A declarative query language for statistical
inference

Gitte Vanwinckelen, Hendrik Blockeel
Department of Computer Science, KU Leuven, Belgium

1 Introduction

Large volumes of experimental data are generated each day in computational
sciences such as bioinformatics, chemistry, and physics. Statistical analyses are
no longer only restricted to statisticians, but are increasingly being performed
by non-experts [8]. The process is not only labor-intensive but also error-prone.
Statistics provides us with a plethora of data analysis and inference methods,
making it practically impossible for a scientist to have full knowledge of the
existing methods and statistical assumptions that have to be satisfied to apply
them. Scientists are often even unaware when a statistical assumption is violated.

We propose to tackle these problems with a formal declarative language in
which experimental questions, and the necessary background information, can
be formulated. A scientist could then formulate a hypothesis as a query, after
which the remainder of the experimental process is performed automatically.
This approach allows a scientist to focus on a correct understanding of high
level concepts from statistics rather than technical details.

To clarify our goal, we start by comparing this idea to those underlying
existing systems. Next, we propose a preliminary design of the language by
looking into one specific task, namely, the computation of a confidence interval
for the population mean of a random variable.

2 Related work

A great amount of software exists for machine learning and statistics, e.g., Weka
and R. These packages require a thorough understanding of statistics to per-
form meaningful inferences. For instance, they will not give a warning if a user
performs a hypothesis test on a sample that is too small to get useful results.
Statistical expert systems aim to remedy these problems by giving advice on
the design and analysis of an experiment [5]. While they have the same goal as
our declarative experimentation system, the implementation differs. Statistical
expert systems are often based on interaction with natural language yes/no
questions, and the control system is typically implemented with IF' THEN rules.
Our solution, on the contrary, allows the user to formulate a query in a formal
declarative language together with the necessary constraints and assumptions.
A database is used to perform statistical inference and answer the query.
While our system is database oriented, it is different from a statistical database
system. Such a system allows the user to perform statistical analyses on a
database by computing statistical aggregates, but it disallows access to indi-
vidual records. Research in this area focuses mostly on data anonymization [2].

Also related are probabilistic databases, which represent uncertainty in the
database [4]. It should be noted that our approach is not concerned with uncer-
tainty in the database itself. We assume a given deterministic database that is
seen as a sample from a population, and want to query that population, not the
database itself. This crucially sets apart the two approaches.

An idea that is more closely related, is the construction of probabilistic mod-
els from a relational database by Singh and Graepel [9]; these models then de-
scribe the population that the database is a sample from. Methods such as this
one will play a role in any implementation of our approach. We here focus, how-
ever, on creating a language and execution mechanism that supports a general
type of queries, thus offering flexibility and ease of use to the user.

Lastly, our system is related to inductive database systems, which aim to
integrate data mining and machine learning into database management systems
[6]. They allow for users to query a database for patterns by formulating ques-
tions in a declarative language rather than running a predefined algorithm. An
inductive database system for constraint based clustering was recently proposed
by Adam and Blockeel [1]. While inductive database systems focus on inference
with machine learning models, our focus is on statistical inference.

3 Query language design

The language requirements can be looked at from two viewpoints. From the
statistical viewpoint, we want to formulate queries in a declarative manner to
shield the user from low level choices, e.g., the choice of the method to
compute a confidence interval for a population parameter. From the database
viewpoint, our query language is based on SQL, but we want to query
statistical populations, instead of a finite database. We illustrate the language
design by introducing and explaining the ‘ESTIMATE’ statement.

(ExpQL) = ESTIMATE (population_statistic)
FROM (sample)
[WHERE (condition) |
[ENSURING (statistical_accuracy)]

(population_statistic) ::= PROP (data) | MEAN (data)
(statistical_accuracy) ::= CONF (confidence)

The population parameter that we want to estimate is given by (population_statistic).
(sample) is the data that we have available to estimate the population pa-
rameter. It is a database table that has an attribute-value structure. With the
WHERE (condition) clause we can specify a subpopulation. The ENSURING
(statistical_accuracy) clause imposes constraints on the population parameter
estimator. For now, we focus on confidence intervals, and the constraints can
apply to the confidence level, the width, or a combination of both.

4 Query execution

We illustrate the query execution with an example. Consider a database table
employee that contains employees of a multinational corporation. Each record

consists of the following properties: Id, name, length, gender, nationality, and
hair color. We are interested in a 95% confidence interval with a maximum width
of 5cm for the expected length of all Swedish male employees with blond hair:

ESTIMATE MEAN length

FROM employee

WHERE gender= ‘male’ AND nationality=‘Swedish’ AND haircolor=‘blond’
ENSURING CONF=0.95 AND WIDTH <= 5;

If a user specifies both a confidence level and a maximum width, this puts a
constraint on the minimum size of the sample. If the sample is too small, we
propose two alternative execution strategies to still answer the query.

First, it may be possible to couple the query system to a data generator, and
use active learning to generate the necessary data. The data generator may be
an actual physical experimentation system. An existing example is the Robot
Scientist, which combines physical execution with active learning and automated
hypothesis generation [7]. If this is not possible, the system can notify the user
about the shortage of data, and request him or her to collect more data. It
can still assist the user with the data collection, for instance, by computing the
minimum number of samples needed.

Second, we can try to incorporate more data in an intelligent manner by
relaxing the constraints. In our example query, the user assumes length is de-
pendent on hair color, gender, and nationality, but perhaps one or more of these
dependencies is very weak. For instance, some relationship exists between hair
color and length; Scandinavians are on average taller than South Europeans, and
are also blond more often. However, it is unclear if this relationship still holds for
Swedish men only. If we know hair color and length are independent for Swedish
men, we can remove the condition for blond hair and take into account men of
any hair color to compute the confidence interval for the mean length.

To apply this approach, we need a method to detect independence between
two variables. Many different tests are known for this purpose: The Chi-square
test, the Student t-test, etc. Which should be used depends on the types of
variables, i.e, categorical or continuous, and their distributions.

In our preliminary experiments on data collected from the UCI repository [3],
we investigate constructing a confidence interval for the mean of a continuous
variable, which is dependent on a binary variable. A first approach is to test for
independence with a t-test that tests for the difference between the means of
two independent samples. However, one should be careful with null hypothesis
testing. If the null hypothesis is not rejected we have not proven it, instead have
insufficient evidence to disprove it. An alternative procedure, which we are still
looking into, that does not suffer from this problem is equivalence testing [10].

There is a probability that the test will not detect dependence. This will
cause a discrepancy between the imposed confidence level from the query, and
the true confidence level. To still provide the user with a correct answer, we aim
to quantify this difference.o Our experiments are a first step towards this goal.

The experiments indicate that when a t-test does not detect a difference be-
tween the two means for different values of the binary variable, we can safely

include the extra data to compute the confidence interval. Because of the addi-
tional data, the interval width decreases and this helps us provide a confidence
interval with both the required confidence level and maximum width. When the
t-test does detect a difference between the means, however, the confidence level is
significantly smaller than the requested level, so the approach is not applicable.

5 Conclusion

We presented preliminary ideas on the design of an experimentation system that
consists of a declarative language and an inference engine. The language would
allow to formulate a hypothesis about a data population, whereafter the infer-
ence engine automatically provides an answer, based on a limited sample,. In
a first stage of this research we introduced the ESTIMATE statement that can
be used to formulate a query about a population statistic. We focused on the
computation of a confidence interval for the population mean. The system is
responsible for choosing the appropriate execution strategy to satisfy the re-
quested confidence level and width. To this purpose, we proposed two different
approaches; supplementing the database with new data, or attempting to relax
some of the constraints that the user imposed on the data.

We plan to extend this work with additional queries in order to arrive at a
complete the language. Our focus lies on queries relevant to machine learning
researchers. Furthermore, while the preliminary language design is based on
SQL, we also plan to investigate probabilistic logic programming languages (e.g.,
Problog), and first order knowledge representation languages (e.g., FO(.)).

References

1. A. Adam and H. Blockeel. A query language for constraint-based clustering. Bene-
learn, pages 1-7, 2013.

2. N.R. Adam and J.C. Worthmann. Security-control methods for statistical
databases: a comparative study. ACM Computing Surveys, 21(4):515-556, 1989.

3. K. Bache and M. Lichman. UCI repository. http://archive.ics.uci.edu/ml, 2013.

4. N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt.
Communications of the ACM, 52(7):86-94, July 2009.

5. D.J. Hand. Expert systems in statistics. The Knowledge Engineering Review,
1:2-10, 1984.

6. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Communications of the ACM, 39(11):58-64, 1996.

7. R. King, M. Young, A. Clare, K. Whelan, and J.J. Rowland. The robot scientist
project. In Discovery Science, pages 16-25, 2005.

8. J. Leek. The vast majority of statistical analysis is not performed by statis-
ticians. http://simplystatistics.org/2013/06/14 /the-vast-majority-of-statistical-
analysis-is-not-performed-by-statisticians/, 2013. Accessed: 2013-06-24.

9. S. Singh and T. Graepel. Compiling relational database schemata into probabilistic
graphical models. In Neural Information Processing Systems (NIPS), Workshop
on Probabilistic Programming, 2012.

10. D. L. Streiner. Unicorns do exist: a tutorial on ”proving” the null hypothesis. In A
guide to the statistically perplexed:selected readings for clinical researchers, pages
211-223. University of Toronto Press, 2013.

