first layer. This is the same as using the outputs of the neurons in the second
layer as extra inputs for the network in the next update step. The number of
recurrent connections is then nq X ng, with ny; and no the number of neurons in
the first and second layer respectively. This results in a good trade-off between
expressiveness and the number of neurons and connections in the network.

4 Training

The described relational neural network consists of feedforward as well as re-
current parts. Both are trained using the backpropagation algorithm. For the
feedforward parts, standard backpropagation is used and the recurrent parts
are trained with backpropagation through time. The latter is an adapted ver-
sion of standard backpropagation for recurrent networks [2I]. The key idea to
backpropagation through time is to unfold the recurrent network into a feedfor-
ward network. As many folds or copies of the original network are created as
there are instances in the input sequence. All recurrent connections are converted
into feedforward connections between successive folds. The resulting feedforward
network is trained using standard backpropagation, except for the fact that all
weight updates are added to the original weights.

390 W. Uwents and H. Blockeel

As explained above, the recurrent networks are used to process sets of tuples.
This means that all tuples in the set are fed in the recurrent network as a
sequence. The particular order of these sequences is arbitrary, as there is no real
order in the set of tuples. To avoid imposing an artificial order on the data, it is
possible to reshuffle or reorder these sequences randomly to train the network.
Thus, the variation in the data presented to the network is increased, which
should improve learnability. Reshuffling can also be done for testing where each
sample is tested in different orders and the results are averaged, which should
improve prediction.

There are two ways of reshuffling for training. In a first setting, simply reshuf-
fle the training set after every iteration. This method presents a maximum of
variation to the network, at least in the long term. Another possibility is to
expand the original training set with a number of reshuffled copies. The latter
method will increase the size of the training set initially, but during the training
process the training samples remain the same. At first sight, reshuffling after ev-
ery iteration would seem to give the best result as it produces maximal variation
in the data presented to the network. However, it also changes the gradient from
one iteration to the next, which can make it difficult for the training algorithm
to converge.

5 Experiments

The described approach was tested on four different data sets. Experiments were
conducted using ten-fold cross-validation and the results are averages over five
different runs. Three different settings were used for training: without reshuffling,
using continuous reshuffling and using ten reshuffled copies. When reshuffling is
used for training, the accuracy on the test set is measured over twenty reshuffled
tests for each sample. At least two questions should be answered by conducting
these experiments. First, we want to know how the results obtained with rela-
tional neural networks compare to results for other systems, such as first-order
random forests (FORFs) [20]. This should indicate whether our RNNs are indeed
able to learn relational concepts. Second, the effect of reshuffling on learning such
concepts should become clear.

5.1 Musk

Musk is actually a multi-instance data set, but multi-instance learning can be
seen as a special, simple case of relational learning [5]. The data set consists of
two parts, each containing a number of molecules and a bag of conformations
for each molecule [I4]. A conformation is described by 166 numerical attributes.
Each molecule has to be classified as musk or not. There are 92 molecules in the
first data set and 102 in the second one. A further difference between the two
data sets is the average number of conformations per molecule. For the first data
set there are 5 conformations per molecule on average, for the second data set
the average is 65.

Classifying Relational Data with Neural Networks 391

Table 1. Accuracies for relational neural networks on all tested data sets. Average
accuracy and standard deviation over five runs are given for ten-fold cross-validation.

no reshuffling continuous reshuffling 10 reshuffled copies
musk 1 80£3% 824+3% 844+3%
musk 2 78+2% 794+2% 80+2%
trains 1 76+4% 91+3% 93+3%
trains 2 T4+4% 86+3% 87+3%
trains 3 86+3% 94+3% 96+3%
trains 4 83+4% 85+3% 89+3%
mutagenesis 86+3% 88+3% 86+4%
diterpenes 814+2% 784+2% 794+2%

Table 2. Accuracies on musk data set compared to other methods. Results were ob-
tained from [6] and [I7].

method musk 1 musk 2
1 iterated-discrim APR 92.4% 89.2%
2 GFS elim-kde APR 91.3% 80.4%
3 GFS elim-count APR 90.2% 75.5%
4 GFS all-positive APR 83.7% 66.7%
5 all-positive APR 80.4% 72.6%
6 simple backpropagation 75.0% 67.7%
7 multi-instance neural networks 88.0% 82.0%
8 C4.5 68.5% 58.8%
9 1-nearest neighbor (euclidean distance) / 5%
10 neural network (standard poses) / 75%
11 1-nearest neighbor (tangent distance) / 79%
12 neural network (dynamic reposing) / 91%
13 relational neural networks 84% 80%

Table [l shows the results obtained with relational neural networks for differ-
ent settings. These results illustrate that reshuffling gives an improvement of the
final accuracy and that copy reshuffling works better than continuous reshuffling
in this case. Table 2] compares the best results for relational neural networks
with the results for other methods. These other results come from [6], except
for the results for multi-instance neural networks [I7]. It should be noted that
methods 11 and 12 require computation of the molecular surface, which cannot
be done using the feature vectors in the data set.

Comparing the different neural network approaches, we see that RNNs do
not perform as well as multi-instance neural networks, but substantially better
than simple backpropagation. This method ignores the multi-instance character
of the musk data set and treats all of the positive instances as positive examples.
This is actually some kind of propositional approach. As RNNs perform clearly
better than this method, it seems that they are able to learn a real multi-instance
concept, which is also a relational concept.

392 W. Uwents and H. Blockeel

5.2 Trains

The trains data set is an artificially created data set containing a number of
trains. Every train consists of a number of cars, carrying some load. Some of the
trains are eastbound, the others are westbound. This target concept is based on
the properties of the cars of a train and their loads. A data generator for this
train problem was used to create the data set [I5]. A simple (trains 1 and 2)
and a more complicated concept (trains 3 and 4) were defined to generate the
data sets. The simple concept defines trains that are eastbound as trains with
at least two circle loads, the other trains are westbound. The more complicated
concept defines westbound trains as trains that have more than seven wheels
in total but not more than one open car with a rectangle load, or trains that
have more than one circle load; the other trains are eastbound. There is also a
distinction between data sets without noise (trains 1 and 3) and those with 5%
noise added (trains 2 and 4).

Training was done with learning rate 0.1 and during 5000 iterations. Results
for the different settings can be found in table [[l and a comparison with first-
order random forests (FORFs) [20] in table Bl Apparently, the first two data
sets, containing 100 samples, are too small to train the network sufficiently.
Therefore, better performance for these data sets is obtained with FORF. For
data set 3 and 4, the results are very similar to those obtained with FORF. Using
reshuffling clearly outperforms no reshuffling for this experiment. This indicates
that reshuffling does indeed help to learn relational concepts.

5.3 Mutagenesis

Mutagenesis is a well-known ILP data set [19]. It consists of 230 molecules
which have to be classified as mutagenic or not. A structural description of
each molecule is given, stating all atoms of the molecule and the bonds between
them. In this case, best results were achieved when using 20% of the training
set as validation set to do early stopping. This means that after every training
iteration the performance on this validation set and on the test set is computed
and after training the iteration with the lowest validation error is used to select
the test accuracy.

The network was trained for 20000 iterations with a learning rate of 0.5.
The large number of training iterations was needed because convergence seems
to be quite slow for this experiment. Results for different settings are shown in
table [[l Best results are obtained using continuous reshuffling. The reason that
this works better than copy reshuffling, could be the large number of training
iterations. A comparison with FORF can be found in table @ For this data set,
RNNs achieve substantially better results than FORFs.

5.4 Diterpenes

For the last experiment, the diterpenes data set is used [7]. This data set contains
information about 1503 diterpene structures. For each of the 20 carbon atoms

Classifying Relational Data with Neural Networks 393

Table 3. Accuracy results for the diterpenes data set compared to other systems.
Results for FOIL, RIBL and ICL come from [7], the result for FORF is obtained
from [20].

RNN FORF FOIL RIBL ICL
81% 93% 78% 91% 86%

Table 4. Accuracy results for the mutagenesis data set compared to those for
FORF [20]

RNN FORF
88% 79%

Table 5. Results for trains data sets compared with FORF

concepts samples noise RNN FORF

trains 1 simple 100 none 93% 100%
trains 2 simple 100 5% 87% 93%
trains 3 complex 800 none 96% 96%
trains 4 complex 800 5% 89% 90%

in the diterpene structure, multiplicity and frequency are given. The results are
shown in table [l Again, training was done over 20000 iterations and with 0.5
learning rate. A comparison with other results can be found in table Bl For this
data set, relational neural networks do not perform very well and reshuffling gives
worse results than using no reshuffling at all. It is not very clear why this is so.

5.5 Experimental Conclusions

One must be careful to draw straightforward conclusions from the four exper-
iments as a whole. It seems to be partially problem dependent which training
setting gives the best results. Copy reshuffling improves accuracy for musk and
trains for instance, but for mutagenesis continuous reshuffling is better and best
results for diterpenes are obtained without any reshuffling. Moreover, some re-
sults are rather sensitive to changes in the training setting. Even small changes
for parameters can produce quite different results. This is also the reason why
the training methodology is not uniform in the conducted experiments. There is
not one setting that produces acceptable results for all experiments.

Another problem is that convergence tends to be slow. Probably, this is par-
tially due to the use of recurrent neural networks. It is known that these networks
are harder to train than feedforward networks. The fact that we increased the
number of layers, decreases learnability further. These problems are related to
the use of backpropagation as training method, which has problems to back-
propagate an error signal over too long distances.

However, some conclusions can be made. For instance, the improvement of
the accuracy when using reshuffling for the trains data set is remarkable. Because

394 W. Uwents and H. Blockeel

this data set is artificially created, we are sure that the concept to be learned
is a combination of aggregation and selection. As the results improve so much,
this is a strong indication that reshuffling is indeed helping to learn this kind of
concepts. If we look at the overall accuracies achieved for the different data sets
and compare them to other approaches, we can also conclude that RNNs seem
to be able to express relational concepts quite well.

6 Conclusions

In this paper, we presented a novel neural network approach to relational learn-
ing. The fact that current relational learners are very limited in making combi-
nations of aggregation and selection is an important motivation for this work.
By using neural networks, such combinations can be made in an implicit way
and we should be able to avoid a bias to either aggregation or selection.

The structure of a RNN is based on the relational database schema. It is a
combination of feedforward and recurrent networks to process a tuple together
with its related tuples. The fact that sets of tuples are fed in the recurrent
networks as sequences, is also used to improve training and testing. By reordering
these sequences, the variation in the data can be increased, which should increase
learnability.

Experiments on four different data sets give some insight in the capacities of
RNNs. They seem to be able to learn relational concepts reasonably well. The
beneficial effect of reshuffling in training and testing could also be demonstrated.
But issues as verifying what concepts are actually learned and a training algo-
rithm that is better suited to train this kind of neural networks, are worth further
investigation. Understandability is an important issue in ILP, but it is a known
problem for neural networks. A lot of work has been done in rule extraction
from neural networks, but relational neural networks present some complica-
tions. With regard to the training method, a genetic algorithm could be a better
method than backpropagation.

Acknowledgements

Hendrik Blockeel is a postdoctoral fellow of the Fund for Scientific Research
of Flanders (FWO-Vlaanderen). Werner Uwents is supported by IDO/03/006
‘Development of meaningful predictive models for critical disease’.

References

[1] R. Basilio, G. Zaverucha, and V. C. Barbosa. Learning logic programs with neural
networks. In Proceedings of the Eleventh International Conference on Inductive
Logic Programming, Lecture Notes in Artificial Intelligence. Springer-Verlag, 2001.

[2] H. Blockeel and M. Bruynooghe. Aggregation versus selection bias, and relational
neural networks. In IJCAI-2003 Workshop on Learning Statistical Models from
Relational Data, SRL-2003, Acapulco, Mezico, August 11, 2003, 2003.

3]

JEIE

(14]

(15]

Classifying Relational Data with Neural Networks 395

M. Botta, A. Giordana, and R. Piola. Fonn: Combining first order logic with
connectionist learning. In Proceedings of the 14th International Conference on
Machine Learning, pages 46-56. Morgan Kaufmann, 1997.

L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

L. De Raedt. Attribute-value learning versus inductive logic programming: the
missing links (extended abstract). In D. Page, editor, Proceedings of the Eighth
International Conference on Inductive Logic Programming, volume 1446 of Lecture
Notes in Artificial Intelligence, pages 1-8. Springer-Verlag, 1998.

T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple-
instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1-2):31—
71, 1997.

S. Dzeroski, S. Schulze-Kremer, K. R. Heidtke, K. Siems, D. Wettschereck, and
H. Blockeel. Diterpene structure elucidation from *C NMR spectra with inductive
logic programming. Applied Artificial Intelligence, 12(5):363-384, July-August
1998.

P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive process-
ing of data structures. IEEE-NN, 9(5):768-786, September 1998.

C. Goller and A. Kiichler. Learning task-dependent distributed representations
by backpropagation through structure. In Proceedings of the IEEE International
Conference on Neural Networks (ICNN-96), pages 347-352, 1996.

M. I. Jordan. Attractor dynamics and parallelism in a connectionist sequential
machine. In Proceedings of the Fighth Annual Conference on Cognitive Science,
pages 531-546, 1986.

A. Knobbe, A. Siebes, and B. Marseille. Involving aggregate functions in multi-
relational search. In Principles of Data Mining and Knowledge Discovery, Pro-
ceedings of the 6th European Conference, pages 287-298. Springer-Verlag, August
2002.

M.-A. Krogel and S. Wrobel. Transformation-based learning using multi-relational
aggregation. In Proceedings of the Eleventh International Conference on Inductive
Logic Programming, pages 142-155, 2001.

M.-A. Krogel and S. Wrobel. Facets of aggregation approaches to propositional-
ization. In T. Horvath and A. Yamamoto, editors, Proceedings of the Work-in-
Progress Track at the 13th International Conference on Inductive Logic Program-
ming, pages 30-39, 2003.

C. Merz and P. Murphy. UCI repository of machine learning databases
[http://www.ics.uci.edu/ "mlearn/mlrepository.html], 1996. Irvine, CA: Uni-
versity of California, Department of Information and Computer Science.

D. Michie, S. Muggleton, D. Page, and A. Srinivasan. To the international comput-
ing community: A new east-west challenge. Technical report, Oxford University
Computing Laboratory, Oxford, UK, 1994. Available at ftp.comlab.ox.ac.uk.

C. Perlich and F. Provost. Aggregation-based feature invention and relational con-
cept classes. In Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 167-176. ACM Press, 2003.

J. Ramon and L. De Raedt. Multi instance neural networks. In Proceedings of
the ICML-Workshop on Attribute-Value and Relational Learning, 2000.

A. Sperduti and A. Starita. Supervised neural networks for the classification of
structures. IEEE Transactions on Neural Networks, 8(3):714-735, May 1997.

A. Srinivasan, R. King, and D. Bristol. An assessment of ILP-assisted models
for toxicology and the PTE-3 experiment. In Proceedings of the Ninth Interna-
tional Workshop on Inductive Logic Programming, volume 1634 of Lecture Notes
in Artificial Intelligence, pages 291-302. Springer-Verlag, 1999.

396 W. Uwents and H. Blockeel

[20] C. Vens, A. Van Assche, H. Blockeel, and S. Dzeroski. First order random forests
with complex aggregates. In R. Camacho, R. King, and A. Srinivasan, editors,
Proceedings of the 14th International Conference on Inductive Logic Programming,
pages 323-340. Springer, 2004.

[21] P. J. Werbos. Back propagation through time: What it does and how to do it. In
Proceedings of the IEEE, volume 78, pages 1550-1560, 1990.

	Introduction
	Aggregation Versus Selection
	The Structure of Relational Neural Networks
	Training
	Experiments
	Musk
	Trains
	Mutagenesis
	Diterpenes
	Experimental Conclusions

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

