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The success of Answer Set Programming (ASP) has been greatly enhanced by the availability of highly
efficient ASP-solvers [1, 5, 8, 10]. But, more complex applications with their significantly larger search
spaces are requiring computationally more powerful search engines. Distributing parts of the search space
among cooperating sequential solvers performing independent searches can provide increased computa-
tional power. Our approach to distributed answer set solving differs in philosophy from other pioneering
work in distributed answer set solving [3, 9], by accommodating in a single design a variety of architec-
tures for distributing the search for answer sets over different processes. Concentrating on the stack-based
architecture of the well-known DPLL-based ASP solvers, the resulting platform, platypus, permits a
reasonably straightforward way to connect platypus’s different types of inter- and intra-process distri-
bution techniques (like MPI [7], Unix’ fork mechanism, and multi-threading) to the ASP’s solver via its
API, thereby allowing one to exploit the increased computational power of clustered and/or multi-processor
machines seamlessly with only a small amount of programming effort. In addition, the generic approach
permits a flexible instantiation of all parts of the design.

The PLATYPUS design incorporates two distinguishing features: First, it modularises (and is thus inde-
pendent of) the DPLL-style propagation engine. Currently, we have successfully integrated smodels’[10]
and nomore++’ [1] expansion procedures with platypus. Second, the search space is represented explic-
itly. This representation allows a flexible distribution scheme to be incorporated, thereby accommodating
different distribution policies and architectures. At this time, we have incorporated three assignment-based
distribution policies and one randomized yet complete distribution policy (called probing), and three archi-
tectures: MPI, forking, and multi-threading.

We observe that the search strategies of most current answer set solvers naturally decompose into a
deterministic and a non-deterministic part, borrowing from the well-known DPLL satisfiability checking
algorithm [2]. While the non-deterministic part is usually realized through heuristically driven choice oper-
ations, the deterministic one is normally based on advanced propagation operations, often amounting to the
computation of Fitting’s [4] or well-founded semantics [11]. Roughly, the idea is: starting with an empty
(partial) assignment of truth values to atoms, successively apply propagation and choice operations, gradu-
ally extending a partial assignment, until finally a total assignment, expressing an answer set, is obtained. A
partial assignment is represented as a pair (X, Y ) of sets of atoms, in which X and Y contain those atoms
assigned true and false, respectively.

Now, we present the major features of the PLATYPUS approach [6]. To enable a distributed search for
answer sets, the search space is decomposed by means of partial assignments. This method works because
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Algorithm 1: PLATYPUS

Global : A logic program Π over alphabet A.
Input : A nonempty set S of partial assignments.
Output: Print a subset of the answer sets of Π.

repeat
(X, Y ) ← CHOOSE(S )1

S ← S \ {(X, Y )}2

(X ′, Y ′) ← EXPAND((X, Y ))3

if X ′ ∩ Y ′ = ∅ then4

if X ′ ∪ Y ′ = A then print X ′ else5

A ← CHOOSE(A \ (X ′ ∪ Y ′))6

S ← S ∪ { (X ′ ∪ {A}, Y ′), (X ′, Y ′ ∪ {A}) }7

S ← DELEGATE(S )8

until S = ∅

partial assignments that differ with respect to defined atoms represent different parts of the search space. To
this end, Algorithm 1 is based on an explicit representation of the search space in terms of a set S of partial
assignments, on which it iterates until S becomes empty. The algorithm relies on the omnipresence of a
logic program Π and its alphabet A as global parameters. Communication between PLATYPUS instances
is limited to delegating partial assignments as representatives of parts of the search space. The set of par-
tial assignments provided in the input variable S delineates the search space given to a specific instance of
PLATYPUS. Although this explicit representation offers an extremely flexible access to the search space,
it must be handled with care since it grows exponentially in the worst case. Without Line 8, Algorithm 1
computes all answer sets extending the partial assignments given as input. With Line 8 each PLATYPUS

instance generates a subset of the answer sets. CHOOSE and DELEGATE are in principle non-deterministic
selection functions: CHOOSE yields a single element, DELEGATE communicates a subset of S to a PLATY-
PUS instance and returns a subset of S . Clearly, depending on what these subsets are, this algorithm is
subject to incomplete and redundant search behaviours. The EXPAND function hosts the deterministic part
of Algorithm 1. This function is meant to be implemented with an off-the-shelf ASP-expander that provides
both sufficiently strong as well as efficient propagation operations. The ASP-expander is used as a grey-box.
Program communication is only through the API, but having some knowledge of the inner workings of the
expander can benefit some design decisions.

We now turn to specific design issues beyond the generic description of Algorithm 1. To reduce the size
of partial assignments and thus that of passed messages, we follow [9] in representing partial assignments
only by propositions1 whose truth values were assigned by choice operations (cf. atom A in Lines 6 and 7).
Given assignment (X, Y ) with its subsets Xc ⊆ X and Yc ⊆ Y of atoms assigned by a choice operation,
we have (X, Y ) = EXPAND((Xc, Yc)). Consequently, the expansion of assignment (X, Y ) to (X ′, Y ′) in
Line 3 does not affect the representation of the search space in S .2 Furthermore, the design includes the
option of using a choice proposed by the EXPAND component for implementing Line 6. Additionally, the
currently used expanders, smodels and nomore++, also supply a polarity for the choice point, indicating
a preference for assigning true or false first.

Each platypus process has an explicit representation of its (part of the) search space in its variable
1Assignments are not restricted to atoms, as used when using nomore++.
2Accordingly, the tests in Lines 4 and 5 must be handled with care; see [6].
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S . This set of partial assignments is implemented as a tree. Whenever more convenient, we describe S
in terms of a set of assignments or a search tree and its branches. In contrast to stack-based ASP-solvers,
like smodels or nomore++, whose search space contains a single branch at a time, this tree normally
contains several independent branches. The active partial assignment (or branch) selected in Line 1, is the
one being currently treated by the expander. The state of the expander is characterised by the contents of its
stack, which corresponds to the active branch in the search tree. While the stack contains the full assignment
(X, Y ), the search tree’s active branch only contains the pair of subsets (Xc, Yc).

When looking at all benchmarks in all experiments that we have run, the multi-threading, forking, and
MPI distribution techniques show a qualitatively consistent 2-, 3-, and 4-times speed-up when doubling,
tripling, and quadrupling the number of processors, with only minor exceptions. The more substantial is the
benchmark, the more clear-cut becomes the speed-up.

When we weight the speed-ups by the average speed-ups with respect to average running times, we
have observed a slightly super-linear speed-up. We ascribe such super-linear speed-ups, observed primarily
on time-demanding benchmarks, to caching and/or shared memory effects. Finally, we note a small 2%
performance degradation caused by the overhead of using the multi-threaded core.
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