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Tias Guns (KU Leuven, BE)

Program Committee

Hendrik Blockeel
Jean-Francois Boulicaut
James Cussens
Saso Dzeroski
Elisa Fromont
Noah Goodman
Kristian Kersting
Lars Kotthoff
Nadjib Lazaar
Yuri Malitsky
Mirco Nanni
Barry O’Sullivan
Sergei O. Kuznetsov
Dino Pedreschi
Jean-Marc Petit
Avi Pfeffer
Salvatore Ruggieri
Lakhdar Sais
Sameer Singh
Arnaud Soulet
Guy Van Den Broeck
Christel Vrain



Preface

Research in Data Mining and Machine Learning has progressed significantly in the last
decades, through the development of advanced algorithms and techniques. In the past
few years there has been a growing attention to the development of languages for use in
data mining and machine learning. Such languages provide common buildings blocks
and abstractions, and can provide an alternative interface to advanced algorithms and
systems that can greatly increase the utility of such systems.

Goals The workshop aims to bring together researchers and stimulate discussions on
languages for data mining and machine learning. Its main motivation is the believe that
designing generic and declarative modeling languages for data mining and machine
learning, together with efficient solving techniques, is an attractive direction that can
boost scientific progress.

Program We received 16 paper submissions among which we accepted 6 for long
presentation and 3 for short presentation.

Additionally, two papers were additionally accepted for short presentation in the
special oral-only track (not included in these proceedings):

– A query language for constraint-based clustering
Antoine Adam and Hendrik Blockeel

– ParaMiner: A generic pattern mining algorithm for multi-core architectures
Benjamin Negrevergne, Alexandre Termier, Marie-Christine Rousset and Jean-François
Méhaut

The program also includes the following invited talk:

– Dino Pedreschi (Università di Pisa):
On mobility mining query languages

Website The website of the workshop contains all individual papers and links to the
webpages corresponding to the papers when available:

– http://dtai.cs.kuleuven.be/lml/

http://dtai.cs.kuleuven.be/lml/
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Abstract. Bridging data analysis techniques with classic query processing has
long been of interest in the database community. Most approaches, however, are
usually developed with a specific domain in mind, e.g. relational, streaming etc.,
use their own query language, or focus on specific techniques. In this paper, we
propose a simple, yet effective, extension to standard or commonly used declar-
ative processing languages to support data mining. Our approach is independent
of a particular domain, and by utilizing a query refactoring technique, optimiza-
tion issues are taken care of by the underlying query processing engine, which
is already in place and knows best the setting’s particularities. Therefore, our ap-
proach promotes ease of programmability, development, and use of the data min-
ing techniques, with minimal modifications in the query processing stack. We
demonstrate our technique through an experimental evaluation, using our proto-
type system SNEE-A, that runs in-network data analysis given a sensor network
deployment, a setting with several critical constraints.

1 Introduction

Bridging classic query processing with data analysis and mining techniques has long
been of interest in the database community [15, 17, 24, 27]. Following the widespread
attention that data streams and sensor networks have received in the past few years, due
to their potential benefits, e.g., environmental monitoring, automated facility control
etc., several approaches have been proposed [21, 29, 32]. The main advantages are an
in-place infrastructure, and a higher ease of programmabing data mining techniques.

However, such approaches typically suffer from the following shortcomings: i) they
propose their unique query language, ii) focus on specific algorithms, and iii) are de-
veloped having a single domain in mind. Most rely on User Defined Functions (UDFs),
which have been generally criticized for being “black-boxes” and not optimization-
friendly [12, 23]. Sub-optimal plans, however, impact differently one domain from the
other, making these techniques unfit to port between domains. Sensor networks, for
instance, are constrained on resources, face a distributed setting and dynamic environ-
ment, and are substantially different from a relational database setting. A poor execution
plan that runs in a relational database simply increases running time of the query, leav-
ing the user to wait. On the contrary, a poor plan destined to run in a sensor network



could completely drain nodes from their energy and render the network useless. There-
fore, it is important to optimize the code for each setting of application, but doing so
manually is error prone and requires significant technical effort.

To successfully integrate query processing and data analysis, we identify the fol-
lowing desiderata:

i) The primary objective is to support data analysis and mining tasks, such as cluster-
ing, classification, outlier detection, etc., in a consistent way across domains, e.g.
relational databases, distributed databases, or streaming sensor networks.

ii) Efficiency is still a major concern, although its definition is highly dependent on the
domain. For instance, relational databases are interested in reducing response time,
whereas for a sensor network energy consumption is a first-class citizen.

iii) Ease of programmability and development of data analysis techniques is an addi-
tional goal, as it increases a programmer’s productivity. Note that the integration of
new techniques needs to satisfy the efficiency constraint we mentioned above.

iv) Maximize adoption and ease of use by the end-users.

To address these concerns, in this paper we propose an approach that allows users
to express data mining tasks through a high-level declarative language, e.g. SQL. Our
contributions in this paper can be summarized as follows:

i) We give an approach to define and execute data analysis techniques using declar-
ative queries. The main advantages are speed in development and deployment, a
simple syntax and a system that takes care of correctness implications.

ii) We conceptualize data analysis techniques as intensional extents, i.e. sources whose
data do not have to be acquired or stored, as opposed to extensional ones, and derive
a flexible framework where we can combine these two types within the same query.

iii) We propose a query refactoring approach, motivated by the idea that several data
mining algorithms can be expressed as algebraic operators. Therefore, unlike UDFs,
we can leverage the optimizers that query processing engines already have.
We showcase our approach through two entirely different data analysis techniques,

applied in the in-network setting and provide experimental evidence of our prototype
system SNEE-A, a sensor network query processing engine that supports data mining
using the discussed methodology. Our example techniques are:
Online correlation: If we know there is a correlation between the values of two mea-
sured variables, e.g. temperature and humidity, is it possible to predict humidity know-
ing only temperature readings and can this be done efficiently?
Outlier detection: Given a sensor network deployment that measures humidity and tem-
perature, we want to be informed of anomalies in readings.

The rest of the paper is organized as follows: Section 2 discusses related work.
Section 3 shows the necessary language extensions to integrate data analysis with stan-
dard query processing, whereas Section 4 the needed modifications to the query engine.
Experiments are in Section 5, and Section 6 concludes the paper.

2 Related Work

We first focus on general approaches that bring together data mining tasks and classic
query processing, and then focus in more specific approaches for the in-network setting,
as our application domain is such.



Unifying query execution engines with data mining techniques under a common
query language has been a research topic since the mid 1990s. Support for association
rule mining [15, 17, 26] and classification [24, 27] at the language level has been exam-
ined. These approaches, however, were developed for the relational setting and were
too narrow on their supported algorithms. For example, both classification techniques
dealt with decision trees. More importantly, though, they all employ UDFs to achieve
their goals. UDFs have long been critized as effectively being “black boxes” and not
optimization-friendly [12, 23]. However, the impact of non-optimizable query opera-
tors may largely vary from setting to setting. For instance, a poor execution plan in the
relational setting results in longer execution times and lower user satisfaction. On the
other hand, poor optimization for in-network processing is detrimental, because it can
drain node energy very quickly, rendering the sensor network practically useless.

The work in [25] employs SQL queries to perform K-Means clustering through the
use of triggers and vendor-specific SQL scripting extensions. However, the objective of
that work is not to integrate data mining with a query language, but rather to use (rela-
tional) database technologies to perform K-Means clustering. Also note that the utilities
used therein (i.e., triggers) operate differently in relational and streaming environments.

Moreover, when moving from the classic relational domain to more complex ones,
e.g. streaming environments, the declarative language itself is constrained in expres-
siveness. To overcome this, most proposed systems and techniques introduced their own
declarative query language, which is usually an SQL variation for that setting, such as
CQL [7] (Continuous Query Language) and variants [18], ACQP (Acquisitional Query
Processing) [22] and SNEEql [9] (SNEE query language). ESL, proposed in [21], em-
ploys User Defined Aggregates (UDAs), a subset of UDFs, thereby inheriting their
drawbacks. These languages, however, for the most part, do not focus on data analysis
and mining support. MMDL [29], an ESL extension, is a step forward in this direc-
tion for the streaming setting. However, as pointed out in [32], memory requirements
of UDAs (therefore ESL and MMDL) cannot be clearly estimated from their syntactic
structure, which does not fit well the resource-limited sensor network setting.

We now briefly discuss query execution engines for sensor network, as our appli-
cation domain of choice is such. Typically, there are two lines of work in this area: i)
Gather all sensed data to a central node, the sink and perform operations in a central-
ized environment or ii) view the network as a distributed processing query engine, and
(partially or entirely) evaluate queries in-network.

Systems that fall under this category include STREAM (Stanford Stream Data Man-
ager) [6], Aurora [2], Borealis [1], TelegraphCQ [20] and the more recent SMM (Stream
Mill Miner) [29]. SMM is the only one among them to target specifically at data mining
support. It uses UDAs, thus inheriting their drawbacks which we already discussed.

Works under the second category include the Cougar project [34], which introduced
database concepts in sensor networks, as well as some in-network aggregation. Madden
et al. developed one of the most well-known in-network query processing frameworks,
TinyDB [22]. Sensor readings are represented by a relational table, optimization is lim-
ited to operator reordering and the same load is distributed among the nodes in the par-
ticipating set, disregarding their position in the network topology. Despite their novelty
in in-network query processing, none of them considers data mining tasks.



SNEE (Sensor NEtwork Engine) [13], is a sensor network query execution engine,
optimizing queries submitted in a declarative language, SNEEql. SNEE considers mul-
tiple parameters that affect network efficiency, e.g. network topology, node availability,
energy consumption of operators. By default, SNEE optimizes node power consump-
tion, and maximizes network longevity. Quality of service requirements may also be
imposed (e.g. delivery constraints), which effectively alter the optimization goal.

A hybrid approach is adopted by the recently presented AnduIN [18]. AnduIN uses
a declarative, streaming language variant and supports data analysis techniques through
UDFs at the query level. Another difference is that we model data analysis as algebraic
operators and leverage the execution engine’s optimizer, whereas AnduIN uses UDFs
and evaluates code performance offline, through simulations.

Regarding in- and out of network custom data analysis and mining techniques, there
is a large body of literature [4], not to mention for classic settings. However, these are
stand alone solutions and not integrated with a query processing engine, which we aim
for. It has also been discussed that they sometimes contradict established notions of
relational databases [11], let alone streaming environments. Furthermore, in these cases,
optimization issues are a responsibility of the algorithm’s designer, despite the existence
of optimizers in the processing engines, which we would like to take advantage of.

3 In-Network Data Analysis with a Declarative Language
Towards fulfilling our goals, we follow a holistic methodology that involves:
a) extending the declarative language appropriately, so that data analysis techniques

are supported at the query language level.
b) implementing them as extensions to the query optimization stack, building on the

contribution that they can be denoted by intensional extents.

For ease of discussion, we will use SNEE and SNEEql [9] as the query execution
engine and language respectively. We chose SNEE due to its well-defined and modular
query optimization stack, that extends the classical two-phase optimization approach
from distributed query processing [19], as well as for the various optimization goals it
supports. SNEEql is a declarative query language for sensor networks inspired by ex-
pressive classical stream query languages such as CQL [7]. Nevertheless, we stress that
our findings apply in similar approaches where declarative languages are applicable.

3.1 Extending SNEEql
To support data analysis tasks at the declarative level, we manipulate them as any other
extensional extent (i.e. relation, stream), leaving the query language syntax intact. As
a distinction, We refer to them as intensional extents, i.e. sources of information for
which it is not necessary that their tuples are acquired or stored.

Users create data analysis and mining tasks through CREATE statements, like cre-
ating a view in relational databases, which alters SNEE’s metadata to accommodate
the new extent. To support this functionality, we extend SNEEql’s data definition lan-
guage (DDL), utilizing a hierarchical decomposition of data analysis categories and
their techniques. Figure 1 shows the updated DDL syntax. Tokens in bold are reserved
terms, while the rest are replaced by the corresponding rule. Unmatched tokens refer to
specific algorithms and their respective parameters, e.g. the value k for k-Means.



DDLIntExtent ::= createClause fromClause;
createClause ::= CREATE dattype [ datsubtype, datparams ] identifier
fromClause ::= FROM ( fromItem )
dattype ::= CLASSIFIER | CLUSTER | SAMPLE |

ASSOCIATION_RULE | OUTLIER_DETECTION |
PROBFN | VIEW

datsubtype ::= linearRegression | knn | d3 | kmeans | ...
datparams ::= paramListItem, dataparams | paramListItem
identifier ::= Any valid identifier
fromItem ::= Either an extent in the schema, or a sub-query

Fig. 1. Syntax for Defining an Intensional Extent.

Schema:
AmazonForest:stream (id:int, time:ts, temperature:float)
TropicalForestData:stream (id:int, time:ts, temperature:float, humidity:float)

Fig. 2. Example schema of two streams expressed in SNEEql.

3.2 Online correlation

Assume, for instance, the two extensional stream extents of Fig. 2, one for the amazon
forest that reports temperature values, and a more general tropical forest stream that
reports temperatures and humidity values.

Figure 3 shows the creation of a linear regression classifier over TropicalForestData,
using tuples within a 20 minute window to construct it. We can then use that classifier in
subsequent queries with TropForestLRF as the extent’s name, as shown in Fig. 4. Here
we wish to predict humidity values from the AmazonForest extent given its current
temperature (this is what ‘NOW’ refers to). Incorporating intensional extents in such a
way also has a natural interpretation in terms of query semantics: “Give me the humidity
value of a tuple from (virtual) relation TropForestLRF, for which the temperature is
equal to the current sensed temperature from AmazonForest”. This makes our approach
easy to understand for users who are familiar with SQL but not data analysis techniques.

Conceptually, when an intensional extent variable appears in an equality condition
in the WHERE clause, what happens is akin to variable binding in logic languages, e.g.
Datalog [3], after all necessary semantic checks have successfully completed. Our query
refactoring approach makes extensive use of these value bindings.

Note that TropForestLRF is constantly updated, as it is an intensional extent, built
over the TropicalForestsData stream. As data is acquired from that extent, the classifier
is updated as well. More generally, intensional extents inherit the acquisitional proper-
ties of extensional ones, upon which they are built.

CREATE CLASSIFIER [linearRegression, humidity]
TropForestLRF FROM (

SELECT RSTREAM temperature, humidity
FROM TropicalForestData[FROM NOW-20 MIN TO NOW]

);
Fig. 3. Creating a Linear Regression Classifier.

SELECT RSTREAM AF.temperature, LRF.humidity
FROM TropForestLRF LRF, AmazonForest[NOW] AF
WHERE AF.temperature = LRF.temperature;

Fig. 4. Using the TropForestLRF intensional extent.



CREATE OUTLIER_DETECTION [D3, 5, 0.15] d3od
FROM (

SELECT RSTREAM temperature
FROM AmazonForest[FROM NOW-20 MIN TO NOW]

);

Fig. 5. Creating a D3 outlier detection extent.

SELECT RSTREAM AF.temperature
FROM AmazonForest[NOW] AF, d3od od
WHERE AF.temperature = od.temperature;

Fig. 6. Using the d3od intensional extent.

3.3 Outlier detection
Our approach for enabling in-network processing of data analysis tasks can also handle
more complex constructs, such as the D3 outlier detection algorithm [28]. Detecting
outliers is useful for several reasons, e.g. event indication, identification of faulty hard-
ware, or as a first step to data cleaning.

D3 uses sampling and the Epanechnikov kernel density estimator, to approximate
the distribution of sensed data. It reports data as outliers if they have low probability
to have been drawn from the same underlying distribution that created their (multi-
dimensional) neighboring data. D3 requires two parameters: a neighborhood range and
a probability threshold. Figure 5 shows how to create a D3 intensional extent over the
temperature values of AmazonForest from the last 20 minutes, where range = 5 and
probability = 15%. Figure 6 shows a query using that extent to check whether the
most recent tuple is an outlier. As we can observe from it, intensional extents can also
be part of a self-join query.

4 Query Refactoring
In this section, we present how an existing query execution infrastructure, i.e. SNEE,
can be modified, so that it supports data analysis techniques. When a query is submitted,
we check with SNEE’s metadata whether it contains intensional extents or not. The oc-
currence of an intensional extent triggers its substitution by a templated subplan, which
performs its algorithmic computations. We collectively refer to this process as query
refactoring [31]. In essense, we reformulate an initially posed query into an equivalent
one, that is also expressed in the same declarative language (SNEEql).

This approach has the added advantage that data analysis techniques are no longer
black boxes but can leverage the engine’s optimizer, without altering query semantics.
Query refactoring only affects the parts of the query related to the intensional extent,
leaving the rest intact. To better illustrate the needed modifications, Fig. 7a)-b) show
SNEE’s optimization stack with and without the query refactoring module, respectively.

The output of the query refactoring process depends on the intensional extent used.
This process is transparent to the user, who will simply write the initial query. It follows
that we need not perform any changes to the query language level to support data anal-
ysis in such a way. On the downside, our approach is limited by the expressive power of
SNEEql. Provided that the algorithmic description of a data analysis technique can be
expressed in the query language, it can then be incorporated in our approach easily. We
now demonstrate how query refactoring is applied to the two examples from Section 3.
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analysis techniques.

4.1 Linear Regression
We showcase the use of templated code in query refactoring through a general SNEEql
query with a Linear Regression classifier. Assume an extent LRFSource with attributes
X and Y, as shown in Fig. 8. Attribute X is the independent variable and Y is the depen-
dent one. Values in bold are placeholders for actual extents and attribute names.

Training this classifier is equivalent to computing coefficients (a, b) based on LRF-
Source, i.e., the source over which the extent was created. Moreover, these need to be
appropriately updated as new readings are acquired, as discussed in Section 3. Both of
these goals can be achieved through the templated SNEEql subplan of Fig. 9.

Figure 10 shows a SNEEql query using LRF , where the last argument in the
SELECT clause is the dependent variable of the classifier. The position of both vari-

CREATE CLASSIFIER [linearRegression, Y] LRF
FROM (

SELECT RSTREAM X, Y
FROM LRFSource

);

Fig. 8. Creation of a templated Linear Regression classifier.

SELECT RSTREAM (r.n*r.sxy - r.sx*r.sy) / (r.n*r.sxx - r.sx*r.sx) as a,
(r.sy*r.sxx - r.sx*r.sxy) / (r.n*r.sxx - r.sx*r.sx) as b

FROM (
SELECT RSTREAM COUNT(t.X) as n,

SUM(t.X) as sx, SUM(t.Y) as sy,
SUM(t.X*t.Y) as sxy, SUM(t.X*t.X) as sxx

FROM (
SELECT RSTREAM X, Y
FROM LRFSource

) t
) r;

Fig. 9. Templated subquery for computing (a, b) values



SELECT RSTREAM s1, s2, ..., sn, lri.Y
FROM e1, e2, ..., em, LRF lri
WHERE w1 OP1 w2 OP2 ... OPl−1 wl

Fig. 10. General form of a query using the LRF extent

SELECT RSTREAM s1, s2, ..., sn, lri.a * Z + lri.b
FROM e1, e2, ..., em, (LRF ab) lri
WHERE w1 OP1 w2 OP2 ... OPl−2 wl−1

Fig. 11. General form of a refactored query using Linear Regression

ables is insignificant; it is at the end to ease readability. Projected attributes from other
extents may also appear in the SELECT clause. The OPis in the WHERE clause are
standard boolean operators, e.g., AND, OR, combining boolean expressions (the wis).

Through SNEE’s metadata, we see that LRF is an intensional extent, at which point
query refactoring comes into play. Briefly explained, we need to do the following:

– Locate Z in the WHERE clause, such that lri.X=Z or Z=lri.X. Let us assume that
this is wl in Fig. 10.

– Replace all occurrences of lri.Y with lri.a ∗ Z + lri.b.
– Remove wl from the WHERE clause, as it will not be used anymore.
– LRF becomes a placeholder for the subplan of Fig. 9, and is substituted accordingly.

We briefly refer to it as LRF ab.
Upon completing these steps we obtain the templated form of the refactored query,

shown in Fig. 11. Applying this process to the query in Fig. 4, where TropForestLRF is
the classifier, we obtain the mappings in Table 1. Combined with the above templates,
we obtain both the subplan for computing values (a, b) (Fig. 12), which substitutes
LRF ab, and the overall refactored SNEEql query (Fig. 13). Note that all of these
operators are directly optimizable through the existing infrastructure.

4.2 D3 Outlier Detection
Figure 14 shows the refactored query of the one in Fig. 6. The STDEV operator com-
putes the standard deviation of the temperature tuples in the window specified in the
FROM clause, which was provided when creating the extent. Note that this is just a
convenient way of writing the computation of standard deviation, which can be also
expressed through additional subqueries. Furthermore, this type of notation allows us
to use more efficient, approximate algorithms [8], if we see fit. Recall that, during cre-
ation, the range was set to 5 and the probability threshold to 15%. The range is used to
compute the closed form of the Epanechnikov integral, whereas the probability filters

Table 1. Template variables mapping for the query in Fig. 4.

Template Mapping

LRFSource
SELECT RSTREAM temperature, humidity
FROM TropicalForestsData[FROM NOW-20 MIN TO NOW]

LRF TropForestLRF
X temperature
Y humidity
Z AF.temperature



SELECT RSTREAM AF.temperature, LRF.a * AF.temperature + LRF.b
FROM AmazonForest[NOW] AF, (ab_COMP) LRF;

Fig. 12. Refactored Query of Fig. 4.

SELECT RSTREAM (r.n*r.sxy - r.sx*r.sy) / (r.n*r.sxx - r.sx*r.sx) as a,
(r.sy*r.sxx - r.sx*r.sxy) / (r.n*r.sxx - r.sx*r.sx) as b

FROM (
SELECT RSTREAM COUNT(t.temperature) as n,

SUM(t.temperature) as sx, SUM(t.humidity) as sy,
SUM(t.temperature*t.humidity) as sxy,
SUM(t.temperature*t.temperature) as sxx

FROM (
SELECT RSTREAM temperature, humidity
FROM TropicalForestsData[FROM NOW-20 MIN TO NOW]

) t
) r;

Fig. 13. Subquery of (ab COMP) in Fig. 12

points which are outliers, in the WHERE clause. We have marked the parameters with
bold to distinguish them from the same values used as part of other expressions. We
omit the query operator tree for the D3 refactored query due to space limitations.

4.3 Extensions
Query refactoring is a general technique, that can be applied to all settings with declar-
ative query languages, e.g., relational, streaming, which is another advantage of our
methodology. Nevertheless, expressing data analysis techniques as SNEEql queries is
non-trivial in its own right. The fact that merging classical query processing with data
mining has been an active reasearch topic for many years is indicative of its complex-
ity. Additionally, given that intensional and extensional extents can now be interleaved,
several query refactorings are possible, leaving room for additional optimizations.

Additional extensions include how to efficiently materialize such data mining mod-
els and reuse them. Clearly, this is not always possible. For example, materialization

SELECT RSTREAM od.temperature
FROM (

SELECT x.temperature,
( 1/COUNT(y.temperature) ) * ( (1/4)ˆ1 ) *
SUM( (3 * 2 * 5 / q3.b1) -
( ( (x.temperature - y.temperature + 5) / q3.b1 )ˆ3 -

( (x.temperature - y.temperature - 5) / q3.b1 )ˆ3 ) ) as probability
FROM (

SELECT SQRT(5)*q1.sigma*(q2.rsizeˆ(-1/5)) as b1
FROM (

SELECT STDEV(temperature) as sigma
FROM AmazonForest[FROM NOW-20 MIN TO NOW SLIDE 20 MIN]

) q1,
(

SELECT COUNT(temperature) as rsize
FROM AmazonForest[FROM NOW-20 MIN TO NOW SLIDE 20 MIN]

) q2
) q3,
AmazonForest[now] x, AmazonForest[FROM NOW-20 MIN TO NOW SLIDE 20 MIN] y
WHERE abs( (x.temperature - y.temperature) / q3.b1 ) < 1
GROUP BY x.temperature

) od
WHERE od.probability < 0.15;

Fig. 14. Refactored query of D3 outlier detection algorithm.



is meaningful in a static environment like a relation database, but in a streaming en-
vironment, where the classifier is constantly updated as new data points arrive, such
an alternative may be indifferent. What is interesting in both settings, however, is how
to precompile and save the query operator tree of a data mining task, to subsequently
integrate it in a new query, thus performing incremental optimizations. Such issues fall
outside the scope of this paper but can serve as future research directions.

5 Experimental Evaluation
Efficiency in sensor networks is almost synomymous with energy consumption, which
includes both CPU and radio energy consumption. To gain better insights, we also mea-
sured the number of transmitted messages and bytes. These two aspects are crucial in
determining radio energy consumption. We evaluated all approaches using Avrora [30],
a sensor network simulator, that provides accurate per-node statistics. All sources were
written in nesC 2.0/TinyOS 2.x [14, 16] for MicaZ motes.

We will limit our experimental discussion to linear regression, due to lack of space,
but also as a result of its widespread adoption as a data analysis method. Note, however,
that we obtained similar results for the outlier detection technique (Fig. 22).

We experimented with various topologies and Table 2 summarizes some of their
structural properties. The topologies are not directly comparable as their structural
properties differ. For instance, an 8-node star-like network will behave differently from
an 8-node chain. Because of this, extrapolating the results to other topologies should
be performed with caution. Given a static topology during initialization, we construct
a minimum-hop routing tree rooted at the sink, using one of several existing algo-
rithms [5, 10, 33]. SNEE also uses the topology to find the best query routing tree, and
does so during the routing stage of query optimization (Step 4 in Fig. 7(a)). As such,
we have excluded the cost of building the routing tree from the graphs displayed below.

Given that we apply our method in a streaming setting, we experimented with vari-
ous window, slide and acquisition intervals, and we will be using the following caption
notation in the experimental figures for convenience: W:w, S:s, A:a, to signify them
respectively. Varying the window and slide parameters gave similar results, so we omit
these figures. Experiments were run for 300 seconds of simulated execution time. As
the queries are periodical by nature, we can scale up the results for longer periods.

5.1 Handcrafted Algorithms

We implemented two baselines, both of which perform a depth-first traversal of the
reverse routing tree. The sink is responsible for initiating a new tree traversal, close to
the end of each acquisition interval, so that the result is reported in a timely manner.

Table 2. Structural properties of the topologies used in the experimental evaluation.

Size Avg. Length Max. Length Leaf Nodes Description
4 1.3 2 2 Tree
5 1 1 4 Star
8 2.14 3 3 Tree
9 1.75 3 4 Tree

11 1.7 2 7 Tree
12 2.18 4 6 Tree
20 1.79 4 9 Tree



In our first approach, NAÏVE, the sink probes nodes separately for data one af-
ter the other, receiving and aggregating the tuples. The second one, LC for “Local-
Computation”, traverses the tree and aggregates values in a postordered fashion, where
each node is contacted by its parent only once within an epoch. On the contrary, SNEE
optimizes queries based on a time-strict agenda. This allows nodes to contact each other
at predefined times, using a push-based scheme. SNEE calculates these times by utiliz-
ing the routing tree and its optimization cost models. All approaches are graphically
portrayed in Fig. 15 for a simple 4-node example. Labels denote the sequence in which
node communication occurs, until we obtain the full result.

5.2 In-Network Performance

Radio Communication: Figure 16 shows the average, per-node, number of sent pack-
ets (y-axis) for the various acquisition intervals. On the x-axis, we plot the average
network length, which is a better indicator of how the network is affected, than the
network size. We clearly observe that in practically all cases SNEE-A’s performance is
superior to the handcrafted alternatives, due to its push-based scheme. All approaches
perform similarly when average length is 1, due to the star-shaped topology, where each
node sends directly to the sink. However, as the average network length grows higher,
the difference among the techniques increases. The reason is that SNEE-A exhibits a
steady performance across the topologies, which is expected as each node will send
data only once during a single epoch. On the other hand, the custom techniques require
the transmission of additional (control) messages to probe nodes for data.

The graphs in Fig. 17 show the average number of bytes sent in total by each node.
SNEE-A and LC exhibit a steady behavior across all acquisition intervals, unlike Naı̈ve,
as a result locally aggregating the results. Even so, SNEE-A is still superior to the other
two, due to the control messages that the handcrafted implementations rely on.

We can also see that the type of information to send depends on a combination of
the sensing rate, the window size and the structural properties. For instance, for high
sensing rates (Fig. 17(a) ), it is preferrable to send aggregate information. However, as
the sensing interval increases (Fig. 17(c)), fewer readings are taken during an epoch and
sending the raw data becomes more efficient. Such optimizations are beneficial to a lot
more queries when implemented within a query execution engine.

Radio Energy: Fig. 18 shows the average, minimum and maximum transmission
energy consumption per node, for all techniques, clearly favoring SNEE-A. Given the
push-based model and partial aggregations of SNEE-A, all three values are identical.

(a) Naı̈ve approach (b) LC approach

1

0

2 3

1 2

3

(c) SNEE-A approach
Fig. 15. Example of Linear Regression computation for Naı̈ve, LC and SNEE-A approaches.
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Fig. 16. Average number of sent messages compared to the average network length for LR
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Fig. 17. Average number of sent bytes compared to the average network length for LR
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Fig. 18. Transmission energy consumption compared to the average network length for LR
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Fig. 19. Reception energy consumption compared to the average network length for LR

This is not true for the custom implementations which use control messages, the number
of which is affected by the network’s structural properties. Figure 18 also shows the load
distribution among the nodes, with SNEE-A, distributing it almost evenly.

However, the factor that mostly affects radio energy consumption is the energy con-
sumed while the radio is on waiting for messages, depicted in Fig. 19. The bespoke
techniques have the radio switched on constantly, because it is impractical to manually
compute when nodes will communicate. On the other hand, as a result of its agenda-
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Fig. 20. CPU energy consumption compared to the average network length for LR
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tion(%) to power consumption.
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Fig. 22. Average total energy

average network length for D3.
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consumption compared to the

driven task execution, SNEE-A performs radio management, switching it on and off for
each node independently of the others and achieves better performance.

Therefore, although we aimed for communication optimization as well, i.e., mini-
mize transmission costs, that was not sufficient on its own. This validates our objective
to utilize existing infrastructures and query engine optimizers.

CPU Usage: We finally turn our attention to the CPU consumption of the nodes.
Figure 20 shows how the minimum, average and maximum CPU energy consumption
is affected by the network’s properties. Clearly, CPU follows a trend similar with radio
reception, once again advantaging SNEE-A, for reasons we previously described.

These remarks are backed up by the graph in Fig. 21, showing the percentage with
which the CPU and Radio components contribute to the total energy consumption, with
an emphasis on the energy spent while the mote is idle. Even with SNEE-A’s power
management, the radio remains the dominant factor of consumption. However, the CPU
is idle for proportionately less time compared to Naı̈ve and LC. This implies that with
SNEE-A, we make use of the resources of the node, when they are indeed required.

5.3 Ease of Programmability
One could argue that the handcrafted alternatives are inefficient because they do not use
a push-based scheme. Firstly, as we already showed, most of the energy consumption
is due to the radio being idle, which is a matter of when nodes communicate, rather
than how they do so. Secondly, building manually such a push-based approach or even
computing when nodes should communicate is impractical, as it involves accurate com-
putation of processing and communication times for each node.

On the other hand, building a system or module that provides these accurate tim-
ings basically duplicates what the query engine already does. It is even less practical
to rework this component when moving between settings (e.g., relational, streaming,



distributed etc.). This brings us to another benefit of query refactoring: the time taken to
write – and debug – the handcrafted code. For instance, SNEE-A has a clear advantage
against the handcrafted alternatives, as i) the developer uses high-level (declarative) lan-
guages instead of low-level, and ii) the system autogenerates and deploys code for all
nodes in the network, optimized for the requested goal. Finally, note that if we change
the optimization goal, the bespoke techniques must be re-implemented, whereas for
SNEE-A (and similar execution engines) it is a single parameter.

6 Conclusions and Future Work
In this paper we tackled the problem of integrating data analysis techniques with classic
query processing through declarative languages. We proposed a query language exten-
sion, that incorporates major data mining categories, e.g. classification, outlier detec-
tion etc. We expressed data analysis tasks as intensional extents, and took advantage
of existing query optimizers, with minimal modifications to the query execution stack.
This also gives a natural interpretation in relational algebra terms. We implemented
the above concepts in our prototype system SNEE-A, and compared its performance
against handcrafted implementations.

We plan to incorporate additional techniques, to identify the limits of our approach
and ways to overcome them using the framework we have presented herein. Interesting
future directions include materialization of data mining models and support for incre-
mental optimization.
Acknowledgements: This work has been funded by EU project SemSorGrid4Env (FP7-
223913), INSIGHT and THALIS-DISFER, the UK EPSRC WINES Programme and a
Heraclitus II Fellowship.
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Campus II Côte de Nacre, 14000 Caen - France

2 CERMN (UPRES EA 4258 - FR CNRS 3038 INC3M) – University of Caen
Boulevard Becquerel, 14032 Caen Cedex - France

Abstract. Within the pattern mining area, skypatterns enable to express a user-
preference point of view according to a dominance relation. In this paper, we
deal with the introduction of softness in the skypattern mining problem. First, we
show how softness can provide convenient patterns that would be missed other-
wise. Then, thanks to Constraint Programming, we propose a generic and efficient
method to mine skypatterns as well as soft ones. Finally, we show the relevance
and the effectiveness of our approach through a case study in chemoinformatics.

1 Introduction

Discovering useful patterns from data is an important tool for data analysis and has
been used in a wide range of applications. Many approaches have promoted the use of
constraints to focus on the most promising knowledge according to a potential interest
given by the final user. As the process usually produces a large number of patterns, a
large effort is made to a better understanding of the fragmented information conveyed
by the patterns and to produce pattern sets i.e. sets of patterns satisfying properties on
the whole set of patterns [5].

Skyline queries [3] enable to express a user-preference point of view according to a
dominance relation. In a multidimensional space where a preference is defined for each
dimension, a point pi dominates another point p j if pi is better (i.e., more preferred)
than p j in at least one dimension, and pi is not worse than p j on every other dimension.
However, while this notion of skylines has been extensively developed and researched
for database applications, it has remained unused until recently for data mining purposes.
[17] proposes a technique to extract skyline graphs that maximize two measures (the
number of vertices and the edge connectivity). The notion of skyline queries has been
recently integrated into the constraint-based pattern discovery paradigm to mine skyline
patterns (henceforth called skypatterns) [19]. As an example, a user may prefer a pattern
with a high frequency, large length and a high confidence. In this case, we say that
a pattern xi dominates another pattern x j if f req(x j) ≥ f req(xi), size(x j) ≥ size(xi),
con f idence(x j) ≥ con f idence(xi) where at least one strict inequality holds. Given a
set of patterns, the skypattern set contains the patterns that are not dominated by any
other pattern. Skypatterns are interesting for a twofold reason: they do not require any
threshold on the measures and the notion of dominance provides a global interest with
semantics easily understood by the user.

Nevertheless, skypatterns queries, like other kinds of queries, suffer from the strin-
gent aspect of the constraint-based framework. Indeed, a pattern satisfies or does not



Fig. 1: A skyline example.

satisfy the constraints. But, what about patterns that slightly miss a constraint? The fol-
lowing example shows the interest of introducing softness. This example addresses sky-
lines in databases because it is easier to illustrate the key points of introducing softness
and to give rise the skypattern problem. Skypatterns and soft-skypatterns are formally
introduced in the following sections. There are very few works such as [2, 21] which
introduce softness into the mining process.

Consider a coach of a football team who looks for players for the next season (see
Fig. 1). Every player is depicted according to the number of goals he scored and the
number of assistances he performed during the last season. A point (here, a player) pi
dominates another point p j if pi is better than p j in at least one dimension, and pi is
not worse than p j on every other dimension. A skyline point is a point which is not
dominated by any other point. The skyline set (or skyline for short) consists of players
p1, p2, p3, p4 and p5. Indeed, players p6, p7, p8, p9 and p10 are dominated by at least
one other player, thus they cannot be part of the skyline. Nevertheless, the coach could
be interested in non-skyline players if he looks for:

– players in a forward position: the coach gives the priority to the number of scored
goals. The players p1 (skyline), p2 (skyline) are still interesting and p6 (non-skyline)
and p9 (non-skyline) become interesting.

– players in an attacking midfielder position: the coach gives the priority to the num-
ber of performed assistances. The players p4 (skyline) and p5 (skyline) are still
interesting and p7 (non-skyline) and p8 (non-skyline) become interesting.

– multipurpose players: the coach gives the priority to the trade-off between the num-
ber of scored goals and the number of performed assistances. The players p3 (sky-
line) and p4 (skyline) are still promising and p10 (non-skyline) becomes promising.

Moreover, skyline players are very sought and expensive: they might be signed by
another team or their salaries could be out of budget. So, non-skyline players, that are
close to skyline players, can be of great interest for the coach. Such promising players
can be discovered by slightly relaxing the dominance relation.



Trans. Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

Item A B C D E F
Price 30 40 10 40 70 55

Table 1: Transactional dataset T .

The contributions of this paper are the following. First, we introduce the notion of
soft skypattern. Second, we propose a flexible and efficient approach to mine skypat-
terns as well as soft ones thanks to the Dynamic CSP (Constraint Satisfaction Problems)
framework [22]. Our proposition benefits from the recent progress on cross-fertilization
between data mining and Constraint Programming (CP) [4, 9, 7]. The common point of
all these methods is to model in a declarative way pattern mining as CSP, whose res-
olution provides the complete set of solutions satisfying all the constraints. We show
how the (soft-)skypatterns mining problem can be modeled and solved using dynamic
CSPs. A major advantage of the method is to improve the mining step during the process
thanks to constraints dynamically posted and stemming from the current set of candi-
date skypatterns. Moreover, the declarative side of the CP framework leads to a unified
framework handling softness in the skypattern problem. Finally, the relevance and the
effectiveness of our approach is highlighted through a case study in chemoinformatics
for discovering toxicophores.

This paper is organized as follows. Section 2 presents the context and defines skypat-
terns. Section 3 introduces soft skypatterns. Section 4 presents our flexible and efficient
CP approach to mine skypatterns as well as soft ones. We review some related work
in Section 5. Finally, Section 6 reports in depth a case study in chemoinformatics by
performing both a performance and a qualitative analysis.

2 The skypattern mining problem

2.1 Context and definitions
Let I be a set of distinct literals called items. An itemset (or pattern) is a non-null subset
of I . The language of itemsets corresponds to LI = 2I \ /0. A transactional dataset T
is a multiset of patterns of LI . Each pattern (or transaction) is a database entry. Table 1
(left side) presents a transactional dataset T where each transaction ti gathers articles
described by items denoted A,. . . ,F . The traditional example is a supermarket database
in which each transaction corresponds to a customer and every item in the transaction to
a product bought by the customer. An attribute (price) is associated to each product (see
Table 1, right side).

Constraint-based pattern mining aims at extracting all patterns x of LI satisfying a
query q(x) (conjunction of constraints) which is usually called theory [12]: T h(q)= {x∈
LI | q(x) is true}. A common example is the frequency measure leading to the minimal
frequency constraint. The latter provides patterns x having a number of occurrences in
the dataset exceeding a given minimal threshold min f r: freq(x)≥min f r. There are other
usual measures for a pattern x:

– size(x) is the number of items that x contains.



Fig. 2: Skypatterns extracted from the example in Table 1.

– area(x) = f req(x)× size(x).
– min(x.val) is the smallest value of the item values of x for attribute val.
– max(x.val) is the highest value of the item values of x for attribute val.
– average(x.val) is the average value of the item values of x for attribute val.
– mean(x) = (min(x.val)+max(x.val))/2.

Considering the dataset described in Table 1, we have: freq(BC)=5, size(BC)=2 and
area(BC)=10. Moreover, average(BCD.price)=30 and mean(BCD.price)=25.

In many applications, it is highly appropriated to look for contrasts between sub-
sets of transactions, such as toxic and non toxic molecules in chemoinformatics (see
Section 6). The growth rate is a well-used contrast measure [14].

Definition 1 (Growth rate). Let T be a database partitioned into two subsets D1 and
D2. The growth rate of a pattern x from D2 to D1 is:

mgr(x) =
|D2|× f req(x,D1)

|D1|× f req(x,D2)
Moreover, the user is often interested in discovering richer patterns satisfying prop-

erties involving several local patterns. These patterns define pattern sets [5] or n-ary
patterns [9]. The approach presented in this paper is able to deal with such patterns.

2.2 Skypatterns

Skypatterns have been recently introduced by [19]. Such patterns enable to express a
user-preference point of view according to a dominance relation. Given a set of patterns,
the skypattern set contains the patterns that are not dominated by any other pattern.

Given a set of measures M, if a pattern x j is dominated by another pattern xi accord-
ing to all measures of M, x j is considered as irrelevant. This idea is at the core of the
notion of skypattern.

Definition 2 (Dominance). Given a set of measures M, a pattern xi dominates another
pattern x j with respect to M (denoted by xi �M x j), iff ∀m ∈ M,m(xi) ≥ m(x j) and
∃m ∈M,m(xi)> m(x j).

Consider the example in Table 1 with M={ f req,area}. Pattern BCD dominates pattern
BC because f req(BCD)= f req(BC)=5 and area(BCD)>area(BC). For M={ f req,size,
average}, pattern BDE dominates pattern BCE because f req(BDE)= f req(BCE)=4,
size(BDE)=size(BCE)=3 and average(BDE.price)>average(BCE.price).



Fig. 3: Edge-skypatterns extracted from the example in Table 1.

Definition 3 (Skypattern operator). Given a pattern set P⊆LI and a set of measures
M, a skypattern of P with respect to M is a pattern not dominated in P with respect to
M. The skypattern operator Sky(P,M) returns all the skypatterns of P with respect to M:
Sky(P,M) = {xi ∈ P | 6 ∃x j ∈ P,x j �M xi}.

The skypattern mining problem is thus to evaluate the query Sky(LI ,M). For in-
stance, from the data set in Table 1 and with M={ f req,size}, Sky(LI ,M) = {ABCDEF,
BCDEF,ABCDE,BCDE,BCD,B,E} (see Figure 2). The shaded area is called the for-
bidden area, as it cannot contain any skypattern. The other part is called the dominance
area. The edge of the dominance area (bold line) marks the boundary between these two
zones.

The skypattern mining problem is challenging because of its NP-Completeness.
There are O(2|I |) candidate patterns and a naive enumeration would lead to compute
O(2|I |×|M|) measure values. [19] have proposed an efficient approach taking benefit of
theoretical relationships between pattern condensed representations and skypatterns and
making the process feasible when the pattern condensed representation can be extracted.
Nevertheless, this method can only use a crisp dominance relation.

3 The soft skypattern mining problem
This section presents the introduction of softness in the skypattern mining problem. The
skypatterns suffer from the stringent aspect of the constraint-based framework. In order
to introduce softness in this context, we propose two kinds of soft skypatterns: the edge-
skypatterns that belongs to the edge of the dominance area (see Section 3.1) and the
δ -skypatterns that are close to this edge (see Section 3.2).

The key idea is to strengthen the dominance relation in order to soften the notion
of non dominated patterns. The goal is to capture valuable skypatterns occurring in the
forbidden area.

3.1 Edge-skypatterns

Similarly to skypatterns, edge-skypatterns are defined according to a dominance relation
and a Sky operator. These two notions are reformulated as follows:

Definition 4 (Strict Dominance). Given a set of measures M, a pattern xi strictly dom-
inates a pattern x j with respect to M (denoted by xi�M x j), iff ∀m ∈M, m(xi)>m(x j).



Fig. 4: δ -skypatterns (that are not edge ones) extracted from the example in Table 1.

Definition 5 (Edge-skypattern operator). Given a pattern set P ⊆ LI and a set of
measures M, an edge-skypattern of P, with respect to M, is a pattern not strictly dom-
inated in P, with respect to M. The operator Edge-Sky(P,M) returns all the edge-
skypatterns of P with respect to M: Edge-Sky(P,M) = {xi ∈ P | 6 ∃x j ∈ P,x j�M xi}
Given a set of measures M, the edge-skypattern mining problem is thus to evaluate
the query Edge-Sky(P,M). Fig. 3 depicts the 28=7+(4+8+3+4+2) edge-skypatterns ex-
tracted from the example in Table 1 for M={ f req,size}. Obviously, all edge-skypatterns
belong to the edge of the dominance area, and seven of them are skypatterns (see Fig. 2).

Proposition 1. For two patterns xi and x j, xi�M x j =⇒ xi �M x j. So, for a pattern set
P and a set of measures M, Sky(P,M) ⊆ Edge-Sky(P,M).

3.2 δ -skypatterns

In many cases the user may be interested in skypatterns expressing a trade-off between
the measures. The δ -skypatterns address this issue where δ means a percentage of re-
laxation allowed by the user. Let 0< δ ≤ 1.

Definition 6 (δ -Dominance). Given a set of measures M, a pattern xi δ -dominates an-
other pattern x j w.r.t. M (denoted by xi �δ

M x j), iff ∀m ∈M, (1−δ )×m(xi)> m(x j).

Definition 7 (δ -Skypattern operator). Given a pattern set P⊆LI and a set of mea-
sures M, a δ -skypattern of P with respect to M is a pattern not δ -dominated in P with
respect to M. The δ -skypattern operator δ -Sky(P,M) returns all the δ -skypatterns of P
with respect to M: δ -Sky(P,M) = {xi ∈ P | 6 ∃x j ∈ P : x j �δ

M xi}.
The δ -skypattern mining problem is thus to evaluate the query δ -Sky(P,M). There

are 38 (28+10) δ -skypatterns extracted from the example in Table 1 for M={ f req,size}
and δ=0.25. Fig. 4 only depicts the 10 δ -skypatterns that are not edge-skypatterns. In-
tuitively, the δ -skypatterns are close to the edge of the dominance relation, the value of
δ is the maximal relative distance between a skypattern and this border.

Proposition 2. For two patterns xi and x j, xi �δ
M x j =⇒ xi�M x j. So, for a pattern set

P and a set of measures M, Edge-Sky(P,M) ⊆ δ -Sky(P,M).

To conclude, given a pattern set P ⊆ LI and a set of measures M, the following
inclusions hold: Sky(P,M)⊆ Edge-Sky(P,M)⊆ δ -Sky(P,M).



4 Mining (soft-) skypatterns using CP
This section describes how the skypattern and the soft skypattern mining problems can
be modeled and solved using Dynamic CSP [22]. A major advantage of this approach is
to improve the mining step during the process thanks to constraints dynamically posted
and stemming from the current set of the candidate skypatterns. Each time a solution is
found, we dynamically post a new constraint leading to reduce the search space. This
process stops when we cannot enlarge the forbidden area. Finally, the completeness of
our approach is insured by the completeness of the CP solver. The implementation of our
approach has been carried out in Gecode1 extending the (CP based) pattern extractor
developed by [9].

4.1 CSP and Dynamic CSP

A Constraint Satisfaction Problem (CSP) P=(X ,D ,C ) is defined by:
– a finite set of variables X = {x1,x2, . . . ,xk},
– a domain D , which maps every variable xi ∈X to a finite set of values D(xi),
– a finite set of constraints C .

Algorithm 1 [7] shows how a CSP can be solved using a depth-first search. D and C
denote respectively the current domains and the current set of constraints. In each node
of the search tree, the algorithm branches by assigning values to a variable that is unfixed
(line 7). It backtracks when a violation of constraints is found, i.e. at least one domain
is empty (line 2). The search is further optimized by carefully choosing the variable that
is fixed next (line 5); for instance, heuristics dom/deg selects the variable xi having the
smallest ratio between the size of its current domain and the number of constraints it
occurs. The main concept used to speed-up the search is Filtering (constraint propaga-
tion) (line 1). Filtering reduces the domains of variables such that the domain remains
locally consistent. A solution is obtained (line 9) when each domain D(xi) is reduced to
a singleton and all constraints are satisfied.

Algorithm 1: Constraint-Search(D,C)
D← propagate(D,C);1

if there exists xi ∈X s.t. D(xi) is empty then2

return failure;3

if there exists xi ∈X s.t. |D(xi)|> 1 then4

Select xi ∈X s.t. |D(xi)|> 1;5

forall v ∈ D(xi) do6

Constraint-Search(D∪{xi−> {v}});7

else8

output solution D;9

A Dynamic CSP [22] is a sequence P1,P2, ...,Pn of CSP, each one resulting from
some changes in the definition of the previous one. These changes may affect every
component in the problem definition: variables (addings or removals), domains (value
addings or removals), constraints (addings or removals). For our approach, changes are
only performed by adding new constraints.

1http://www.gecode.org/



Solving such dynamic CSP involves solving a single CSP with additional constraints
posted during search. Each time a new solution is found, new constraints φ(X ) are
imposed. Such constraints will survive backtracking and state that next solutions should
verify both the current set of constraints C and φ(X ). So line 9 of Algorithm 1 becomes:

Output solution D;1

C←C∪{φ(X )}2

Note that C is a variable global to all calls to procedure Constraint-Search(D,C).

4.2 Mining skypatterns using Dynamic CSP
This section describes our CP approach for mining both skypatterns and soft skypatterns.
Constraints on the dominance relation are dynamically posted during the mining process
and softness is easily introduced using such constraints.

Variable x will denote the (unknown) skypattern we are looking for. Changes are only
performed by adding new constraints (see Section 4.1). So, we consider the sequence
P1,P2, ...,Pn of CSP where each Pi = ({x},L ,qi(x)) and:

– q1(x) = closedM(x)
– qi+1(x) = qi(x)∧φi(x) where si is the first solution to query qi(x)

First, the constraint closedM(x) states that x must be a closed pattern w.r.t all the
measures of M, it allows to reduce the number of redundant patterns2. Then, the con-
straint φi(x) ≡ ¬(si �M x) states that the next solution (which is searched) will not be
dominated by si. Using a short induction proof, we can easily argue that query qi+1(x)
looks for a pattern x that will not be dominated by any of the patterns s1, s2, . . ., si.

Each time the first solution si to query qi(x) is found, we dynamically post a new
constraint φi(x) leading to reduce the search space. This process stops when we cannot
enlarge the forbidden area (i.e. there exits n s.t. query qn+1(x) has no solution). For
skypatterns, φi(x) states that ¬(si �M x) (see Definition 2):

φi(x)≡ (
∨

m∈M

m(si)< m(x))∨ (
∧

m∈M

m(si) = m(x))

But, the n extracted patterns s1, s2, . . ., sn are not necessarily all skypatterns. Some
of them can only be ”intermediate” patterns simply used to enlarge the forbidden area.
A post processing step must be performed to filter all candidate patterns si that are not
skypatterns, i.e. for which there exists s j (1≤ i < j ≤ n) s.t. s j dominates si. So mining
skypatterns is achieved in a two-steps approach:
1. Compute the set S = {s1,s2, . . . ,sn} of candidates using Dynamic CSP.
2. Filter all patterns si ∈ S that are not skypatterns.

While the number of candidates (n) could be very large (the skypattern mining prob-
lem is NP-complete), it remains reasonably-sized in practice for the experiments we
conducted (seeTable 2 for the case study in chemoinformatics.)

4.3 Mining soft skypatterns using Dynamic CSP
Soft skypatterns are processed exactly the same way. Each kind of soft skypatterns has
its own constraint φi(x) according to its relation of dominance.

2The closed constraint is used to reduce pattern redundancy. Indeed, closed skypatterns make
up an exact condensed representation of the whole set of skypatterns [19].



For edge-skypatterns, φi(x) states that ¬(si�M x) (see Definition 4):
φi(x)≡

∨

m∈M

m(si)≤ m(x)

For δ -skypatterns, φi(x) states that ¬(si �δ
M x) (see Definition 6):

φi(x)≡
∨

m∈M

(1−δ )×m(si)< m(x)

As previously, the n extracted patterns s1, s2, . . ., sn are not necessarily all soft sky-
patterns. So, a post processing is required as for skypatterns (see Section 4.2). Mining
soft skypatterns is also achieved in a two-steps approach:
1. Compute the set S = {s1,s2, . . . ,sn} of candidates using Dynamic CSP.
2. Filter all patterns si ∈ S that are not soft skypatterns.

Once again, the number of candidates (n) remains reasonably-sized in practice for
the experiments we conducted (see Table 3).

Pattern variables are set variables represented by their characteristic function with
boolean variables. [4, 7] model an unknown pattern x and its associated dataset T by
introducing two sets of boolean variables: {Xi | i ∈ I } where (Xi = 1)⇔ (i ∈ x), and
{Tt | t ∈T }where (Tt = 1)⇔ (x⊆ t). Each set of boolean variables aims at representing
the characteristic function of the unknown pattern. For a set of k unknown patterns [9],
each pattern x j is represented by its own set of boolean variables {Xi, j | i ∈ I } and
{Tt, j | t ∈T }.

5 Related Work
Computing skylines is a derivation from the maximal vector problem in computational
geometry [13], the Pareto frontier [10] and multi-objective optimization. Since its redis-
covery within the database community by [3], several methods have been developed for
answering skyline queries [15, 16, 20]. These methods assume that tuples are stored in
efficient tree data structures. Alternative approaches have also been proposed to help the
user in selecting most significant skylines. For example, [11] measures this significance
by means of the number of points dominated by a skyline.
Introducing softness for skylines. [8] have proposed thick skylines to extend the con-
cept of skyline. A thick skyline is either a skyline point pi, or a point p j dominated by
a skyline point pi and such that p j is close to pi. In this work, the idea of softness is
limited to metric semi-balls of radius ε>0 centered at points pi, where pi are skylines.
Computing skypatterns is different from computing skylines. Skyline queries focus on
the extraction of tuples of the dataset and assume that all the elements are in the dataset,
while the skypattern mining task consists in extracting patterns which are elements of
the frontier defined by the given measures. The skypattern problem is clearly harder be-
cause the search space for skypatterns is much larger than the search space for skylines:
O(2|I |) instead of O(|T |) for skylines.

To the best of our knowledge, there are only two works dealing with skypatterns.
[19] have proposed an approach taking benefit of theoretical relationships between pat-
tern condensed representations and skypatterns and making the process feasible when
the pattern condensed representation can be extracted. Nevertheless, this method can
only use a crisp dominance relation. [17] deal with skypatterns from graphs but their
technique only maximizes two measures (number of vertices and edge connectivity).



CP for computing the Pareto frontier. [6] has proposed an algorithm that provides the
Pareto frontier in a CSP. This algorithm is based on the concept of nogoods3 and uses
spatial data structures (quadtrees) to arrange the set of nogoods. This approach only deals
with non-dominated points. Moreover, it cannot be applied for mining skypatterns.

6 Case study: discovering toxicophores
A major issue in chemoinformatics is to establish relationships between chemicals and
a given activity (e.g., CL50 is the lethal concentration of a substance required to kill
half the members of a tested population after a specified test duration) in ecotoxicity.
Chemical fragments4 which cause toxicity are called toxicophores and their discovery
is at the core of prediction models in (eco)toxicity [1, 18]. The aim of this present study,
which is part of a larger research collaboration with the CERMN Lab, a laboratory of
medicinal chemistry, is to investigate the use of softness for discovering toxicophores.
6.1 Experimental protocol
The dataset is collected from the ECB web site5. For each chemical, the chemists as-
sociate it with hazard statement codes (HSC) in 3 categories: H400 (very toxic, CL50
≤ 1 mg/L), H401 (toxic, 1 mg/L < CL50 ≤ 10 mg/L), and H402 (harmful, 10 mg/L <
CL50 ≤ 100 mg/L). We focus on the H400 and H402 classes. The dataset T consists
of 567 chemicals, 372 from the H400 class and 195 from the H402 class. The chemicals
are encoded using 1,450 frequent closed subgraphs previously extracted from T 6 with
a 1% relative frequency threshold.

In order to discover patterns as candidate toxicophores, we use both measures typi-
cally used in contrast mining [14] such as the growth rate since toxicophores are linked
to a classification problem with respect to the HSC and measures expressing the back-
ground knowledge such as the aromaticity or rigidity because chemists consider that
this information may yield promising candidate toxicophores. Our method offers a nat-
ural way to simultaneously combine in a same framework these measures coming from
various origins. We briefly sketch these measures.
- Growth rate. When a pattern has a frequency which significantly increases from the
H402 class to the H400 class, then it stands a potential structural alert related to the
toxicity: if a chemical has, in its structure, fragments that are related to a toxic effect,
then it is more likely to be toxic. Emerging patterns embody this natural idea by using
the growth-rate measure (see Definition 1).
- Frequency. Real-world datasets are often noisy and patterns with low frequency may
be artefacts. The minimal frequency constraint ensures that a pattern is representative
enough (i.e., the higher the frequency, the better is).
- Aromaticity. Chemists know that the aromaticity is a chemical property that favors
toxicity since their metabolites can lead to very reactive species which can interact with
biomacromolecules in a harmful way. We compute the aromaticity of a pattern as the
mean of the aromaticity of its chemical fragments.

3A nogood is a partial or complete assignment of the variables such that there will be no (new)
solution containing it.

4A fragment denominates a connected part of a chemical structure containing at least one
chemical bond.

5European Chemicals Bureau: http://echa.europa.eu/
6A chemical Ch contains an item A if Ch supports A, and A is a frequent subgraph of T .
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M1={growth-rate, f req} 8 613 18m:34s 41,887 19m:20s
M2={growth-rate,aromaticity} 5 140 15m:32s 53,201 21m:33s

M3={ f req,aromaticity} 2 456 16m:45s 157,911 21m:16s
M4={growth-rate, f req,aromaticity} 21 869 17m:49s 12,126 21m:40s

Table 2: Skypattern mining on ECB dataset.

Redundancy is reduced by using closed skypatterns which are an exact condensed
representation of the whole set of skypatterns (see Footnote 2). We consider four sets
of measures: M1, M2, M3 and M4 (see Table 2). For δ -skypatterns, we consider two
values: δ=10% and δ=20%. The extracted skypatterns and soft skypatterns are made
of molecular fragments. To evaluate the presence of toxicophores in their description, an
expert analysis leads to the identification of well-known environmental toxicophores.

6.2 Performance analysis
This section compares our approach (noted CP+SKY) with MICMAC+SKY, which is
the only other method able to mine skypatterns [19]. As our proposal, MICMAC+SKY
proceeds in two steps. First, condensed representations of the whole set of patterns (i.e.
closed patterns according to the considered set of measures) are extracted. Then, the sky
operator is applied. Table 2 reports, for each set of measures:

– the number of skypatterns,
– for CP+SKY, the number of candidates (i.e. the number of intermediate patterns, see

Section 4.2) and the associated CPU-time,
– for MICMAC+SKY, the number of closed patterns of the condensed representation

and the associated CPU-time.
Table 3 reports, for each set of measures:

– the number of edge-skypatterns that are not (hard) skypatterns, the number of can-
didates and the required CPU-time,

– the number for δ -skypatterns that are not edge-skypatterns, the number of candi-
dates and the required CPU-time.
CP+SKY outperforms MICMAC+SKY in terms of CPU-times (see Table 2). More-

over, the number of candidates generated by our approach remains small compared to
the number of closed patterns computed by MICMAC+SKY. Thanks to dynamic con-
straints, our CP approach enables to drastically reduce the number of candidates. More-
over, increasing the number of measures leads to a larger number of (soft-)skypatterns,
particularly for high values of δ . In fact, a pattern rarely dominates all other patterns
on the whole set of measures. Nevertheless, in our experiments, the number of soft sky-
patterns remains reasonably small. For edge-skypatterns, there is a maximum of 144
patterns, while for δ -skypatterns, there is a maximum of 1,724 patterns (for δ = 20%).
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M1 24 1,746 19m:02s 25 4,204 20m:48s 87 6,253 22m:36s
M2 76 688 17m:51s 354 1,678 18m:14s 1,670 2,816 23m:44s
M3 72 1,726 16m:50s 352 4,070 19m:43s 1,654 6,699 22m:25s
M4 144 3,021 20m:27s 385 6,048 23m:36s 1,724 8,986 30m:14s

Table 3: Soft skypattern mining on ECB dataset.

6.3 Qualitative analysis
In this section, we analyse qualitatively the (soft-)skypatterns by evaluating the pres-
ence of toxicophores in their description, according to well-known environmental tox-
icophores. For M1={growth-rate, f req}, soft skypatterns enable to efficiently detect
well-known toxicophores emphasized by skypatterns, while for M2={growth-rate, aroma-
ticity} and M4={growth-rate, f req,aromaticity}, soft skypatterns enable to discover
(new) interesting toxicophores that would not be detected by skypatterns.
- Growth rate and frequency measures (M1).Only 8 skypatterns are found, and 3 well-
known toxicophores are emphasized. Two of them are aromatic compounds, namely the
chlorobenzene (p1) and the phenol rings (p2). The contamination of water and soil by
organic aromatic chemicals is widespread as a result of industrial applications ranging
from their use as pesticides, solvents to explosives and dyestuffs. Many of them may
bioaccumulate in the food chain and have the potential to be harmful to living systems
including humans, animals, and plants. The third one, the organophosphorus moiety (p3)
is a component occurring in numerous pesticides.
Soft skypatterns confirm the trends given by skypatterns. However, the chloro-substituted
aromatic rings (e.g. p4), and the organophosphorus moiety (e.g. p5) are detected by the
edge-skypatterns and by the δ -skypatterns. Indeed, several patterns containing these tox-
icophores are extracted.
- Growth rate and aromaticity measures (M2). Figure 6 only reports the distribution
of the (soft-)skypatterns for M2. Soft skypatterns lead to the discovery of several dif-
ferent aromatic rings. In fact, the nature of these chemicals can vary in function of i)
the presence/absence of heteroatoms (e.g. N, S), ii) the number of rings, and iii) the
presence/absence of substituents.

Edge-skypatterns leads to the extraction of (i) nitrogen aromatic compounds: indole
(p1) and benzoimidazole (p2), (ii) S-containing aromatic compounds: benzothiophene
(p3), (iii) aromatic oxygen compounds: benzofurane (p4), and (iv) polycyclic aromatic
hydrocarbons: naphthalene (p5). δ -skypatterns complete the list of the aromatic rings
which were not found during the extraction of the skypatterns, namely biphenyl (p6).



Fig. 5: Analysing the (soft-) skypatterns for M1.

- Growth rate, frequency and aromaticity measures (M4). The most interesting re-
sults are provided using M4 (see Figure 7). 21 skypatterns are mined, and several well-
known toxicophores are emphasized: the phenol ring (see e4), the chloro-substituted
aromatic ring (see e3), the alkyl-substituted benzene (see e2), and the organophosphorus
moiety (see P1). Besides, information dealing with nitrogen aromatic compounds are
also extracted (see e1).
Soft skypatterns enable to mine several exotic aromatic rings (previously discussed),
namely nitrogen and S-containing aromatic compounds, polycyclic aromatic hydrocar-
bons.
Moreover, edge-skypatterns enable to detect more precisely the chloro-substituted aro-
matic ring and the organophosphorus moiety which are located near P1. For δ ∈{10%,20%},
mining the δ -skypatterns leads to the extraction of new several interesting patterns, par-
ticularly substituted nitrogen aromatic rings and substituted anilines.

Fig. 6: Analysing the (soft-) skypatterns for M2.



Fig. 7: Analysing the (soft-) skypatterns for M4.

7 Conclusion

We have introduced the notion of soft skypattern and proposed a flexible and efficient
approach to mine skypatterns as well as soft ones thanks to Dynamic CSP. Finally, the
relevance and the effectiveness of our approach has been highlighted through a case
study in chemoinformatics for discovering toxicophores.

In the future, we would like to study the introduction of softness on other tasks
such as clustering, study the contribution of soft skypatterns for recommendation and
extend our approach to skycubes. Another direction is to improve the solving stage by
designing a one-step method: each time a new solution si is found, all candidates that
are dominated by si can be removed (see Section 4.2). Another idea is to hybridize our
CP approach with local search methods to improve the efficiency of the method.
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Abstract. Promoting declarative approaches in data mining is a long
standing theme. This paper goes into this direction by proposing a well-
founded logical query language, SafeRL, allowing the expression of a
wide variety of “rules” to be discovered against the data. SafeRL ex-
tends and generalizes functional dependencies in databases to new and
unexpected rules easily expressed with a SQL-like language. In this set-
ting, every rule mining problem turns out to be seen as a query process-
ing problem. We provide a query rewriting technique and a construc-
tive proof of the main query equivalence theorem, leading to an efficient
query processing technique. Based on a concrete SQL-like grammar for
SafeRL, we show how a tight integration can be performed on top of
any DBMS. The approach has been implemented and experimented on
sensor network data. This contribution is an attempt to bridge the gap
between pattern mining and databases and facilitates the use of data
mining techniques by SQL-aware analysts.

Keywords: Pattern mining, databases, query languages, query processing

1 Introduction

The relational database management systems (DBMS) market is already huge
and continues to grow since it is expected to nearly double by 2016 [1]. As a
trivial consequence for the data mining community, it makes sense – more than
ever – to query the data where they are by using state of the art database
technologies.
While a lot of techniques have been proposed over the last 20 years for pattern
mining, only a few of them are tightly coupled with a DBMS. Most of the
time, some pre-processing has to be performed before the use of pattern mining
techniques and the data have to be formatted and exchanged between different
systems, turning round-trip engineering into a nightmare.

In this paper, we provide a logical view for a certain class of pattern mining
problems. More precisely, we propose a well-founded logical query language,



EMP Empno Lastname Work
dept

Job Educ
level

Sex Sal Bonus Comm Mgrno

10 SPEN C01 FINANCE 18 F 52750 500 4220 20
20 THOMP B01 MANAGER 18 M 41250 800 3300
30 KWAN C01 FINANCE 20 F 38250 500 3060 10
50 GEYER B01 MANAGER 16 M 40175 800 3214 20
60 STERN D21 SALE 14 M 32250 500 2580 30
70 PULASKI D21 SALE 16 F 36170 700 2893 100
90 HENDER D21 SALE 17 F 29750 500 2380 10

DEPT Deptno Deptname Mgrno Admrdept Loc

A00 SPIFFY CS DIV. - A00 -
B01 PLANNING 20 A00 501
C01 INF. CENTER 30 A00 403
D01 DEV. CENTER 60 A00 -
D11 MANUFACTURING SYSTEMS - D01 -
D21 ADMIN. SYSTEMS 70 D01 501

Fig. 1. Running example

SafeRL, based on tuple relational calculus (TRC), allowing the expression of a
wide variety of “rules” to be discovered against the data. SafeRL extends and
generalizes functional dependencies (FDs) in databases to new and unexpected
rules easily expressed with a practical SQL-like language derived from SafeRL,
called RQL. To start with, let us consider the running example given in Figure
1 with two relations Emp and Dept. Educlevel represents the number of years of
formal education, Sal the yearly salary, Bonus the yearly bonus and Comm the
yearly commission. This example will be used throughout the paper.

Intuitively, a RQL query is defined by the FINDRULES clause and gener-
ates rules of the form X → Y with X and Y disjoint attribute sets taken from
the OVER clause. The SCOPE clause defines tuple-variables over some rela-
tions obtained by classical SQL queries and the CONDITION clause defines the
predicate to be evaluated on each attribute occurring in X ∪ Y .

Example 1. To make things concrete, we give some examples of RQL queries.
Q1: FINDRULES

OVER Empno ,Lastname ,Workdept ,Job ,Sex ,Bonus

SCOPE t1 ,t2 Emp

CONDITION ON A IS t1.A = t2.A;

Q′
1: FINDRULES

OVER Empno ,Lastname ,Workdept ,Job ,Sex ,Bonus

SCOPE t1 ,t2 (SELECT * FROM Emp WHERE Educlevel >16)

CONDITION ON A IS t1.A = t2.A;

Q′′
1 : FINDRULES

OVER Educlevel ,Sal ,Bonus ,Comm

SCOPE t1 ,t2 Emp

CONDITION ON A IS 2*ABS(t1.A-t2.A)/(t1.A+t2.A) <0.1;



Q1 discovers FDs from Emp over a subset of attributes. Recall that a FD X → Y
holds in a relation r if for all tuples t1, t2 ∈ r, and for all A ∈ X such that t1[A] =
t2[A] then for all A ∈ Y , t1[A] = t2[A]. As shown in Q1, RQL can express the
discovery of FDs with a natural syntax. For example, Empno → Lastname,
Workdept→ Job hold in Emp.

We can easily restrict FDs to some subset of tuples as shown with Q′
1 which

discovers rules comparable to conditional functional dependencies [2] by con-
sidering only employees with a level of qualification above 16. For instance,
Sex → Bonus holds, meaning that above a certain level of qualification (16),
the gender determines the bonus. This rule was not elicited by Q1 because of
employees 60 and 70.

Q′′
1 is an approximation of FD for numeric values, where strict equality is

discarded to take into account variations under 10%. For instance, salaries 41250
and 38250 are considered close (7.5% difference), but not salaries 41250 and
36170 (13.1% difference). Sal → Comm then holds, meaning that employees
earning similar salaries receive similar commissions.

Nevertheless, RQL can do much more and is not restricted to FD at all.

Example 2. null values in Dept.

Q2: FINDRULES

OVER Deptname ,Mgrno ,Admrdept ,Loc

SCOPE t1 Dept

CONDITION ON A IS t1.A IS NULL;

This query discovers rules between null values of the relation Dept. In dirty
databases, null values can be a nightmare and knowing relationships between
attributes with respect to null values could definitely be useful. For instance,
Mgrno→ Loc holds in Dept.

In this setting, every rule mining problem can be easily specified and turns out
to be seen as a query processing problem. We provide a query rewriting technique
and a constructive proof of the main query equivalence theorem, leading to an
efficient query processing technique. Based on a concrete SQL-like grammar for
SafeRL, we have shown how a tight integration can be performed on top of
any DBMS. The approach has been implemented and experimented on sensor
network data, showing that our approach allows the discovery of meaningful
rules and scales well. This contribution is an attempt to bridge the gap between
pattern mining and databases to facilitate the use of data mining techniques
by SQL-aware analysts. The ultimate goal of this work is to integrate pattern
mining techniques into core DBMS technologies.

Related works Defining specific languages for pattern mining is a long standing
goal and poses several challenges to first specify the data of interest and second,
to pose pattern mining queries against these data. A survey of data mining query
languages has been done in [3]. Recently, constraint programming appears to
be convenient and useful since it allows addressing both issues with a unique
declarative language [4, 5].



Nevertheless, we argue that pattern mining languages should benefit from
direct extensions of SQL languages as done in [6], since data are most of the
time stored in DBMSs. Practical approaches, as close as possible of DBMSs,
have been proposed for example in [7–9] to interact more directly with DBMSs
query engines. The SafeRL language proposed in this paper goes into this di-
rection by providing a formal semantic based on the TRC language, its practical
counterpart RQL turning out to be easily implemented on top of every DBMS.
FDs, association rules with 100% confidence, ad-hoc language proposed in [10]
are special cases of our SafeRL language but none of them has a logical query
language foundation.

With respect to [11], we consider a database instead of a single relation in
SafeRL, we provide a SQL-like syntax RQL and we focus on query processing
techniques that can be reused to efficiently execute RQL queries. Theoretical
results on decidability problems on variant of SafeRL languages are given in
[11]. From a technical point of view, this paper is a generalization of the approach
taking into account FD only [12] to compute agree sets from database relations
using SQL. FDs, CFDs in databases and implications in formal concept analysis
have been studied in e.g. [12–15].

Paper organization Section 2 introduces some notations and recalls important
notions on relational calculus and closure systems. Section 3 presents the syntax
and semantics of the SafeRL language, while section 4 presents some results
used for computing the answer to SafeRL queries. Section 5 presents exper-
imental results and section 6 concludes. Due to space constraints, proofs are
omitted.

2 Preliminaries

This section introduces main definitions and notations used throughout the pa-
per for the relational model, safe TRC, rules and closure systems.

2.1 Relational model

We use the named perspective of the relational model in which tuples are func-
tions.

Fix a finite universe U of attributes (denoted by A, B, . . . ), a countably infinite
domain D of constants (denoted by c, c′, . . .) and a finite set R of relation symbols
(denoted by R, S, . . .). U,D,R are pairwise disjoints. Each relation symbol R has a
schema, a subset of U, denoted by the symbol itself, i.e. R ⊆ U. Conveniently, we
will sometimes omit to refer to the relation symbol when dealing with a subset of
attributes, i.e. a schema. A tuple t over R is a total function t : R→ D. A relation
r over R is a finite set of tuples over R. A database schema R is a set of relation
symbols, e.g. R = {R1, . . . , Rn}. A database instance (or simply a database) is
a function d from R to the set of possible relations such that d(Ri) = ri, ri a
relation over Ri, for i = 1..n.



2.2 Variables and assignments

SafeRL has different formal variables for attributes, tuples and schemata: a set
A of attribute-variables (A,B, . . .), a set T of tuple-variables (s, t, . . .) and a set
S of schema-variables (X,Y, . . .). A,T,S,U,D,R are pairwise disjoints.

An attribute-assignment ρ (resp. a schema-assignment Σ) is a function that
maps an attribute-variable A (resp. a schema-variable X) to an attribute ρ(A) ∈
U (resp. a subset of attributes Σ(X) ⊆ U). A tuple-assignment σ is also a func-
tion from a tuple-variable t to a tuple t defined over some schema. Conveniently,
a tuple-variable t can be explicitly defined over some schema X, noted by t : X
and we will use the notation sch(t) = X.

For an attribute-assignment ρ (as well as for tuple-assignments and schema-
assignments) we denote by ρA 7→A the assignment defined by:

ρA 7→A(B) =

{
A if B = A

ρ(B) if B 6= A

2.3 Safe TRC

For the sake of clarity, we recall here the syntax and semantics of the TRC in
its simplest form. TRC formulas noted ψ,ψ1, ψ2, . . . are defined inductively as
usual, where A, B ∈ U, X ⊆ U, c ∈ D, R ∈ R, t, t1, t2 ∈ T:

R(t) | t1.A = t2.B | t.A = c | ¬ψ | ψ1 ∧ ψ2 | ∃t : X (ψ)

Given a database d over R and a tuple assignment σ, the satisfaction of a
TRC formula ψ is inductively defined as follows:

– 〈d, σ〉 |= R(t) if σ(t) ∈ d(R), R ∈ R
– 〈d, σ〉 |= t1.A = t2.B if σ(t1)(A) = σ(t2)(B)
– 〈d, σ〉 |= t.A = c if σ(t)(A) = c

– 〈d, σ〉 |= ¬ψ if 〈d, σ〉 6|= ψ
– 〈d, σ〉 |= ψ1 ∧ ψ2 if 〈d, σ〉 |= ψ1 and 〈d, σ〉 |= ψ2

– 〈d, σ〉 |= ∃t : X (ψ) if there exists a tuple t over X such that 〈d, σt7→t〉 |= ψ

A TRC query is an expression of the form

q = {t : X | ψ}

where ψ is a TRC formula with exactly one free variable t. The set of answers
ans(q, d) of q w.r.t. a database d is

ans(q, d) = {σ(t) | 〈d, σ〉 |= ψ}

In the sequel, we will consider a restriction of the TRC, equivalent to the
relational algebra in order to be compatible with SQL, known as safe TRC [16].



2.4 Rules and closure systems

Rules or implications, closure systems and closure operators have been widely
studied in many branches of applied mathematics and computer sciences, with
many applications in databases with functional dependencies [17] and in formal
concept analysis with implications [18]. The interested reader should refer to [19]
for a comprehensive survey. We summarize the main results that are useful for
the rest of the paper.

Let U ⊆ U. A closure system C on U is such that U ∈ C and for all X,Y ∈ C,
X ∩ Y ∈ C [18]. Let F be a set of rules on U . A closure system can be defined
for F , noted CL(F ) = {X ⊆ U |X = X+

F } where X+
F is the closure of X with

respect to F . Let IRR(F ) be the set of meet-irreducible elements of CL(F ). The
notion of base of a closure system is defined as follows:

Definition 1. Let CL(F ) be a closure system. A base B of CL(F ) is such that
IRR(F ) ⊆ B ⊆ CL(F )

A base is called a context in FCA terminology [18]. From a functional dependency
inference point of view, we quote the following approach [20, 12] to discover the
so-called canonical basis from a relation r:
1. Compute a base of the closure system associated to FDs from r (known as

agree sets),
2. From the base, compute the unique canonical cover for exact FDs and Got-

tlob and Libkin cover for approximate FDs [21, 20, 22].
The rest of this paper proposes a generalization of this approach. Indeed,

each SafeRL query defines a closure system and therefore, in order to reuse
previous results, the problem turns out to be on the computation of a base with
respect to a query from the database [12]. Due to space constraints, we will focus
on this first stage, the second stage will be omitted.

3 A Query Language for Rule Mining

In the introduction, we have illustrated RQL – a SQL-like friendly language
– through examples. This section formally defines the syntax and semantics of
SafeRL from which RQL is derived. We have introduced safe TRC for express-
ing SQL like queries. Before defining SafeRL, it remains to precisely define (cf.
previous examples of RQL queries) the CONDITION clause, through the notion
of mining formulas:

CONDITION ON A IS delta_cond(A, t1, ..., tn);

3.1 Mining Formulas

Mining formulas, denoted by δ, δ1, δ2, . . . , are defined over tuple-variables T,
attribute-variables A and constants D only. Their syntax and their semantics
are defined as follows.



Definition 2. Let t, t1, t2 ∈ T, A,B ∈ A and c ∈ D. A mining formula is of the
form: t1.A = t2.B | t.A = c | ¬δ | δ1 ∧ δ2

The satisfaction of a mining formula δ w.r.t. a tuple-assignment σ and an
attribute-assignment ρ, denoted by 〈σ, ρ〉 |= δ, is inductively defined as follows:

– 〈σ, ρ〉 |= t1.A = t2.B iff σ(t1)(ρ(A)) = σ(t2)(ρ(B))
– 〈σ, ρ〉 |= t.A = c iff σ(t)(ρ(A)) = c
– 〈σ, ρ〉 |= ¬δ iff 〈σ, ρ〉 6|= δ
– 〈σ, ρ〉 |= δ1 ∧ δ2 iff 〈σ, ρ〉 |= δ1 and 〈σ, ρ〉 |= δ2

Such formulas are very simple and restrictive: given one attribute and several
tuples, it allows to tell whether or not a mining formula holds.

3.2 SafeRL queries

The SafeRL query language can now be defined. A SafeRL query over a
database schema R is an expression of the form:

Q = {X → Y | ∀t1 . . . ∀tn(ψ(t1, . . . , tn) ∧ (∀A ∈ X(δ(A, t1, . . . , tn))→ ∀A ∈
Y (δ(A, t1, . . . , tn))))}, where:

– X,Y are schema-variables
– ψ is a TRC-formula over R with n free tuple-variables t1, . . . , tn
– δ is a mining formula with t1, . . . , tn free tuple-variables andA a free attribute-

variable

When clear from context, a SafeRL query Q may also be simply denoted
by Q = 〈ψ(t1, . . . , tn), δ(A, t1, . . . , tn)〉 or even Q = 〈ψ, δ〉.
Example 3. The mining of FDs over EMP is expressed as the query Q = 〈EMP(t1)∧
EMP(t2), (t1.A = t2.A)〉.

The attributes of ψ are equal to
⋃n
i=1 sch(ti) whereas the schema of Q, de-

noted by sch(Q), is defined by: sch(Q) =
⋂n
i=1 sch(ti): only common attributes

of tuple-variables are meaningful to discover rules.
To specify the result of the evaluation of a SafeRL query against a database,

we define the notion of satisfaction.
A SafeRL query 〈ψ, δ〉 is satisfied in a database d and w.r.t. a schema-

assignment Σ, denoted by 〈d,Σ〉 |= 〈ψ, δ〉 if the following holds:

For all tuple-assignment σ such that 〈d, σ〉 |= ψ: (1)
if for all A ∈ Σ(X), 〈σ, ρA7→A〉 |= δ (2)
then for all A ∈ Σ(Y ), 〈σ, ρA 7→A〉 |= δ (3)

Intuitively, this definition generalizes the definition of FD satisfaction in a
relation: instead of only 2 tuples, we may have n tuples from many relations
and verifying a certain condition (1); and instead of the condition “for all A ∈
R, t1[A] = t2[A]”, we may have any mining formula (2), (3).

The answer of a SafeRL query Q = 〈ψ, δ〉 in a database d over R, denoted by
ans(Q, d), is defined as: ans(Q, d) = {Σ(X) → Σ(Y ) | 〈d,Σ〉 |= 〈ψ, δ〉, Σ(X) ∪
Σ(Y ) ⊆ sch(Q)}.



3.3 RQL: A practical language for SafeRL
RQL is a practical SQL-like declarative language to express SafeRL queries.
Let us consider a SafeRL query Q = 〈ψ(t1, . . . , tn), δ(A, t1, . . . , tn)〉 and its
associated RQL query:

FINDRULES

OVER A1, ..., An

SCOPE t1 (SQL1), ..., tn (SQLn)

WHERE condition(t1 , , ..., tn)

CONDITION ON A IS delta_cond(A, t1, ..., tn);

The clause FINDRULES identifiesRQL queries. The clause SCOPE specifies
every tuple to be used to discover the rules and corresponds to the tuple-variables
of ψ, a safe TRC formula. The clause CONDITION gives the condition to be
observed against the data, the so-called mining formula δ. The clause OVER al-
lows restrictions of rules to a particular set of attributes, typically the attributes
of sch(Q). The WHERE clause is defined as usual. We have already given many
examples of RQL, other details are omitted. Note that RQL allows much more
flexibility than SafeRL since syntactic sugars available in SQL can be used for
free, as in query Q′′

1 of Example 1.

4 Theoretical results

In [11], a slightly different language for rule mining has been proposed. One of
the main results was to point out that every query is “Armstrong-compliant”,
meaning basically that Armstrong axioms are sound and that each query defines
a closure system. The same result holds for SafeRL queries.

Given a database d and a SafeRL query Q, the basic idea is to compute a
base of the closure system associated with Q from d. Let us start by introducing
the closure system associated with Q.

An appendix provides the proofs of all propositions, lemmas and theorems.

4.1 Closure system and bases for SafeRL queries

Given a query Q against a database d, the definitions of a base and a closure
system given in Section 2.4 are extended to ans(Q, d).

We say that Z ⊆ U satisfies ans(Q, d) if for all X → Y ∈ ans(Q, d), X 6⊆ Z

or Y ⊆ Z. The closure system of Q in d, denoted by CLQ(d), is defined by:
CLQ(d) = {Z ⊆ sch(Q) | Z satisfies ans(Q, d)}.

In our setting, the definition of the base is:

Definition 3. Let Q = 〈ψ, δ〉 be a SafeRL query over R and d a database
over R. The base of Q in d, denoted by BQ(d), is defined by:

BQ(d) =
⋃

σ s.t.
〈d,σ〉|=ψ

{
{A ∈ sch(Q) | 〈σ, ρA 7→A〉 |= δ}

}



That is, BQ(d) is the set of all Z ⊆ sch(Q) for which there exists σ such that
〈d, σ〉 |= ψ and 〈σ, ρA7→A〉 |= δ for all A ∈ Z. Note that since A is the only free
attribute variable in δ, using ρA 7→A fully determines the attribute assignment in
the evaluation of δ.

Proposition 1. BQ(d) is a base of the closure system CLQ(d).

4.2 Computing the base of a SafeRL query using query rewriting

The naive approach consists in executing n SQL queries against the database,
to cache all intermediary results, to keep only the right combination of tuples
with respect to the WHERE clause and then to compute the base of the closure
system. We can do much better: the basic idea is to decompose the query in
order to push as much as possible the processing into the SQL query engine.

For every RQL query Q = 〈ψ, δ〉 involving n tuple-variables, there exists
another query Q′ = 〈ψ′, δ′〉 with a unique tuple-variable . The practical con-
sequence of this remark is that the computation of the base can be done in a
unique SQL query, i.e. the base of 〈ψ′, δ′〉 can be delegated to the SQL query
engine which was not the case in the former formulation. By means of a rewriting
function rw, we transform Q = 〈ψ, δ〉 into Q′ = 〈ψ′, δ′〉. The idea of rw is that
the unique tuple-variable t appearing in Q′ takes its values in the schema built
from the disjoint union of sch(ti), i = 1..n and is essentially the concatenation
of the initial ti’s.

Let R be the new schema built from the disjoint union of the ti’s,
i.e. R =

⋃
i∈1..n{〈A, i〉 | A ∈ sch(ti)}.

The function rw is defined on mining formulae inductively, with t a fresh
tuple-variable. Each fresh attribute-variable Ai replaces A in δ′, noted rw(δ) in
the sequel, for the corresponding ti part of t:

rw(δ) =





¬rw(δ′) if δ is ¬δ′
rw(δ1) ∧ rw(δ2) if δ is δ1 ∧ δ2
t.Ai = t.Aj if δ is (ti.A = tj .A)

t.Ai = c if δ is (ti.A = c)

We also overload rw to transform tuple-assignment σ and attribute-assignment
ρ into respective assignments. rw(σ) = σ′ is defined by σ′(t) = t and t(〈A, i〉) =
σ(ti)(A). rw(ρ) = ρ′ is defined by ρ′(Ai) = 〈ρ(A), i〉.

Given a mining formula and the previous rewriting rw(), we have the following
lemma.

Lemma 1. 〈σ, ρ〉 |= δ iff 〈rw(σ), rw(ρ)〉 |= rw(δ)

Finally, it remains to rewrite TRC formula ψ with rw(ψ) by forcing t to have
each ti as one of its components:

rw(ψ) = ∃t1 : sch(t1), . . . , tn : sch(tn)(ψ ∧
∧

A∈sch(Q)

n∧

i=1

t.Ai = ti.A)
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Given a safe TRC formula and the previous rewriting rw(), we have the
following result.

Lemma 2. 〈d, σ〉 |= ψ iff 〈d, rw(σ)〉 |= rw(ψ)

Therefore BQ(d) is computable by running only one SQL query, correspond-
ing to the safe TRC query {t | rw(ψ)}, except for the SELECT part that consists
in evaluating, for each A ∈ sch(Q), the satisfaction of rw(δ).

Theorem 1.

BQ(d) =
⋃

rw(σ) s.t.
〈d,rw(σ)〉|=rw(ψ)

{
{A ∈ sch(Q) | ∃ρ : ρ(A) = A ∧ 〈rw(σ), rw(ρ)〉 |= rw(δ)}

}

The previous theorem allows pushing query processing as much as possible
into the DBMS to compute the base of the closure system associated to every
SafeRL query.

5 Implementation and experiments

Given a RQL query Q, the query processing engine consists of a Java/JavaCC
application to:

1. Compute the base of the closure system of Q using the generated SQL query
provided by Theorem 1.

2. Compute the canonical cover for exact rules and a Gottlob and Libkin cover
for approximate rules [21]. Details are out of the scope of this paper, note
just that we have reused the code of T. Uno [23] for the most expensive part
of the rule generation process.

Figure 2 gives an overview of RQL query processing.



samples

id DECIMAL(20,0)
timestamp TIMESTAMP
type DECIMAL(3,0)
value DECIMAL(10,0)

descriptions

id DECIMAL(20,0)
type VARCHAR(12)
location VARCHAR(18)
description VARCHAR(78)

Fig. 3. PlaceLab database schema

time bathroom
light

kitchen
humidity 0

... bedroom
temperature 5

2006-08-22 00:00:00 0.4971428 4344 ... 21.43
2006-08-22 00:01:00 0.6685879 4344 ... 21.43
2006-08-22 00:02:00 0.4985673 4344 ... 21.465

...
2006-09-18 23:58:00 1567.7822 5324 ... 22.53
2006-09-18 23:59:00 1563.5891 5276 ... 22.50

Fig. 4. Sensors data

5.1 Sensor Data

We experimented our RQL processing engine using the PlaceLab dataset pro-
vided by the MIT House n Consortium and Microsoft Research [24].

The PlaceLab is a 93 m2 apartment instrumented with several hundred sen-
sors. During the experiment, interior conditions (temperature, humidity, light,
pressure, current, gas and water flow) were captured by 106 sensors, along with
92 reed switches installed on doors, drawers and windows to detect open-closed
events. 277 wireless motion sensors were placed on nearly all objects that might
be manipulated. Two participants used the PlaceLab as a temporary home for
10 weeks.

The available data is a subset of about a month from the original 2.5 months
experiment, from August 22, 2006 to September 18. Raw data is extracted from
binary files, where each reading contains a sensor id, a timestamp and a value
(the measurement). Sensors meta-data include, for each sensor id, type, location
and a short textual description, along with other meta-data of little interest for
our experiments, such as installation date, etc. This data is stored in an Oracle
database whose schema is depicted in figure 3.

For data mining queries, we focused on variations of the physical properties
of the environment, such as temperature, light, etc., which amount to more
than 100 million tuples. A view, easily expressed with SQL, has been created to
synchronize and resample every sensor with a common sampling interval (one
minute). This view, illustrated in figure 4, has 165 attributes and 32543 tuples.
Except for the time, each attribute is associated either with one of the 106
physical properties sensors or one of the 58 selected switches.
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Fig. 5. Execution time for null rules

5.2 Experimental Results

The server used for these experiments is a virtual machine running on VMware
4.1 with 2× Intel Xeon X5650 and 7.2K disks in RAID 5. This virtual machine,
running Debian 6.0, disposes of 16 GB of RAM and 4 CPU cores. The DBMS
is Oracle Database 11g Release 2.

In these experiments, we consider three families of RQL queries.

Q1: rules for null values The first set of queries mine rules between sensors for
null values. Such queries can be used to identify groups of sensors which are
unavailable simultaneously, due, for example, to a shared acquisition system.

FINDRULES

OVER <list of attributes >

SCOPE t1 sensors

CONDITION ON A IS t1.A IS NULL;

For example, if we consider all temperature sensors as the list of attributes,
we can group sensors dining room temperature 1 (A), dining room tempera-
ture 2 (B), dining room temperature 3 (C), dining room temperature 4 (D),
hall temperature 0 (E) and hall temperature 3 (F ) according to rules (F → C,
A → CF , AD → E, BE → D, EF → A, AB → DE, CE → AF , DF → AE,
BF → ADE, CD → AEF , BC → ADEF ). Similarly, we can group four sen-
sors from the living room, two sensors from the office, two sensors from the hall
with three sensors from the kitchen, etc.

Figure 5 gives the cumulative execution time for various number of attributes
in the OVER clause of Q1. As expected, rule generation is by far the most
expensive part when the query runs over a large set of attributes. The SQL
query however lasts less than a second and increases linearly: computation of
the base by the DBMS is efficient.

Q2: Functional dependencies The second set of queries finds functional depen-
dencies within a time window. This time window is specified using SQL condi-
tions on the timestamp.
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Fig. 6. Execution time for functional dependencies

FINDRULES

OVER <list of attributes >

SCOPE t1,t2 (

SELECT * FROM sensors

WHERE time BETWEEN ’2006 -08 -31 00:00:00 ’

AND ’2006 -08 -31 23:59:59 ’)

WHERE t1.rowid < t2.rowid

CONDITION ON A IS t1.A = t2.A;

To generate the base, the corresponding SQL query performs a Cartesian
product (more precisely, a theta self-join on t1.rowid < t2.rowid, which gives
half as many tuples). Consequently, the SQL part is significantly more costly
compared with the previous family ofRQL queries. Figure 6 gives the cumulative
execution time for various number of attributes in the OVER clause of Q2.

Q3: rules for local maximums RQL queries can express a wide range of condi-
tions for rules. For example, the following query finds rules for local maximums
of measurements (i.e. X → A is interpreted as: if all sensors in X have a local
maximum at time T, then sensor A has a local maximum at time T).

FINDRULES

OVER <list of attributes >

SCOPE t1,t2,t3 sensors

WHERE t2.time = t1.time+interval ’1’ minute

AND t3.time = t2.time+interval ’1’ minute

CONDITION ON A IS t1.A < t2.A AND t2.A > t3.A;

Even though this query has three tuple-variables, all three are bound by a
1:1 relationship. Consequently, this query is computed efficiently. Figure 7 shows
performances similar to Q1.
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Fig. 7. Execution time for local maximums rules

6 Conclusion

In this paper, we have introduced SafeRL, a logical query language based on
TRC and devoted to rule discovery in databases. The rule mining problem is
seen as a query processing problem, for which we have proposed a query rewrit-
ing technique allowing the delegation of as much processing as possible to the
underlying DBMS engine.RQL, the concrete language of SafeRL, is a SQL-like
pattern mining language which allows SQL developers to extract precise infor-
mation without specific knowledge in data mining. A system has been developed
and tested against a real-life database provided by the MIT House n Consortium
and Microsoft Research [24]. These experiments show both the feasibility and
the efficiency of the proposed language. A web prototype for RQL has been
released and is available for teaching and research: http://rql.insa-lyon.fr
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Abstract. Constraint-based pattern discovery is at the core of numer-
ous data mining tasks. Patterns are extracted with respect to a given
set of constraints (frequency, closedness, size, etc). In the context of se-
quential pattern mining, a large number of devoted techniques have been
developed for solving particular classes of constraints. The aim of this
paper is to investigate the use of Constraint Programming (CP) to model
and mine sequential patterns in a sequence database. Our CP approach
offers a natural way to simultaneously combine in a same framework a
large set of constraints coming from various origins. Experiments show
the feasibility and the interest of our approach.

1 Introduction

Sequential pattern mining is a well-known data mining technique introduced
in [1] to find regularities in a database of sequences. This problem is central in
many application domains, such as web usage mining [7], bioinformatics and text
mining [3]. For effectiveness and efficiency considerations, many authors [10, 24]
have promoted the use of constraint to focus on the most promising knowledge
by reducing the number of extracted patterns to those of a potential interest
given by the final user. The most popular example is the minimal frequency
constraint: it addresses all sequences having a number of occurrences in the
database exceeding a given minimal threshold.

There are already in the literature many algorithms to extract sequential
patterns (e.g. GSP [19], SPADE [25], PrefixSpan [15]), closed sequential patterns
(e.g. CloSpan [23], BIDE [22]) or sequential patterns satisfying regular expres-
sion (e.g. SPIRIT [11]). All the above methods, though efficient, suffer from two
major problems. First, they tackle particular classes of constraints (i.e. mono-
tonic and anti-monotonic ones) by using devoted techniques. However, several
practical constraints required in data mining tasks, such as regular expression,
aggregates, do not fit into these classes. Second, they lack of generic methods
to push various constraints into the sequential pattern mining process. Indeed,
adding and handling simultaneously several types of constraints in a nice and
elegant way beyond the few classes of constraints studied is not still trivial.
The lack of generic approaches restrains the discovery of useful patterns because



the user has to develop a new method each time he wants to extract patterns
satisfying a new type of constraints. In this paper, we address this open issue
by proposing a generic approach for modelling and mining sequential patterns
under various constraints using Constraint Programming (CP).

Our proposition benefits from the recent progress on cross-fertilization be-
tween data mining and CP for itemset mining [12, 14, 17]. The common point of
all these methods is to model in a declarative way pattern mining as Constraint
Satisfaction Problems (CSP), whose resolution provides the complete set of so-
lutions satisfying all the constraints. The great advantage of this modelling is
its flexibility, it enables to define and to push new constraints without having to
develop new algorithms from scratch.

The key contribution of this paper is to propose a CP modelling for the
problem of mining sequential patterns in a sequence database [1]. Our approach
addresses in a unified framework a large set of constraints. This includes con-
straints such as frequency, closedness and size, and other constraints such as
regular expressions, gap and constraints on items. Moreover, our approach en-
ables to combine simultaneously different types of constraints. This leads to the
first CP-based model for discovering sequential patterns in a sequence database
under various constraints. Experiments on a case study on biomedical literature
for discovering gene-RD relations from PubMed articles show the feasibility and
the interest of our approach.

This paper is organized as follows. Section 2 gives the necessary definitions
and presents the problem formulation. Section 3 introduces the main principles of
constraint programming. Section 4 describes our CP model for mining sequential
patterns in a sequence database. We review some related work in Section 5 and
Section 6 reports in depth a case study from the biomedical literature domain
for discovering gene-RD relations from PubMed articles. Finally, we conclude
and draw some perspectives.

2 Sequential Pattern Mining

In this section, we introduce sequential patterns defined by Agrawal et al. [1].

2.1 Sequential Patterns

Sequential pattern mining [1] is a data mining technique that aims at discovering
correlations between events through their order of appearance. Sequential pat-
tern mining is an important field of data mining with broad applications (e.g.,
biology, marketing, security) and there are many algorithms to extract frequent
sequences [19, 25, 23].

In the context of sequential patterns extraction, a sequence is an ordered
list of literals called items. A sequence s is denoted by 〈i1, i2 . . . in〉 where ik,
1 ≤ k ≤ n, is an item. Let s1 = 〈i1, i2 . . . in〉 and s2 = 〈i′1, i′2 . . . i′m〉 be two
sequences. s1 is included in s2 if there exist integers 1 ≤ j1 < j2 < . . . < jn ≤ m
such that i1 = i′j1 , i2 = i′j2 , . . ., in = i′jn . s1 is called a subsequence of s2. s2



Table 1. SDB1: a sequence database

Sequence identifier Sequence

1 〈a b c d a〉
2 〈d a e〉
3 〈a b d c 〉
4 〈c a〉

is called a super-sequence of s1, denoted by s1 � s2. For example the sequence
〈a b d c〉 is a super-sequence of 〈b c〉: 〈b c〉 � 〈a b d c〉. A sequence database SDB
is a set of tuples (sid, s), where sid is a sequence identifier and s a sequence.
For instance, Table 1 represents a sequence database of four sequences. A tuple
(sid, s) contains a sequence s1, if s1 � s. The support of a sequence s1 in a
sequence database SDB, denoted sup(s1), is the number of tuples containing s1
in the database1. For example, in Table 1, sup(〈c a〉) = 2.

A frequent sequential pattern is a sequence such that its support is greater or
equal to a given threshold: minsup. The sequential pattern mining problem is
to find the complete set of frequent sequential patterns with respect to a given
sequence database SDB and a support threshold minsup.

2.2 Sequential Pattern Mining under Constraints

In order to drive the mining process towards the user objectives and to elim-
inate irrelevant patterns, one can define constraints [10]. The most commonly
used constraint is the frequency constraint (that assigns a value to minsup).
We review some of the most important constraints for the sequential mining
problem [10].

Closedness Constraint The closed sequential patterns [23] are a condensed
representation of the whole set of sequential patterns. This condensed represen-
tation eliminates redundancies according to the frequency constraint. A frequent
sequential pattern s is closed if there exists no other frequent sequential pattern
s′ such that s � s′ and sup(s) = sup(s′). For instance, with minsup = 2, the
sequential pattern 〈b c〉 from Table 1 is not closed whereas the pattern 〈a b c〉 is
closed.

Item constraint. An item constraint specifies subset of items that should or
should not be present in the sequential patterns. For instance, if we impose the
constraint Citem ≡ sup(p) ≥ 2 ∧ (a ∈ p) ∧ (b ∈ p), three sequential patterns are
mined from Table 1: p1 = 〈a b〉, p2 = 〈a b c〉 and p3 = 〈a b d〉.
Size constraint. The aim of this constraint is to limit the length of the patterns,
the length being the number of occurrences of items. The length of a pattern

1 The relative support is also used:

supSDB(T ) =
|{(sid, s) s.t. (sid, s) ∈ SDB ∧ (T � s)}|

|SDB|



p will be denoted by len(p). For example, if len(p) ≥ 3 ∧ sup(p) ≥ 2, only two
sequential patterns are extracted (p2 and p3).

Gap constraint. Another widespread constraint is the gap constraint. A se-
quential pattern with a gap constraint Cgap ≡ [M,N ], denoted by p[M,N ], is a
pattern such as at least M items and at most N items are allowed between ev-
ery two neighbor items, in the original sequences. For instance, let p[0,2] = 〈c a〉
and p[1,2] = 〈c a〉 be two patterns with two different gap constraints and let us
consider the sequences of Table 1. Sequences 1 and 4 support pattern p[0,2] (se-
quence 1 contains one item between (c) and (a) whereas sequence 4 contains no
item between (c) and (a)). But only Sequence 1 supports p[1,2] (only sequences
with one or two items between (c) and (a) support this pattern).

Regular expression constraint. A regular expression constraint CRE is a con-
straint specified as a regular expression over the set of items. A sequential pattern
satisfies CRE if and only if the pattern is accepted by its equivalent deterministic
finite automata [11]. For instance, the two sequential patterns 〈a b c〉 and 〈a d c〉
from Table 1 satisfy the regular expression constraint CRE = a ∗ {bb|bc|dc}.

3 Constraint Programming

In this section, we first introduce basic constraint programming concepts and
then present two constraints of interest: Among and Regular.

3.1 Preliminaries

Constraint programming (CP) is a generic framework for solving combinatorial
problems modelled as Constraint Satisfaction Problems (CSP). The key power
of CP lies in its declarative approach towards problem solving: in CP, the user
specifies the set of constraints which has to be satisfied, and the CP solver
generates the correct and complete set of solutions. In this way, the specification
of the problem is separated from the search strategy.

A Constraint Satisfaction Problem (CSP) consists of a finite set of variables
X = {X1, . . . , Xn} with finite domains D = {D1, . . . , Dn} such that each Di

is the set of values that can be assigned to Xi, together with a finite set of
constraints C, each on a subset of X . A constraint C ∈ C is a subset of the
cartesian product of the domains of the variables that are in C. The goal is
to find an assignment (Xi = di) with di ∈ Di for i = 1, . . . , n, such that all
constraints are satisfied. This assignment is called a solution to the CSP. For a
given assignment t, t[Xi] denotes the value assigned to Xi in t.

In Constraint Programming (see [2]), the solution process consists of iter-
atively interleaving search phases and propagation phases. The search phase
essentially consists of enumerating all possible variable-value combinations, un-
til we find a solution or prove that none exists. It is generally performed on a
tree-like structure. In order to avoid the systematic generation of all the combi-
nations and reduce the search space, the propagation phase shrinks the search



space: each constraint propagation algorithm removes values that a priori cannot
be part of a solution w.r.t. the partial assignment built so far. The removal of
inconsistent domain values is called filtering.

An important modelling technique from CP are the global constraints that
provide shorthands to often-used combinatorial substructures. Global constraints
embed specialized filtering techniques that exploit the underlying structure of
the constraint to establish stronger levels of consistency much more efficiently.
Nowadays, global constraints are considered to be one of the most important
components of CP solvers in practice.

3.2 The Among and Regular Global Constraints

Among Constraint. This constraint restricts the number of occurrences of
some given values in a sequence of n variables [5]:

Definition 1 (Among constraint, [5]). Let X=X1,. . .,Xn be a sequence of n
variables, S a set of values, DX the cartesian product of the variable domains
in X. Let l and u be two integers s.t. 0 ≤ l ≤ u ≤ n.

Among(X,S, l, u) = {t ∈ DX | l ≤ | {i, t[Xi] ∈ S} |≤ u}

The Among constraint can be encoded by channelling into 0/1 variables using
the sum constraint [6]: ∀i ∈ {1, . . . , n} Bi = 1 ↔ t[Xi] ∈ S ∧ l ≤∑n

i=1Bi ≤ u.

Regular Constraint. Given a deterministic finite automaton M describing
a regular language, constraint Regular(X,M) ensures that every sequence of
values taken by the variables of X have to be a member of the regular language
recognised by M :

Definition 2 (Regular constraint, [16]). Let M be a Deterministic Finite
Automaton (DFA), L(M) the language defined by M , X a sequence of n vari-
ables. Regular(X,M) has a solution iff ∃ t ∈ DX s.t. t ∈ L(M).

In [16], Regular constraint over a sequence of n variables is modelled by a
layered directed graph G = (V,U), and a solution to Regular(X,M) corresponds
to an s-t path in graph G, where s is the “source” node and t the “sink” node.

4 Modeling Sequential Patterns using CP

This section presents our CP modelling for the sequential pattern mining prob-
lem. Let I = {i1, i2, . . . , in} be a set of n items, EOS a symbol not belonging to
I (EOS /∈ I) denoting the end of a sequence, SDB a set of m sequences and `
the maximal length of the sequence in SDB.



0start 1 2 3 4
a

b

d

c

EOS

b

d

c

EOS

d

c
EOS

c

EOS

EOS

Fig. 1. The automaton modelling all subsequences of the sequence 〈a b d c〉.

4.1 Modelling an Unknown Sequential Pattern

Let p be the unknown sequential pattern we are looking for. First, ` variables
{P1, P2, . . . , P`} having Di = I ∪{EOS} for domain are introduced to represent
p. Second, m boolean variables Ss (having {0, 1} for domain) are used such that
(Ss = 1) iff sequence s contains the unknown sequential pattern p:

(Ss = 1)⇔ (p � s) (1)

In equation (1), (Ss = 1) if pattern p is a subsequence of s; 0 otherwise. So,
sup(p) = Σs∈SDB Ss.

4.2 Modelling Sequential Pattern Mining

Let SDB be a sequence database and let a support threshold minsup. To encode
that “p � s”, we first have to generate an automaton As capturing all subse-
quences that can be found inside a given sequence s. Then, we have to impose a
Regular constraint stating that the unknown pattern p must be recognized by
the automaton As.

To reduce the number of states of the automaton, for each sequence, we
consider only its frequent items in the SDB w.r.t. minsup. Indeed, any super-
pattern of an infrequent item cannot be frequent. Figure 1 shows an example of
automaton generated for the third sequence of Table 1. Algorithm 1 depicts the
pseudo-code for generating the automaton As.

To enumerate the complete set of frequent sequential patterns with respect
to a given sequence database SDB and a support threshold minsup, we need
to express that the unknown sequential pattern p occurs at least minsup times.
This problem is modelled by the following constraints:



Algorithm 1: Pseudo-code for generating As.

function generateAutomaton(Sequence s)
Automaton As;
As.nbState ← length(s) + 1;
As.addInitialState(0);
As.addAcceptingState(length(s));
foreach (state ∈ [0,length(s)]) do

foreach (position ∈ [state+1,length(s)]) do
item ← getItem(s,position);
As.addTransition(state,item,position);

As.addTransition(state,EOS,length(s));

return As;

Theorem 1 (Frequent Sequential Pattern Mining). Sequential pattern
mining is expressed by the following constraints:

∀s ∈ SDB : Ss = 1↔ Regular(p,As) (2)

sup(p) =
∑

s∈SDB
Ss ≥ minsup (3)

Proof. The reified constraint (2) models the support constraint. By construction,
the automaton As encodes all sequential patterns that are subsequences of the
sequence s. If the Regular constraint is satisfied (resp. not satisfied), then Ss
must be equal to 1 (resp. must be equal to 0). The propagation is also performed,
in a same way, from the equality constraint toward the Regular constraint.

The frequency constraint (3) enforces that at least minsup variables from S
must take value 1. Together with constraint (2), it enforces that at least minsup
sequences must support the sequential pattern described by p. �

4.3 Modelling other Constraints

This section shows how our CP approach enables us to express in a straightfor-
ward way constraints presented in Section 2.2.

Closedness Constraint. By definition a closed sequential pattern is the largest
pattern that is contained in all selected sequences. Intuitively, in our encoding
this corresponds to the sequential pattern having the less number of variables Pi
instantiated to EOS. Thus, the satisfaction problem is turned into an optimiza-
tion one: minimize the numbers of variables Pi instantiated to EOS. To express
this minimization problem, we first have to add for each variable Pi an unary
constraint ci stating that if (Pi = EOS) we have to pay a cost 1; 0 otherwise.



Then, we have to minimize the cost function c(p) =
∑
Pi∈p ci to obtain a closed

sequential pattern:

minimizep c(p)
sup(p) ≥ minsup (4)

To enumerate the complete set of closed sequential patterns with respect to
a given sequence database SDB and a support threshold minsup, we need to
avoid future patterns to be equal to the previously found closed patterns. So,
each time a frequent sequential pattern p is proven closed, we dynamically add
a new constraint to forbid it.

Item Constraint. In order to specify that a subset of items should or should
not be present in the sequential patterns, we have to add the following constraint:

Among(p, V, [l, u]) (5)

where V is a subset of items, l and u are two integers s.t. 0 ≤ l ≤ u ≤ `. The
Among constraint enforces that the number of variables of p that take a value
from V is at least l and at most u. Since p represents the sequential patterns
we are looking for, the previous constraint ensures that items of V should be
present at least l times in the mined patterns.

To express the fact that the sequential patterns should not contain any item
of V , we just have to set l and u to 0.

Size Constraint. In order to consider the frequent sequential patterns of size
k, we just have to add the following constraints:

∀i ∈ [1 . . . k] : Pi 6= EOS (6)

∀i ∈ [k + 1 . . . `] : Pi = EOS (7)

The previous constraints enforce that the k first variables of p must be dif-
ferent from EOS, while the (` − k) remaining variables of p must be equal to
EOS.

The minimum size constraint (i.e. len(p) ≥ k) can be formulated by the
following constraint:

∀i ∈ [1 . . . k] : Pi 6= EOS (8)

For the maximum size constraint (i.e. len(p) ≤ k), this can be modelled as
follows:

∀i ∈ [k + 1 . . . `] : Pi = EOS (9)
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Fig. 2. The new automaton modelling all subsequences of the sequence 〈a b d c〉 sat-
isfying the gap constraint [1,1].

Gap Constraint. Let p[M,N ] be the sequential pattern satisfying the gap con-
straint [M,N ]. To encode this constraint we have to modify the construction of
the automaton As (cf. Theorem 1) in a such way that only transitions respect-

ing the gap constraint will be kept. Let A
[M,N ]
s be the new resulting automaton

representing all sequential patterns that are subsequence of the sequence s and
satisfying the gap constraint. Finally, the reified constraint (2) is rewrited as
follows:

∀s ∈ SDB : Ss = 1↔ Regular(p,A[M,N ]
s ) (10)

Theorem 2 (Frequent Sequential Pattern Mining with Gap). Sequential
pattern mining with a gap constraint is expressed by constraints (3) and (10).

Figure 2 gives the new automaton obtained from the automaton of Figure 1
with the gap constraint [1, 1]. For instance, the sequential pattern 〈a b〉 does not
satisfy the gap constraint; it is not recognized by the new automaton.

To generate the automaton A
[M,N ]
s for a sequence s, we need to modify

Algorithm 1 in a such way that only valid transitions satisfying the gap constraint
[M,N ] are considered . This is done by adding the following condition inside the
second loop foreach: (state == 0 ||M ≤ position−state ≤ N) (see Algorithm 1).

Regular Expression Constraint. Let Are be an automaton encoding a regu-
lar expression over the set of items. Then, the regular expression constraint can
be formulated as follows:

Regular(p,Are) (11)

As presented in [8], a regular expression can be translated into a determin-
istic finite automaton. Thus, the Regular constraint over p ensures that every



sequence of values taken by the variables of p have to be a member of the reg-
ular language recognised by Are, therefore recognized by the regular expression
associated to Are.

5 Related Work

Computing Sequential Patterns. In the context of constraint-based sequen-
tial pattern mining, several algorithms have been proposed [19, 25, 15, 23, 22,
11]. All these algorithms exploit properties of the constraints (i.e., monotonic-
ity, anti-monotonicity or succinctness) to perform effective pruning. For con-
straints that do not fit in these categories, they are handled by relaxing them
to achieve some nice property (like anti-monotonicity) facilitating the pruning.
For instance, Garofalakis et al. [11] proposed regular expressions as constraints
and developed a family of SPIRIT algorithms each achieving a different kind of
relaxation of the regular expression constraint. Such a method, though inter-
esting, makes tricky the integration of such constraints in a nice and elegant
way. So, unlike these algorithms, our approach enables to address in a unified
framework a broader set of constraints, and more importantly, to combine them
simultaneously.

CP for Pattern Mining. In the context of local patterns, an approach using
CP for itemset mining has been proposed in [17]. This approach addresses in a
unified framework a large set of local patterns and constraints such as frequency,
closedness, maximality, constraints that are monotonic or anti-monotonic. To
deal with richer patterns satisfying properties involving several local patterns,
different extensions have been proposed, such as pattern sets [13], n-ary pat-
terns [14], top-k patterns [20] or skypatterns [21]. Our approach also benefits
from the recent progress on cross-fertilization between data mining and CP for
itemset mining, but it addresses a different problem with a different modelling.

CP for Sequence Mining. More recently, Coquery et al. [9] have proposed
a SAT-Based approach for Discovering frequent, closed and maximal sequential
patterns with wildcards in only a single sequence of items. However, unlike [9],
our approach considers a database of sequences of items. Moreover, in [9], the
sequential patterns with non-contiguous items are modelled using empty items
as wildcards. But the gap between the items have to be fixed. Then, for instance
the two sequential patterns 〈a o b〉 and 〈a o o b〉 are considered different. On the
contrary, our modelling enables us to define any (minimal or maximal) value for
the gap.

6 Experimentations

Experiments are conducted on texts from biological and medical texts. The goal
is to discover relations between genes and rare diseases. The details of this ap-
plication is given in [4]. In this section, we focus on the extraction of sequential
patterns using our CP approach, and we give quantitative results showing the
relevant of the approach.



6.1 Case Study

Settings. We created a corpus from the PubMed database using HUGO2 dic-
tionary and Orphanet dictionary to query the database to get sentences having
at least one rare disease and one gene. 17, 527 sentences have been extracted
in this way and we labelled the gene and rare disease (RD) names thanks
to the two dictionaries. For instance, the sentence “<disease>Muir-Torre
syndrome<\disease> is usually inherited in an autosomal dominant fashion
and associated with mutations in the mismatch repair genes, predominantly in
<gene>MLH1<\gene> and <gene>MSH2<\gene> genes.” contains one
recognized RD, and two recognized genes. These 17, 527 sentences are the train-
ing corpus from which we experiment the sequential pattern extraction.

Sequential Pattern Extraction. Sequences of the SDB are the sentences of
the training corpus: an item corresponds to a word of the sentence. We carry out
a POS tagging of the sentences thanks to the TreeTagger tool [18]. In the sen-
tences, each word is replaced by its lemma, except for gene names (respectively
disease names) which are replaced by the generic item GENE (respectively
DISEASE). Note that unlike machine learning based methods, our approch
does not require to annotate the relations: they are discovered.

In order to discover sequential patterns, we use usual constraints such as
the minimal frequency and the minimal length constraints and other useful con-
straints expressing some linguistic knowledge (e.g. membership and association
constraints). The goal is to retain sequential patterns which convey linguistic
regularities (e.g., gene-rare disease relationships). Our method offers a natural
way to simultaneously combine in a same framework these constraints coming
from various origins. We briefly sketch these constraints.
• The minimal frequency constraint. Three values of minimal frequency have
been experimented: 2%, 5%, and 10%.
• The minimal length constraint. The aim of this constraint is to remove sequen-
tial patterns that are too small w.r.t. the number of items (number of words) to
be relevant linguistic patterns. We tested this constraint with a value set to 3.
• The membership constraint. This constraint enables to filter out sequential pat-
terns that do not contain some selected items. For example, we express that the
extracted patterns must contain at least three items (expressing the linguistic
relation): GENE, DISEASE and noun or verb3. We used the item constraint
to enforce this constraint.
• The association constraint. This constraint expresses that all sequential pat-
terns that contain the verb item must contain its lemma and its grammatical
category. We used the item constraint to enforce this constraint.
• The closedness constraint. In order to exclude redundancy between patterns,
we used closed sequential patterns.

2 www.genenames.org
3 For each word (i.e. item), its grammatical category is stored in a base.



#sentences 50 100 150 200 250
#sol. time #sol. time #sol. time #sol. time #sol. time

freq > 2% 129 1,105 329 12,761 441 35,164 (89) – (34) –

freq > 5% 47 285 67 1,571 81 2,091 94 4,119 119 8,516

freq > 10% 4 53 21 251 26 577 29 1,423 28 2,764

#sentences 300 350 400 450 500
#sol. time #sol. time #sol. time #sol. time #sol. time

freq > 2% (129) – (45) – (10) – (1) – (0) –

freq > 5% 101 9,620 93 16057 83 21,764 84 35,962 (26) –

freq > 10% 30 5147 24 4,493 23 7,026 20 13,744 21 17,708
Table 2. Results obtained on different subsets of the PubMed dataset.

Experimental Protocol. We carried out experiments on several subsets of
the PubMed dataset with different sizes ranging from 50 to 500 sentences. A
timeout of 10 hours has been used. For each subset, we report the number of
extracted closed sequential patterns and the CPU-times to extract them (in
seconds). When the timeout is reached, the number of extracted patterns (until
the timeout) is given in parenthesis.

All experiments were conducted on AMD Opteron 2.1 GHz and a RAM of
256 GB. We implemented our proposal in C++ using the library toulbar24 for
solving constrained optimization problems modelled as Cost Function Network
(CFN).

6.2 Results

Table 2 reports the results we obtained on different subsets of the PubMed
dataset with values of minsup ranging from 2% to 10%. From these results, we
can draw the following remarks.

i) Soundness and Flexibility. As the resolution performed by the CP solver
is sound and complete, our approach is able to mine the correct and complete
set of sequential patterns satisfying the different constraints. We compared the
sequential patterns extracted by our approach with those found by [4], and the
two approaches return the same set of patterns. Table 2 depicts the number of
closed sequential patterns according to minsup. As expected, the lower minsup
is, the larger the number of extracted sequential patterns.

ii) Highlighting useful sequential patterns. Our approach allowed to ex-
tract several relevant linguistic patterns. Such patterns can be used to explain
RD-gene relationships from PubMed articles. For instance, three sequential pat-
terns of great interest were highlighted by the expert:

1. 〈(DISEASE) (be) (cause) (by) (mutation) (in) (the) (GENE)〉
2. 〈(GENE) (occur) (in) (DISEASE)〉
4 https://mulcyber.toulouse.inra.fr/projects/toulbar2.



3. 〈(DISEASE) (be) (an) (mutation) (in) (GENE)〉
From a biomedical point of vue, these sequential patterns are interesting since

they convey a notion of causality (i.e. gene cause rare disease).

iii) Computational Efficiency. This experiment quantify runtimes and the
scalability of our approach. In practice, runtimes vary according to the size of the
datasets. For datasets with size up to 200, the set of all solutions is computed.
We observe that runtimes vary from few seconds for high frequency thresholds
to about few hours for low frequency thresholds. However, for large size datasets
(≥ 200) and low frequency thresholds (i.e. minsup = 2%), the CP approach does
not succeed to complete the extraction of all closed sequential patterns within
a timeout of 10 hours. Indeed, with the increase of the size of the dataset, the
search space and the runtime increase drastically, and the solver spends much
more time to find the first solution.

Finally, note that comparing runtimes with those obtained by ad hoc ap-
proaches would be rather difficult. In fact, these approaches use devoted tech-
niques and do not offer the same level of genericity and expressivity as in our CP
approach. Moreover, they cannot push in depth simultaneously different cate-
gories of constraints. Above all, there does not exist any algorithm, neither tool,
for extracting sequential patterns under all the contraints proposed in our work.

7 Conclusion

We have proposed a flexible approach to mine sequential patterns of items in
a sequence database. The declarative side of the CP framework easily enables
us to address a large set of constraints and leads to a unified framework for
extracting sequential patterns under constraints. Finally, the feasibility and the
interest of our approach has been highlighted through experiments on a case
study in biomedical literature for discovering gene-RD relations from PubMed
articles.

We are currently investigating a new direction to enhance the efficiency of
our approach: instead of constructing an automaton for every sequence, it would
be more efficient to build some variant of a Prefix Tree Automata on the origi-
nal dataset to avoid some redundancies. Furthermore, we intend to extend our
approach to discover sequential patterns of itemsets in a sequence database. Dis-
covering pattern sets is an attractive road to propose actionable patterns and
the CP modelling is a proper paradigm to tackle this challenge [13, 14]. Further
work is to address this issue.
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Abstract. Nowadays data sets are available in very complex and het-
erogeneous ways. The mining of such data collections is essential to sup-
port many real-world applications ranging from healthcare to marketing.
In this work, we focus on the analysis of “complex” sequential data by
means of interesting sequential patterns. We approach the problem us-
ing an elegant mathematical framework: Formal Concept Analysis (FCA)
and its extension based on “pattern structures”. Pattern structures are
used for mining complex data (such as sequences or graphs) and are
based on a subsumption operation, which in our case is defined with re-
spect to the partial order on sequences. We show how pattern structures
along with projections (i.e., a data reduction of sequential structures),
are able to enumerate more meaningful patterns and increase the com-
puting efficiency of the approach. Finally, we show the applicability of
the presented method for discovering and analyzing interesting patients’
patterns from a French healthcare data set of cancer patients. The quan-
titative and qualitative results are reported in this use case which is the
main motivation for this work.

Keywords: formal concept analysis, pattern structures, sequential pat-
tern structures, sequences

Introduction

Sequence data is largely present and used in many applications. Consequently,
mining sequential patterns from sequence data has become an important and
crucial data mining task. In the last two decades, the main emphasis has been on
developing efficient mining algorithms and effective pattern representations [1–5].
However, the problem with traditional sequential pattern mining algorithms (and
generally with all pattern enumeration algorithms) is that they generate a large
number of frequent sequences while few of them are truly relevant. To echo this
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challenge, some recent studies try to enumerate patterns using some alternative
interestingness measures or by sampling representative patterns. A general idea,
which is a framework of finding statistically significant patterns, is to extract
patterns whose characteristic on a given measure, such as frequency, strongly
deviates from its expected value under a null model. In this work, we focus on
complementing the statistical approaches with a sound and adequate algebraic
approach. That is, can we develop a framework for enumerating only patterns of
required types based solely on data lattices and its associated measures?

The above question can be answered by addressing the problem of analyzing
sequential data with the formal concept analysis framework (FCA), an elegant
mathematical approach to data analysis [6], and pattern structures, an exten-
sion of FCA that handles complex data [7]. To analyze a dataset of “complex”
sequences while avoiding the classical efficiency bottlenecks, we introduce and
explain the usage of projections which are mathematical functions that respect
certain algebraic properties. This novel usage of projections for sequences allows
one to reduce the computational costs and the volume of enumerated patterns,
avoiding thus the infamous “pattern flooding”. In addition, we provide and dis-
cuss several measures to rank patterns with respect to their “interestingness”,
giving the order in which the patterns may be efficiently analyzed.

In this paper, we develop a novel, rigorous and efficient approach for working
with sequential pattern structures in formal concept analysis. The main contri-
butions of this work can be summarized as follows:

Pattern structure specification and analysis. We propose a novel way of
dealing with sequences based on complex alphabets by mapping them to
pattern structures. The genericity power provided by the pattern structures
allows our approach to be directly instantiated with state-of-the-art FCA
algorithms, making the final implementation flexible, accurate and scalable.

Projections of Sequential Pattern Structures. We introduce and discuss
the notion of “projections” for sequential pattern structures. These math-
ematical objects significantly decrease (i.e., filter) the number of patterns,
while preserving the most interesting ones for an expert. Projections are
easily built to answer questions that an expert may have. Moreover, combi-
nations of projections and concept stability index provide an efficient tool
for the analysis of complex sequential datasets. The second advantage of pro-
jections is its ability to significantly decrease the complexity of a problem,
saving thus computational time.

Experimental evaluations. We evaluate our approach on real sequence dataset
of a regional healthcare system. The data set contains ordered sets of hos-
pitalizations for cancer patients with information about the hospitals they
visited, causes for the hospitalizations and medical procedures. These or-
dered sets are considered as sequences. The experiments reveal interesting
(from a medical point of view) and useful patterns, and show the feasibility
and the efficiency of our approach.

The paper is organized as follows. Section 1 introduces formal concept analy-
sis and pattern structures. The specification of pattern structures for the case of
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sequences is presented in Section 2. Section 3 describes projections of sequential
pattern structures followed in Section 4.1 by the evaluation and experimations.
Finally, related works are discussed before concluding the paper.

1 FCA and Pattern Structures

1.1 Formal Concept Analysis

FCA [6] is a formalism for data analysis. FCA starts with a formal context and
builds a set of formal concepts organized within a concept lattice. A formal
context is a triple (G,M, I), where G is a set of objects, M is a set of attributes
and I is a relation between G and M , I ⊆ G×M . In Table 1, a formal context
is shown. A Galois connection between G and M is defined as follows:

A′ = {m ∈M | ∀g ∈ A, (g,m) ∈ I}, A ⊆ G
B′ = {g ∈ A | ∀m ∈M, (g,m) ∈ I}, B ⊆M

The Galois connection maps a set of objects to the maximal set of attributes
shared by all objects and reciprocally. For example, {g1, g2}′ = {m4}, while
{m4}′ = {g1, g2, g4}.

m1 m2 m3 m4

g1 x x
g2 x x
g3 x
g4 x x

Table 1: A toy FCA context.

(; {m1,m2,m3,m4})

(g2; g4; {m3,m4})({g1} ; {m1,m4}) ({g3} ; {m2})

({g1, g2, g4} ; {m4})

({g1, g3, g2, g4} ; )

Fig. 1: Concept Lattice for the toy context

A formal concept is a pair (A,B), where A is a subset of objects, B is a subset
of attributes, such that A′ = B and A = B′, where A is called the extent of the
concept, and B is called the intent of the concept. A formal concept corresponds
to a pair of maximal sets of objects and attributes, i.e. it is not possible to add an
object or an attribute to the concept without violating the maximality property.
For example a pair ({g1, g2, g4} , {m4}) is a formal concept.

Formal concepts can be partially ordered w.r.t. the extent inclusion (dually,
intent inclusion). For example, ({g1} ; {m1,m4}) ≤ ({g1, g2, g4} , {m4}). This
partial order of concepts is shown in Figure 1.

1.2 Stability Index of a Concept

The number of concepts in a lattice for real-world tasks can be considerable. To
find the most interesting subset of concepts, different measures can be used such
as the stability of the concept [8] or the concept probability and separation [9].
These measures helps extracting the most interesting concepts and were shown
to be reliable in noisy data [9].
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Definition 1. Given a concept c, the concept stability Stab(c) is the number of
subsets of the concept extent (denoted Ext(c)), whose description is equal to the
concept intent (denoted Int(c)). Hereafter ℘(P ) is a powerset of P .

Stab(c) :=
|{s ∈ ℘(Ext(c)) | s′ = Int(c)}|

|℘(Ext(c))| (1)

Stability measures how much the concept depends on the initial dataset. The
bigger the stability the more objects can be deleted from the context without
affecting the intent of the concept, i.e. the intent of the most stable concepts are
likely to be a characteristic pattern of the studied data set.

To the best of our knowledge the fastest algorithm [10] processes a concept
lattice L, in the worse case, in O(|L|2) where |L| is the size of the concept lattice.
For a big lattice, the stability calculation time can be high, and an estimation
of the stability is useful. It should be noted that in a lattice the extent of any
parent of a concept c is a superset of the extent of c, while the extent of any child
is a subset. Given a concept c and its child, ∀s ⊆ Ext(child), s′′ ⊆ Ext(child) ⊂
Ext(c), i.e. s′ 6= Int(c). Thus, any subset of any child of the concept c should
be excluded from the numerator in Equation 1.

Stab(c) ≤ 1− max
ch∈Children

(2−Diff(c,ch)), (2)

where Diff(c, ch) is the extent difference between concept c and its child ch,
Diff(c, child) = |c.Ext \ child.Ext|. Thus, if we would like to find stable con-
cepts, with stability more than 0.97, we should select among concepts with

max
ch∈Children

(Diff(c, ch)) ≥ − log(1− 0.97) = 5.06. (3)

1.3 Pattern Structures

Although FCA applies to binary context, more complex data such as sequences
or graphs can be directly processed as well. For that, pattern structures were
introduced in [7].

Definition 2. A pattern structure is a triple (G, (D,u), δ), where G is a set of
objects, (D,u) is a complete meet-semilattice of descriptions and δ : G → D
maps an object to a description.

The lattice operation in the semilattice (u) corresponds to the similarity
between two descriptions. Standard FCA can be presented in terms of a pat-
tern structure. In this case, G is the set of objects, the semilattice of descrip-
tions is (℘(M),u) and a description is a set of attributes, with the u oper-
ation corresponding to the set intersection. If x = {a, b, c} and y = {a, c, d}
then x u y = x ∩ y = {a, c}. The mapping δ : G → ℘(M) is given by,
δ(g) = {m ∈ M | (g,m) ∈ I}, and returns the description for a given object as
a set of attributes.
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The Galois connection between ℘(G) and D is defined as follows:

A� :=
l

g∈A
δ(g), for A ⊆ G

d� := {g ∈ G | d v δ(g)}, for d ∈ D

The Galois connection makes a correspondence between sets of objects and
descriptions. Given a set of objects A, A� returns the description which is
common to all objects in A. And given a description d, d� is the set of all
objects whose description subsumes d. More precisely, the partial order (or
the subsumption order) on D (v) is defined w.r.t. the similarity operation u:
c v d⇔ c u d = c, and c is subsumed by d.

Definition 3. A pattern concept of a pattern structure (G, (D,u), δ) is a pair
(A, d) where A ⊆ G and d ∈ D such that A� = d and d� = A, A is called the
concept extent and d is called the concept intent.

A pattern concept corresponds to the maximal set of objects A whose descrip-
tion subsumes the description d, where d is the maximal common description for
objects in A. The set of all concepts can be partially ordered w.r.t. partial order
on extents (dually, intent patterns, i.e v), within a concept lattice. The stability
of a pattern concept can be defined or estimated by the same procedure as for
a formal concept, since the stability only depends on extents.

An example of pattern structures is given in Table 2, while the corresponding
lattice is depicted in Figure 2.

2 Sequential Pattern Structures

2.1 An Example of Sequential Data

Patient Trajectory

p1 〈[H1, {a}]; [H1, {c, d}]; [H1, {a, b}]; [H1, {d}]〉
p2 〈[H2, {c, d}]; [H3, {b, d}]; [H3, {a, d}]〉
p3 〈[H4, {c, d}]; [H4, {b}]; [H4, {a}]; [H4, {a, d}]〉

Table 2: Toy sequential data on patient medical trajectories.

Imagine that we have medical trajectories of patients, i.e. sequences of hos-
pitalizations, where every hospitalization is described by a hospital name and a
set of procedures. An example of sequential data on medical trajectories with
three patients is given in Table 2. There are a set of procedures P = {a, b, c, d} a
set of hospital names TH = {H1, H2, H3, H4, CL,CH, ∗}, where hospital names
are hierarchically organized (by level of generality), H1 and H2 are central hos-
pitals (CH) and H3 and H4 are clinics (CL), and ∗ denotes the root of this
hierarchy. The least common ancestor in this hierarchy is denoted as h1 u h2,
for any h1, h2 ∈ TH , i.e. H1 uH2 = CH. Every hospitalization is described with
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one hospital name and may contain several procedures. The procedure order
in each hospitalization is not important. For example, the first hospitalization
[H2, {c, d}] for the second patient (p2) was in hospital H2 and during this hos-
pitalization patient underwent procedures c and d. An important task is to find
the “characteristic” sequences of procedures and associated hospitals in order to
improve hospitalization planning, optimize clinical processes or detect anomalies.

The search for characteristic sequences can be performed by finding the most
stable concepts in the lattice corresponding to a sequential pattern structure. For
the simplification of calculations, subsequences are considered without “gaps”,
i.e the order of non consequent elements is not taken into account. It is reasonable
in this task, because a hospitalization is a rather rare situation in the life of a
patient, and, thus, in the most cases a hospitalization has a strong relation to
the previous one. Next subsections define partial order on sequences and the
corresponding pattern structures.

2.2 Partial Order on Complex Sequences

A sequence is constituted of elements from an alphabet. The classical subse-
quence matching task requires no special properties of the alphabet. Several
generalization of the classical case were made by introducing subsequence re-
lation based on itemset alphabet [11] or on multidimensional and multilevel
alphabet [12]. Here, we generalize the previous cases, requiring for an alphabet
to form a semilattice (E,uE)3. This generalization allows one to process in a
unified way all types of complex sequential data.

Definition 4. Given an alphabet lattice (E,uE),

1. 〈〉 is a sequence;
2. for any sequence s = 〈e1; ...; en〉 and any element e ∈ E, s ◦ e = 〈e1; ...; en; e〉

is a sequence.

Definition 5. A sequence t = 〈t1; ...; tk〉 is a subsequence of a sequence s =
〈s1; ...; sn〉, denoted t ≤ s, iff k ≤ n and there exists j1, ..jk such that 1 ≤ j1 <
j2 < ... < jk ≤ n and for all i ∈ {1, 2, ..., k}, ti vE sji .

With complex sequences and such kind of subsequences the computation can
be hard. Thus, for the sake of simplification, only “restricted” subsequences are
considered, where only the order of consequent elements is taken into account,
i.e. given j1 in Definition 5, ji = ji−1 + 1 for all i ∈ {2, 3, ..., k}. Below the word
“subsequence” refers to “restricted” subsequence if not specified otherwise.

In the running example (Section 2.1), the alphabet is E = TH × ℘(P ) with
the similarity operation (h1, P1)u(h2, P2) = (h1uh2, P1∩P2), where h1, h2 ∈ TH
are hospitals and P1, P2 ∈ ℘(P ) are sets of procedures. Thus, the sequence ss1 in

3 It should be noted that in this paper we consider two semilattices, the first one is on
the characters of the alphabet, (E,uE), and the second one is introduced by pattern
structures, (D,u).
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Table 3 is a subsequence of p1 in Table 2 because if we set ji = i+1 (Definition 5)
then ss11 v p1j1 (‘CH’ is more general than H1 and {c, d} ⊆ {c, d}), ss12 v p1j2
(the same hospital and {b} ⊆ {b, a}) and ss13 v p1j3 (‘*’ is more general than H1

and {d} ⊆ {d}).

2.3 Sequential Meet-semilattice

Now, we can precisely define the sequential pattern structure that is used for
representing and managing sequences. For that, we make an analogy with the
pattern structures for graphs [13] where the meet-semilattice operation u re-
spects subgraph isomorphism. Thus, we introduce a sequential meet-semilattice
respecting subsequence relation. Given an alphabet lattice (E,uE), S is the set
of all sequences based on (E,uE). S is partially ordered w.r.t. Definition 5.
(D,u) is a semilattice on sequences S, where D ⊆ ℘(S) such that if d ∈ D
contains a sequence s then all subsequences of s should be included into d,
∀s ∈ d,@s̃ ≤ s : s̃ /∈ d, and similarity operation is the set intersection for two
set of sequences. Given two patterns d1, d2 ∈ D, the set intersection operation
ensures that if a sequence s belongs to d1ud2 then any subsequence of s belongs
to d1ud2 and thus (d1ud2) ∈ D. As the set intersection operation is idempotent,
commutative and associative, (D,u) is a valid semilattice.

However, the set of all possible subsequence for a given sequence can be rather
large. Thus, it is more efficient and representable to keep a pattern d ∈ D as a set
of all maximal sequences d̃, d̃ = {s ∈ d | @s∗ ∈ d : s∗ ≥ s} . Furthermore, every
pattern will be given only by the set of all maximal sequences. For example,{
p2
}
u
{
p3
}

=
{
ss6, ss7, ss8

}
(see Tables 2 and 3), i.e.

{
ss6, ss7, ss8

}
is the

set of all maximal sequences specifying the intersection result of two sets of
sequences specified by sequences p2 and p3, correspondingly

{
ss6, ss7, ss8

}
u{

p1
}

=
{
ss4, ss5

}
. Note that representing a pattern by the set of all maximal

sequences allows for an efficient implementation of the intersection “u” of two
patterns (see Section 4.1 for more details).

Example 1. The sequential pattern structure for our example (Subsection 2.1)
is (G, (D,u), δ), where G =

{
p1, p2, p3

}
, (D,u) is the semilattice of sequential

descriptions, and δ is the mapping associating an object in G to a description in
D shown in Table 2. Figure 2 shows the resulting lattice of sequential pattern
concepts for this particular pattern structure (G, (D,u), δ).

3 Projections of Sequential Pattern Structures

Pattern structures can be hard to process due to the usually large number of
concepts in the concept lattice, the complexity of the involved descriptions and
the similarity operation. Moreover, a given pattern structure can produce a lat-
tice with a lot of patterns which are not interesting for an expert. Can we save
computational time by avoiding to compute useless patterns? Projections of pat-
tern structures “simplify” to some degree the computation and allow one to work
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({
p2
}

; p2
)({

p1
}

; p1
) ({

p3
}

; p3
)

({
p1, p2

}
; ss2, ss3

) ({
p1, p3

}
; ss11, ss12

) ({
p2, p3

}
; ss6, ss7, ss8

)

({
p1, p2, p3

}
; ss4, ss5

)

(∅; ∗)

Fig. 2: The concept lattice for the pattern structure given by Table 2. Concept
intents reference to sequences in Tables 2 and 3.

Subsequences Subsequences
ss1 〈[CH, {c, d}]; [H1, {b}]; [∗, {d}]〉 ss2 〈[CH, {c, d}]; [∗, {b}]; [∗, {d}]〉
ss3 〈[CH, {}]; [∗, {d}]; [∗, {a}]〉 ss4 〈[∗, {c, d}]; [∗, {b}]〉
ss5 〈[∗, {a}]〉 ss6 〈[∗, {c, d}]; [CL, {b}]; [CL, {a}]〉
ss7 〈[CL, {d}]; [CL, {}]〉 ss8 〈[CL, {}]; [CL, {a, d}]〉
ss9 〈[CH, {c, d}]〉 ss10 〈[CL, {b}]; [CL, {a}]〉
ss11 〈[∗, {c, d}]; [∗, {b}]〉 ss12 〈[∗, {a}]; [∗, {d}]〉

Table 3: Subsequences of patient sequences in Table 2.

with a reduced description. In fact, projections can be considered as filters on
patterns respecting mathematical properties. These properties ensure that the
projection of a semilattice is a semilattice and that projected concepts have a
correspondence to original ones. Moreover, the stability measure of projected
concepts never decreases w.r.t the original concepts [7].

A possible projection for sequential pattern structures comes from the fol-
lowing observation. In many cases it may be more interesting to analyze long
subsequences. We call these projections Minimal Length Projection (MLP) and
they depend on the minimal allowed length l for the sequences in a pattern. To
project a pattern structure w.r.t. MLP, a pattern should be substituted with the
pattern where any sequence of length less then l is removed.

Example 2. If we set the minimal length threshold to 3, then there is only one
maximal common subsequence ss6 in Table 3 between p2 and p3 in Table 2, while
ss7 and ss8 are too short to be considered. Figure 3a shows the corresponding
projected lattice for the pattern structure in Table 2.

Another important type of projections is connected to a variation of the
lattice alphabet (E,uE). The simplest variation is to ignore of certain fields
in the elements. For example, if a hospitalization is described by a hospital
name and a set of procedures, then procedures can be ignored in similarity
computation. For that, in any element a set of procedures can be substituted by
∗ which is the most general element of the taxonomy of hospitals.

Another variation of the alphabet, is to require that some field(s) should
not be empty. For example, we want to find patterns with non-empty set of
procedures, or we want to have information about hospital (the element ∗ of
hospital taxonomy is not allowed in an element of a sequence). Such variations are
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easy to realize within our approach. For this, computing the similarity operation
between elements of the alphabet, one should check if the result contains empty
fields and, if yes, should substitute the result by ⊥. This variation is useful, as
shown in the experimental section, but this variation is rather difficult to define
within classical frequent sequence mining approaches.

Example 3. An expert is interested in finding sequential patterns describing how
a patient changes hospitals, without interest in procedures. Thus, any element
of the alphabet lattice containing a non-empty set of procedures is projected to
the corresponding element with the same hospital and an empty set of proce-
dures. Moreover, an expert is interested in finding sequential patterns containing
information about the hospital in every hospitalization, i.e. hospital field in the
patterns cannot be ∗, e.g. ss5 is an invalid pattern, while ss6 is a valid pattern
in Table 3. Figure 3b shows the lattice corresponding to the projected pattern
structure (Table 2) by changing the alphabet semilattice.

({
p2
}

; p2
)({

p1
}

; p1
) ({

p3
}

; p3
)

({
p1, p2

}
; ss2, ss3

) ({
p2, p3

}
; ss6

)

({
p1, p2, p3

}
; ∅
)

(∅; ∗)

(a) MLP projection, l = 3

({
p2
}

; p2
)({

p1
}

; p1
) ({

p3
}

; p3
)

({
p1, p2

}
; ss9

) ({
p2, p3

}
; ss7, ss8, ss10

)

({
p1, p2, p3

}
; ∅
)

(∅; ∗)

(b) Projection removing ‘*’ hospitals

Fig. 3: The projected concept lattices for the pattern structure given by Table 2.
Concept intents refer to the sequences in Tables 2 and 3.

4 Sequential Pattern Structure Evaluation

4.1 Implementation

Nearly any state-of-the-art FCA algorithm can be adapted to process pattern
structures instead of standard FCA contexts. We adapted AddIntent algo-
rithm [14], as the lattice structure is important for us to calculate stability (see
the algorithm for calculating stability in [10]). To adapt the algorithm to our
needs, every set intersection operation on attributes should be substituted with
semilattice operation u on corresponding patterns, while every subset checking
operation should be substituted with semilattice order checking v, in particular
all (·)′ should be substituted with (·)�.

The next question is how the semilattice operations (u, v) can be imple-
mented. Given two sets of sequences S = {s1, ...sn} and T = {t1, ..., tm}, the
similarity between these sets, S u T , is calculated according to Section 2.3, i.e.
maximal sequences among all common subsequences for any pair of si and tj .

To find all common subsequences of two sequences, the following observations
can be useful. If ss = 〈ss1; ...; ssl〉 is a subsequence of s = 〈s1; ...; sn〉 with
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jsi = ks+i (Definition 5: ks is the index difference from which ss is a subsequence
of s) and a subsequence of t = 〈t1; ...; tm〉 with jti = kt + i (likewise), then for
any index i ∈ {1, 2, ..., l}, ssi vE (sjsi u tjti ). Thus, to find all maximal common
subsequences between s and t, we first align s and t in all possible ways. For
each alignment of s and t we compute the resulting intersection. Finally, we keep
only the maximal intersected subsequences.

Let us consider two possible alignments of s1 and s2:
s1 = 〈{a} ; {c, d} ; {b, a}; {d} 〉
s2 = 〈{c, d};{b, d} ; {a, d}〉
ssl = 〈 ∅ ; {d} 〉

s1 = 〈{a} ; {c, d};{b, a}; {d} 〉
s2 = 〈{c, d};{b, d};{a, d}〉
ssr = 〈{c, d}; {b} ; {d} 〉

The left intersection ssl is not retained, as it is not maximal, while the right
intersection ssr is kept.

4.2 Experiments and Discussion

The experiments are carried out on an “Intel(R) Core(TM) i7-2600 CPU @
3.40GHz” computer with 8Gb of memory under the Ubuntu 12.04 operating
system. The algorithms are not parallelized and are coded in C++.

First, the public available database from UCI repository on anonymous web
data is used as a benchmark data set for scalability tests. This database contains
around 106 transactions, and each transaction is a sequence based on “simple”
alphabet, i.e. with no order on the elements. The overall time changes from
37279 seconds for the sequences of length MLP ≥ 5 upto 97042 seconds for the
sequences of length MLP ≥ 3. For more details see the web-page.4

Our use-case data set comes from PMSI5, a French healthcare system [15].
Each elements of a sequence has a “complex” nature. The dataset contains 2400
patients suffering from cancer. Every patient is described as a sequence of hospi-
talizations without any timestamps. The hospitalization is a tuple with three el-
ements: (i) healthcare institution (e.g. university hospital of Paris (CHUParis)),
(ii) reason of the hospitalization (e.g. a cancer disease), and (iii) set of medical
procedures that the patient underwent. An example of a medical trajectory of a
patient is provided below:

〈[CHUParis,Cancer, {P1, P2}]; [CHLyon,Chemo, {}]; [CHLyon,Chemo, {}]〉 .

.This sequence represents a patient trajectory with three hospitalizations. It
expresses that one patient was first admitted to the university hospital of Paris
(CHUParis) for a cancer problem as reason, and underwent procedures P1 and
P2. Then he had two consequent hospitalizations in Central hospital of Lyon
(CHLyon) for doing chemotherapy with no additional procedures. We substituted
the same consequent hospitalizations by the number of repetitions. With this
substitution, we have shorter and more understandable trajectory. For example,
the above pattern should be transformed into two hospitalizations where the
first hospitalization repeats once and the second twice:

〈[CHUParis,Cancer, {P1, P2}][1]; [CHLyon,Chemo, {}][2]〉 .
4 http://www.loria.fr/~abuzmako/PKDD2013/experiment-uci.html
5 Programme de Médicalisation des Sytèmes d’Information.
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The healthcare institution was associated with a geographical taxonomy of 4
levels of granularity (i.e. Root, Region, Department and Healthcare institution).
This taxonomy has 304 node. Where hospitalization reasons and medical proce-
dures are simple sets without any associated subsumption relation. The set of
hospitalisation reasons has 1939 items and the set of medical procedures has 723
items. The distribution of sequence lengths’ is shown in Figure 4.
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Fig. 4: The length distribution of sequences in the dataset

For this dataset the computation of the whole lattice is infeasible. However
our medical expert is not interested in all possible patterns, but rather in patterns
which answer his analysis question(s). First of all, an expert may know the
minimal size of sequences he is interested in, i.e. setting the MLP projection. If
an expert is interested in sequential patterns, the patterns of length 1 are unlikely
to be of interest for him (knowing that people go to hospitals when they are sick
is not a valuable new knowledge). Thus, we use the MLP projection of length 2
and 3 and take into account the small average length of the sequences.

Figure 5 shows computational time, the number of concepts in the lattice,
and the number of stable concepts for different projections. For example, com-
putation of the lattice for projection with name “R!PI” takes 400 seconds and
calculation of stability for every concept in the lattice takes 12000 seconds (Fig-
ure 5a), the size of the lattice is 1.8 ·106 concepts (Figure 5b) where around 1000
concepts have stability index more than 0.97 while an approximated solution to
find stable concepts (Formula 3) return only few unstable ones (Figure 5c).

Table 4 shows some interesting concept intents with the corresponding sup-
port and ranking w.r.t. to concept stability. For example the concept #1 is
obtained under the projection R!P for MLP ≥ 2, with the intent containing a
Cancer hospitalization followed by a Chemotherapy. This concept is the most
stable concept in the lattice for the given projection, and the cardinality of the
concept extent is 452 patients.

The first question that the analyst would like to address here is “What are
the sequential relations between hospitalization reasons and corresponding proce-
dures?”. To answer this question, we are not interested about healthcare institu-
tions. Thus, any alphabet element should be projected by substituting healthcare
institution fields by the ‘*’ hospital. As hospitalization reason is important in
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Fig. 5: Parameters of the result for different projections.

# Projection Intent Stab. Rank Support

1 R!P2 〈[Cancer, {}]; [Chemo, {}]〉 1 452
2 R!P2 〈[Cancer, {App.}]; [Ch.Prep, {}]; [Chemo, {}]〉 4 293
3 R!P3 〈[Cancer, {App.}]; [Ch.Prep, {}]; [Chemo, {}]〉 2 293
4 R!PI3 〈[Cancer, {}] ∗ 1; [Ch.Prep, {}] ∗ 1; [Chemo, {}] ∗ [8, 24]〉 4 193
5 G!R!3 〈[Bourgogne, Cancer]; [Bourgogne, Ch.Prep]; [A clinic in Dijon,Chemo]〉 5 29

Table 4: Interesting concepts, for different projections. Chemo is chemotherapy,
Ch.Prep is preparation for chemotherapy, App. is an operation for appendicitis.

each hospitalization so any alphabet element without the hospitalization reason
is of no use and should be projected to the bottom element ⊥ of the alphabet
lattice. This is a projection of the hospitalization alphabet and, thus, gives us
the projection of the pattern structure. Such projections are called R!P2 or R!P3,
meaning that we consider the fields “Reason” and “Procedures”, while the rea-
son should not be empty and the MLP parameter is 2 or 3. Patterns #1 and
#2 are obtained under the R!P2 projection. Pattern #1 trivially states that in
the Bourgogne region, “When a patient has a cancer, he undergoes chemother-
apy” which is one of the standard procedure followed by french physicians. This
pattern gives a general viewpoint about the cancer treatment.

The next accurate question is “How do the doctors detect colon cancer?”.
Pattern #2 and #3 answer our question, they show that cancer is detected
during an appendicitis surgical intervention which is followed by preparation for
chemotherapy and chemotherapy itself. These two patterns highlight a recently
discovered fact that acute appendicitis has been shown to occur antecedent to
cancer [16] within three years because of a carcinoma in colon or rectum. There-
fore, any patient over the age of 40 presenting with acute appendicitis is carefully
checked for carcinoma in the colon. We can also note that patterns #2 and #3
have the same form, but pattern #3 was obtained under R!P3 projection, and
has higher stability rank (2) than pattern #2 (4). Pattern #4 can help health-
care managers and doctors quantify on average the number of usually required
chemotherapies for a patient. It shows that “After detecting cancer, the patients
require chemotherapy between 8 and 24 times in many cases”. This pattern has
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been extracted by the projection R!PI3 (i.e. involving interval information). Fig-
ure 5a and 5b shows that this task is time and memory expensive.

“Where do patients prefer staying (i.e. hospital location) during their treat-
ment, and why ?”. To answer this expert question, we consider only healthcare
institutions and reason fields, requiring both to “have” some information, i.e.
projections G!R!2 and G!R!3. Nearly all patterns show that patients usually
prefer to be treated in the same region, without any preferences about the ex-
act hospital. However, pattern #5 obtained under G!R!3 projection shows us
that a good proportion of patients prefer to undergo Chemotherapy in a precise
private clinic in Dijon6, while cancer detection and preparation is usually done
everywhere in the Bourgogne region, depending on the patient preferences.

Figure 5 shows that with the increase of the minimal length of a pattern
(from 2 to 3), the memory and the time consumption is reduced, in some cases
significantly. Figure 5a shows that the precise stability calculation can take more
time than the calculation of the lattice, correspondingly the lattice computation
for projection R!PI2 takes 400 seconds, while the stability calculation procedure
takes 30 times more (12000). However, the approximation of concept stability
that is presented in the beginning of the paper (Formula 3) is fast and does filter
only few unstable concepts (less then 5%), while finding all stable (Figure 5c).

5 Related Work

The most widely used approach for analyzing sequences is, probably, mining
frequent subsequences [2–4, 12]. The most general type of sequences among them
is described in [12], where every element of the sequence is multidimensional and
multilevel, i.e. every element can be characterized by several components, and
for every component a kind of hierarchy can be applied. Then, every element e
in a sequences is substituted by all the most specific elements, which are more
general than e and, thus, the task is reduced to sequences of itemsets. In our
approach, the elements of sequences are considered to be even more general, for
example, beside multidimensional and multilevel sequences, sequences of graphs
fall under the definition. Moreover, frequent subsequences mining gives birth to
a lot of subsequences which can be hardly analyzed by an expert.

Formal Concept Analysis (FCA) [6] allows one to measure several indexes,
related to the importance of a pattern. One of the FCA approaches is [17], where
authors process sequential dataset based on “simple” alphabet without involving
any partial order on it, in this approach maximal common subsequences (with
no gaps) were mined and analyzed with FCA. In the work [11] only sequences
of itemsets were considered. All closed subsequences were, first, mined and then
regrouped by specialized algorithm in order to obtain a lattice similar to the
FCA lattice. Comparing with both approaches, our approach suggests a more
general definition of sequences and, thanks to pattern structures, there is no
‘premining’ step to find frequent (or maximal) subsequences. This allows us to
apply different “projections” specializing the request of an expert and simplifying

6 the name of the clinic is anonymized.
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the calculation. In addition, in our approach nearly all state-of-the-art FCA
algorithms can be used in order to efficiently process a dataset.

Another type of the FCA generalization is based on well-known LCM al-
gorithm [18]. Authors of [19] process multirelational databases by extending
LCM. Although this approach perfectly works for special kinds of multirela-
tional databases, it cannot process sequential datasets for the same reason why
it cannot process graph datasets in the settings of frequent graph mining.

Projections is an essential part of our approach and can be considered as a
special kind of constraints. Many constraints that do not change subsequence
relation have a corresponding projection. Authors of survey [20] (Section 5)
enumerate 8 types of constraints, two of them, i.e. “item constraint” and “length
constraint”, correspond the introduced projections.

Conclusion

In this paper, we present a novel approach for analyzing complex sequential data.
This kind of data is a generalization of data considered in previous approaches.
The approach is based on the formalism of sequential pattern structures and
projections. Our work complements the general orientations towards statisti-
cally significant patterns by presenting strong formal results on the notion of
interestingness from a concept lattice point of view. Using pattern structures
leads to the construction of a pattern concept lattice, which does not require the
setting of a support threshold, as usually needed in classical sequential pattern
mining. Moreover, the use of projections gives a lot of flexibility especially for
mining and interpreting special kinds of patterns.

Our framework was tested on a large-scale benchmark dataset and on a
real-world dataset with patient hospitalization trajectories. Interesting patterns
answering to the questions of an expert are extracted and interpreted, showing
the feasibility and usefulness of the approach and the importance of the stability
as a pattern-selection procedure.

For future work, we are planning to more deeply investigate projections, their
potentialities w.r.t. the types of patterns. Finally, another research direction is
mining of association rules or building a Horn approximation [21] from the stable
part of the pattern lattice.

Acknowledgements: this research received funding from the Basic Research
Program at the National Research University Higher School of Economics (Rus-
sia) and from the BioIntelligence project (France).
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Language of Conclusions and Formal Framework
for Data Mining with Association Rules

Jan Rauch

Faculty of Informatics and Statistics, University of Economics, Prague ?

Abstract. FOFRADAR is a formal framework describing a process of
data mining with association rules. Its purpose is to serve as a theoret-
ical basis for automation of the data mining process. Association rule
is understood as a couple of general Boolean attributes derived from
columns of a data matrix and mutually related in an interesting way.
FOFRADAR is based on a logical calculus of association rules, which
is enhanced by languages and procedures making possible to deal with
items of domain knowledge. Items of domain knowledge correspond to
general expressions good understandable to domain experts. One of the
languages of FOFRADAR is a language formulas which correspond to
conclusions we can draw from results of data mining process. New fea-
tures of this language are presented.

1 Introduction

A formal framework FOFRADAR (FOrmal FRAmework for Data mining with
Association Rules) describing a process of data mining with association rules is
introduced in [7]. Its goal is to describe the process such that formalized items
of domain knowledge can be used both in formulation of reasonable analytical
questions and in interpretation of results of a mining procedure. FOFRADAR
is assumed to serve as a theoretical basis for the EverMiner project [9, 14].

The goal of the EverMiner project is to study data mining as a permanent
knowledge driven process. It is assumed that there is a knowledge repository
containing both relevant domain knowledge and hypotheses on new items of
knowledge based on results of the analysis. We also assume there are tools that
formulate reasonable data mining tasks, search in the analysed data for true
patterns relevant to the formulated tasks, filter out found patterns which can be
understood as the consequences of items of knowledge stored in the repository,
synthesize hypotheses on new items of knowledge from the remaining patterns
and store these hypotheses in the knowledge repository.

Let us emphasize that EverMiner is rather a long-term project which can
bring interesting partial results. A natural part of the EverMiner project is a
study of possibilities of automation of data mining. A formal description of the

? The work described here has been supported by Grant No. IGA 20/2013 of the
University of Economics, Prague.



data mining process is a necessary prerequisite of its automation. We start with
mining of association rules which are known patterns used in data mining.

However, we deal with more general association rules than introduced in
[1]. The association rule is understood as an expression ϕ ≈ ψ where ϕ and ψ
are Boolean attributes derived from columns of analysed data matrices and ≈
stands for a condition concerning a contingency table of ϕ and ψ [10]. Symbol
≈ is called 4ft-quantifier. Boolean attributes are derived from basic Boolean
attributes i.e expressions A(α). Here A is an attribute corresponding to a column
of an analysed data matrix with possible values (i.e. categories) a1, . . . , ak and
α is a subset of the set of categories, α ⊂ {a1, . . . , ak}. Basic Boolean attribute
A(α) is true in a row o of a given data matrix M if A(o) ∈ α where A(o) is a
value of attribute A in row o. This means that we do not deal only with Boolean
attributes - conjunctions of attribute-value pairs A(a) where a ∈ {a1, . . . , ak}
but with general Boolean attributes derived from columns of an analyzed data
matrix. The 4ft-Miner procedure mines for such association rules [11].

FOFRADAR is a result of enhancing of a logical calculus of association rules
[10] by additional languages and procedures. It is strongly related to the rules
of the above introduced form ϕ ≈ ψ and to the possibilities of the 4ft-Miner
procedure to mine for such rules. The goal of this paper is to present new con-
siderations on language of formulas which correspond to conclusions of a data
mining process. Before that main features of FOFRADAR are introduced. We
proceed very informally, formal approach is introduced in [7, 8], see also [10].

The structure of the paper is as follows. An overview of FOFRADAR is in
section 2. Particular languages and procedures of FOFRADAR are described
in sections 3 – 6 in a way introduced in section 2. Language of conclusions is
discussed in section 7. Remarks to related works are in section 8.

2 FOFRADAR Overview

FOFRADAR is sketched in Fig. 1 together with relations of its elements to the
CRISP-DM. It is a result of an enhancement of a calculus of association rules by

Fig. 1. FOFRADAR and CRISP-DM



several languages and procedures. Overview of elements of FOFRADAR follows.
Language LDK – formulas of this language correspond to items of domain

knowledge, they can be considered as results of business understanding. Lan-
guage LDK includes SI-formulas expressing mutual influence of attributes. For-
mula BMI ↑↑ Diastolic meaning that if Body Mass Index of patients increases
then diastolic blood pressure increases too is an example. Additional details are
in section 3.

Language LDt – formulas of this language correspond to relevant informa-
tion on analyzed data, see section 3. Language LAQ – formulas of this language
correspond to analytical questions. Analytical questions – formulas of LAQ are
formulated using formulas of languages LDK and LDt. This can be seen as an
application of a procedure D AQ, see section 4.

The core of the data mining process is the procedure ASSOC [3]. Its input
consists of an analysed data matrixM and of a definition of a set of association
rules to be verified to solve an analytical question given by a formula Θ of the
language LAQ. The set of association rules to be verified is given by a formula Φ
of a language LRAR (i.e. a language of definitions of sets of Relevant Association
Rules). This set is denoted as S(Φ). We assume that the formula Φ is a result
of an application of a procedure AQ RAR to a given formula Θ, we write
Φ = AQ RAR(Θ). Output of the ASSOC procedure is a set True(S(Φ),M) of
all rules ϕ ≈ ψ which belong to S(Φ) and which are true in M. We use the
procedure 4ft-Miner as an implementation of the ASSOC, see section 5.

An answer to a given analytical question is based on a comparison of the set
True(S(Φ),M) and a set CONS(Ω) of association rules which can be under-
stood as consequences of a set Ω of items of domain or data knowledge used
in the formulation of the solved analytical question Θ. An example of a set of
consequences of SI-formula BMI ↑↑ Diastolic is in section 6. Possible conclusion
of analysis i.e. formulas of language LConcl are introduced in section 7.

3 Asociation rules, Domain and Data Knowledge

We use a concrete data matrix to introduce a logical calculus of association
rules in a very informal way. This is done in section 3.1, a formal definition is
given in [10]. Language LDK of domain knowledge is introduced in section 3.2.
We will not describe the language LDt of data knowledge here in more details.
Information that given data matrix Entry concerns only male patients is an
example of an item of data knowledge.

3.1 Calculus LCE of Association Rules

We deal with association rules ϕ ≈ ψ where ϕ and ψ are Boolean attributes
derived from basic Boolean attributes of the form A(α) and ≈ is a 4ft-quantifier.
Here A is an attribute corresponding to a column of an analysed data matrix
with possible values (i.e. categories) a1, . . . , ak and α ⊂ {a1, . . . , ak}. This means
that a set of all basic Boolean attributes we can derive from a given column is



given by a set of categories for this column. Consequently, a set of all Boolean
attributes concerning a given data matrix is determined by sets of possible values
for particular columns of this data matrix.

We usually consider data matrices containing only natural numbers. There
is only a finite number of possible values for each column. Let us assume that
the number of possible values of a column is t and the possible values in this
column are integers 1, . . . , t. Then all the possible values in a data matrix are
described by the number of its columns and by the numbers of possible values
for each column. These numbers determine a type of a data matrix and also a
type of a logical calculus of association rules.

A type of a logical calculus of association rules is a K-tuple T = 〈t1, . . . , tK〉
where K ≥ 2 is an integer and ti ≥ 2 are integers for i = 1, . . . ,K. A data matrix
of type T has columns – attributes A1, . . . , AK . Possible values (categories) for
attribute Ai are 1, . . . , ti and a type of attribute Ai is ti where i = 1, . . . ,K.
A language LT of association rules of the type T is given by the attributes
A1, . . . , AK and 4ft-quantifiers ≈1, . . . ,≈Q. Association rule of LT is each rule
ϕ ≈ ψ built from A1, . . . , AK and ≈1, . . . ,≈Q. A logical calculus LCT of associ-
ation rules of a type T consists of a language LT , a set of all data matrices of
type T and of instructions on how to decide if a given association rule is true in
a given data matrix.

We use a data matrix Entry to introduce an example of a calculus of asso-
ciation rules. Entry is a part of the data set STULONG 1. Data matrix Entry
concerns 1 417 patients – men that have been examined at the beginning of the
study. Each row of Entry describes one patient. Entry has 64 columns corre-
sponding to particular attributes A1, . . . , A64 – characteristics of patients. We
use only first 12 attributes introduced in Tab. 1. These attributes and their
categories have alternative names also introduced in Tab. 1 together with their
frequencies in data matrix Entry. Types of these 12 attributes are also in Tab.
1. In Table 1, there is also a C-type for these attributes. C-type is introduced in
the next section.

We can say that there is a type TE = 〈4, 4, 4, 3, 3, 13, 7, 9, 10, 2, 2, 2, t13, . . . , t64〉
of a logical calculus LCE of association rules. Data matrix Entry is a data ma-
trix of the type TE and each its update is also a data matrix of the type TE .
A1, . . . , A64 are attributes of language LE of calculus LCE . The alternative name
of the attribute A1 is M Status, the alternative names of its categories 1,2,3,4 are
married, divorced,single, widover respectively; similarly for additional attributes
and categories. Let us note that there are missing values and thus the sum of
frequencies of categories of particular attributes can be less than 1417.

1 The study (STULONG) was realized at the 2nd Department of Medicine, 1st Faculty
of Medicine of Charles University and University Hospital in Prague, under the
supervision of Prof. F. Boud́ık, MD, DSc., with collaboration of M. Tomečková,
MD, PhD and Prof. J. Bultas, MD, PhD. The data were transferred to the electronic
form by the European Centre of Medical Informatics, Statistics and Epidemiology of
Charles University and Academy of Sciences CR(head. Prof. J. Zvárová, PhD, DSc.).
The data resource is on the web pages http://euromise.vse.cz/challenge2004/



Table 1. Attributes and categories of LCE calculus of association rules

Attribute
Name Names of categories

Def. Alternative Type C-type Definition Alternative / frequency

A1 M Status 4 N 1,2,3,4 married/1207, divorced/104,
single/95, widover/10

A2 Education 4 O 1,2,3,4 basic/151, apprentice/405,
secondary/444, university/397

A3 Responsibility 4 N 1,2,3,4 manager/286, independent/435,
others/636, pensioner/25

A4 Alcohol 3 O 1,2,3 no/131, occasionally/748, regularly/462

A5 Coffee 3 O 1,2,3 no/488, 1-2 cups/643, 3+ cups/258

A6 BMI 13 O 1,. . . , 13 (16; 21〉/39, (21; 22〉/50, . . . ,
. . . , (31; 32〉/28, > 32/64

A7 Diastolic 7 O 1, . . . , 7 〈50; 70)/74, 〈70; 80)/281, . . . ,
. . . , 〈110; 120)/43, 〈120; 150)/16

A8 Systolic 9 O 1, . . . , 9 〈90; 110)/69, 〈110; 120)/207, . . . ,
. . . , 〈170; 180)/43, 〈180; 220)/33

A9 Cholesterol 10 O 1, . . . , 10 〈100; 160)/45, 〈160; 180)/97, . . . ,
. . . , 〈300; 320)/57, 〈320; 540)/57

A10 Hypertension 2 N 1,2 yes/220, no/1192

A11 Ictus 2 N 1,2 yes/2, no/1408

A12 Infarction 2 N 1,2 yes/34, no/1378

A13, . . . , A64 see http://euromise.vse.cz/challenge2004/data/entry/

Examples of basic Boolean attributes of the calculus LCE are: A1(1) – alterna-
tively M Status(married), A2(1, 2) – alternatively Education(basic, apprentice),
A6(1, 2, 3) – alternatively BMI((16; 21〉, (21; 22〉, (21; 22〉) i.e. BMI(16; 22〉.

Examples of Boolean attributes are: M Status(married) ∧ BMI(16; 22〉 and
Hypertension(yes) ∨ Ictus(yes) ∨ Infarction(yes).

Association rule ϕ ≈ ψ is true in a data matrix M if a condition given by
the 4ft-quantifier ≈ is satisfied for a contingency table of ψ and ϕ in M. This
contingency table is also called 4ft-table 4ft(ϕ,ψ,M) of ϕ and ψ in M and
denoted as 4ft(ϕ,ψ,M). It is is a quadruple 〈a, b, c, d〉 of non-negative integers
where a is the number of rows of M satisfying both ϕ and ψ, b is the number
of rows satisfying ϕ and not satisfying ψ etc., see Fig. 2. Two 4ft-quantifiers are

M ψ ¬ψ
ϕ a b

¬ϕ c d

Fig. 2. 4ft table 4ft(ϕ,ψ,M) of ϕ and ψ in M



introduced below, about 40 additional 4ft-quantifiers are defined in [3, 10].
4ft-quantifier ⇒p,B of founded implication is defined for 0 < p ≤ 1 and

B > 0 in [3] by the condition a
a+b ≥ p ∧ a ≥ B. Here F⇒p,B

is the associated
function of ⇒p,B . Rule ϕ ⇒p,B ψ means that at least 100p per cent of objects
satisfying ϕ satisfy also ψ and that there are at least B rows of M satisfying
both ϕ and ψ.

4ft-quantifier ∼+
q,B of above average dependence is for 0 < q and B > 0

defined in [10] by the condition a
a+b ≥ (1 + q) a+c

a+b+c+d ∧ a ≥ B. Rule ϕ ∼+
q,B ψ

means that among the rows satisfying ϕ, there are at least 100p per cent more
rows atisfying ψ than among all rows of M and that there are at least B rows
of M satisfying both ϕ and ψ.

This means that we can say that the calculus logical calculus LCE of associ-
ation rules has two 4ft-quantifiers: ⇒p,B and ∼+

q,B . It is easy to add additional
4ft-quantifiers defined in [3, 10].

Correct deduction rules ϕ≈ψ
ϕ′≈ψ′ where both ϕ ≈ ψ and ϕ′ ≈ ψ′ are association

rules play a very important role in the FOFRADAR. Deduction rule ϕ≈ψ
ϕ′≈ψ′ is

correct if it holds for each data matrix M: if ϕ ≈ ψ is true in M then also

ϕ′ ≈ ψ′ is true in M. The rules
A(1)⇒p,BB(1)
A(1)⇒p,BB(1,2) and

A(1)⇒p,BB(1)
A(1)⇒p,BB(1)∨C(1) are very

simple examples of correct deduction rules. There are relatively simple criteria
making possible to decide if a given deduction rule ϕ≈ψ

ϕ′≈ψ′ is correct. These criteria

are known for most of important 4ft-quantifiers [10].

3.2 Language of Domain Knowledge

Language LDK of domain knowledge is an enhancement of a language LT of
a calculus LCT of association rules of type T = 〈t1, . . . , tK〉 [8]. The following
items of domain knowledge can be expressed by formulas of LDK : (i) C-types
of basic attributes, (ii) groups of basic attributes, (iii) simple mutual influence of
attributes.

C-types of basic attributes are defined by a K-tuple LCT = 〈σ1, . . . , σK〉
where σi ∈ {N,O,C} for i = 1, . . . ,K. This K-tuple is called C-types of at-
tributes. If σi = N then the attribute Ai is nominal, i.e., we do not assume to
deal with ordering of its categories 1, . . . , ti. If σi = O then the attribute Ai
is ordinal and we assume to use ordering of its categories 1, . . . , ti. If σi = C
then the attribute Ai is cyclical, i.e., we assume ordering of its categories and
in addition we assume that the category 1 follows the category ti. An attribute
WeekDays with categories Su, Mo, Tu, We, Th, Fr, Sa is an example of a cyclical
attribute. C-types of attributes of calculus LCE are given in Tab. 1.

We use two types of groups of basic attributes – basic and additional. There
are L basic groups G1, . . . GL of basic attributes – subsets of {A1, . . . , AK} satisfy-
ing L < K, ∪Li=1Gi = {A1, . . . , AK} and Gi∩Gj = ∅ for i 6= j, i, j = 1, . . . L. Cal-
culus LCE has 11 basic groups, see http://euromise.vse.cz/challenge2004/

data/entry/. The additional groups of basic attributes are usually defined for
ad hoc analyses. We use here two such groups for calculus LCE : group Personal
consisting of 6 attributes M Status, Education, Responsibility, Alcohol Coffee,



and BMI and group Measurement consisting of 3 attributes Diastolic, Systolic,
and Cholesterol.

Mutual simple influence among attributes is expressed by SI-formulas. There
are several types of SI-formulas. Below, we assume that Ai, Aj , i 6= j are ordinal
attributes and ϕ is a Boolean attribute. Examples of types of SI-formulas follow:

– ii-formula (i.e. increases - increases) Ai ↑↑ Aj meaning if Ai increases then
Aj increases too, BMI ↑↑ Diastolic being an example

– id-formula (i.e. increases - decreases) Ai ↑↓ Aj meaning if Ai increases then
Aj decreases, Education ↑↓ Diastolic being an example

– i+b+-formula has a form Ai ↑+ ϕ and its meaning is: if A increases, then
relative frequency of ϕ increases too, BMI ↑+ Hypertension(yes) being an
example

– i+b−-formula, i−b+-formula, i−b−-formula have form Ai ↑− ϕ, Ai ↓+ ϕ,
Ai ↓− ϕ respectively, their meaning is analogous to that of A ↑+ ϕ.

4 From Domain Knowledge to Analytical Questions

Items of domain knowledge are used to formulate analytical questions. We intro-
duce two types of such questions – GG-questions and negative GG SI-question.

GG-question has form [M : G′1, . . . , G
′
U ≈? G′′1 , . . . G

′′
V ] where M is a data

matrix and G′1, . . . , G
′
U and G′′1 , . . . G

′′
V are groups of attributes. A simple ex-

ample is a formula Θ1 defined as Θ1 = [Entry : Personal ≈? Measurement].
Its meaning is: In the data matrix Entry, are there any interesting relations be-
tween combinations of values of attributes of group Personal on one side and
combinations of values of attributes of group Measurement on the other side?

Negative GG SI-question – its general form is
[M : (Ω1, . . . , ΩP ) 6→ G′1, . . . , G

′
U ≈? G′′1 , . . . G

′′
V ] where M, G′1, . . . , G

′
U and

G′′1 , . . . G
′′
V are as above and Ω1, . . . , ΩP are SI-formulas. A formula Θ2 defined

as Θ2 = [Entry : BMI ↑↑ Diastolic 6→ Personal ≈? Measurement] is a simple
example of negative GG SI-question. Its meaning is: In the data matrix Entry,
are there any interesting relations between combinations of values of attributes
of group Personal on one side and combinations of values of attributes of group
Measurement on the other side which are not consequences of BMI ↑↑ Diastolic?

The questions Θ1 and Θ2 are examples of formulas of a language LAQE of
analytical questions which is an enhancement of the language LE of calculus
LCE . Let us remember that a procedure DK AQ is a part of the FOFRADAR.
Its goal is to generate reasonable analytical questions. Input of DK AQ consists
of a list of groups and a list of SI-formulas of the language LDK . Let us only
note that DK AQ can be realized by suitable nested cycle statements.

We deal with the calculus LCE . We assume that the only item of known
domain knowledge is BMI ↑↑ Diastolic and we are going to solve the question
Q2. Our goal is to introduce in more details a language LConcl of conclusions
we can accept on results of mining association rules ϕ ≈ ψ. Our goal is not to
get new medical knowledge. Let as note that similar question is solved in [12],
however, without details on a corresponding language LConcl.



5 Applying 4ft-Miner

5.1 Principles

We use the procedure 4ft-Miner [11] to solve the analytical question
Θ2 = [Entry : BMI ↑↑ Diastolic 6→ Personal ≈? Measurement] introduced
above. We deal with association rules, thus we formulate this question such that
it deals with association rules:

Θ2 = [Entry : BMI ↑↑ Diastolic 6→ B(Personal) ≈? B(Measurement)] .

Here B(Personal) denotes a set of all relevant Boolean attributes derived from
attributes of the group Personal, similarly for B(Measurement). We search as-
sociation rules ϕP ≈? ψM which are true in data matrix Entry, cannot be
understood as consequences BMI ↑↑ Diastolic, ≈? is a suitable 4ft-quantifier,
ϕP ∈ B(Personal) and ψM ∈ B(Measurement).

There are very fine possibilities to define a set of relevant association rules,
they are given by input parameters of 4ft-Miner. A definition of values of these
parameters can be understood as an expression of a language LRAR. There
are enough experience [10] making possible to construct a procedure AQ RAR
assigning to each analytical questionΘ (i.e. a formula of language LAQ) a formula
AQ RAR(Θ) of language LRAR such that AQ RAR(Θ) defines parameters for
a run of the 4ft-Miner procedure suitable to solve Θ.

In section 5.2 a formula Φ = AQ RAR(Θ2) is introduced. It defines a set
S(Φ) of association rules relevant to the question Θ2. Input of the 4ft-Miner
procedure consists of the formula Φ and data matrix Entry. The output is a set
True(S(Φ),Entry) of all rules ϕ ≈ ψ which belong to S(Φ) and which are true
in Entry, see section 5.3.

5.2 From Analytical Questions to Parameters of 4ft-Miner

In Fig. 3, there are input parameters of the 4ft-Miner. They can be seen as the
formula Φ = AQ RAR(Θ2). We search for association rules ϕP ≈? ψM where
≈? is a suitable 4ft-quantifier, ϕP ∈ B(Personal) and ψM ∈ B(Measurement).

Let us also note that Φ = AQ RAR(Θ2) is constructed to get a reasonable
output without necessity to modify parameters. Actually, the application of 4ft-
Miner requires modifications of an initial setting of parameters. This can also be
included into the AQ RAR procedure. Description of this possibility is not the
goal of this paper.

The set B(Personal) is defined in Fig. 3 in the column ANTECEDENT in the
row Personal Conj, 1-3 and in the six consecutive rows. This means that ϕP
is a conjunction of 1 - 3 basic Boolean attributes derived from attributes of the
group Personal introduced in section 3.2, see also Tab. 1.

A set of all basic Boolean attributes derived from attribute M Status is
defined by the row M Status(subset), 1-1 B, pos. This means that basic
Boolean attributes M Status(married), M Status(divorced), M Status(single),



Fig. 3. Input parameters of the 4ft-Miner procedure

and M Status(w idover) are generated. A set of all basic Boolean attributes de-
rived from attribute Responsibility is defined similarly.

A set of all basic Boolean attributes BMI(α) derived from attribute BMI
is defined by the row BMI(int), 1-3 B, pos. This means that all BMI(α) are
generated such that α is a set of 1 - 3 consecutive categories (i.e. sequence of
categories). Expression BMI((21; 22〉, (22; 23〉) i.e. BMI(21; 23〉 is an example of
such basic Boolean attribute. Sets of Boolean attributes derived from attributes
Education, Alcohol and Coffee are defined similarly.

The set B(Measurement) is defined analogously in Fig. 3 in the column
SUCCEDENT. In the column QUANTIFIERS, the quantifier ≈? is specified as a 4ft-
quantifier ⇒0.75,30 of founded implication.

The formula Φ = AQ RAR(Θ2) can be seen as a triple 〈ANTΘ2
, ⇒0.75,30,

SUCΘ2
〉 where ANTΘ2

and SUCΘ2
are definitions of sets B(ANTΘ2

) and
B(SUCΘ2

) of Boolean attributes respectively. The triple 〈ANTΘ2
, ⇒0.75,30,

SUCΘ2〉 defines a set S(ANTΘ2 ,⇒0.75,30, SUCΘ2) of association rules
ϕ ⇒0.75,30 ψ such that ϕ ∈ B(ANTΘ2), ψ ∈ B(SUCΘ2) and ϕ and ψ have no
common basic attributes. The definitions ANTΘ2

and SUCΘ2
can be seen as

sets of parameters in columns ANTECEDENT and SUCCEDENTS in Fig. 3 respectively.
Then we have B(ANTΘ2

) = B(Personal) and B(SUCΘ2
) = B(Measurement).

5.3 4ft-Miner Output

The task specified in Fig. 3 was solved in 2 minutes (PC with 4GB RAM and
Intel(R) Core(TM) i5-3320 processor at 2.6 GHz). 107 association rules were
generated and tested, there are 341 output true rules. List of 10 rules with the
highest confidence is in Fig. 4.

Fig. 4. Example of 4ft-Miner output



The rule BMI(16; 22) ∧ Alcohol(occasionally) ⇒0.872,34 Diastolic〈70; 90) is
the second strongest one. This rule means that it holds in data matrix Entry:
at least 87.2 per cent of patients satisfying BMI(16; 22) ∧ Alcohol(occsionally)
satisfy also Diastolic〈70; 90) and there are at least 34 patients satisfying both
BMI(16; 22)∧Alcohol(occsionally) and Diastolic〈70; 90), this information about
34 patients can be seen only in detailed output, not in Fig. 4.

Most of found rules have both the attribute BMI in antecedent (i.e. left part
of a rule) and the attribute Diastolic in succedent (i.e. right part of a rule). We
can expect that lot of such rules can be seen as consequences of SI-formula
BMI ↑↑ Diastolic introduced in section 3.2.

6 Consequences of SI-Formulas

Let Γ be an SI-formula and ≈ be a 4ft-quantifier, then Cons(Γ,≈) denotes a
set of association rules which can be considered as consequences of Γ . The set
Cons(Γ,≈) is defined in four steps [8].

1. A set AC(Γ,≈) of atomic consequences of Γ for ≈ is defined as a set of very
simple rules κ ≈′ λ which can be, according to the domain expert, considered
as direct consequences of Γ .

2. A set AgC(Γ,≈) of agreed consequences of Γ for ≈ is defined. A rule ρ ≈′ σ
belongs to AgC(Γ,≈) if the following conditions are satisfied:
– ρ ≈′ σ 6∈ AC(Γ,≈)
– there is no κ ≈′ λ ∈ AC(Γ,≈) such that ρ ≈′ σ logically follows from
κ ≈′ λ

– there is κ ≈′ λ ∈ AC(Γ,≈) such that, according to the domain expert, it
is possible to agree that ρ ≈′ σ says nothing new in addition to κ ≈′ λ.

3. A set LgC(Γ,≈) of logical consequences of Γ for ≈ is defined. A rule ϕ ≈′ ψ
belongs to LgC(Γ,≈) if the following conditions are satisfied:
– ϕ ≈′ ψ 6∈ (AC(Γ,≈) ∪AgC(Γ,≈))
– there is τ ≈′ ω ∈ AC(Γ,≈) ∪ AgC(Γ,≈) such that ϕ ≈′ ψ logically

follows from τ ≈′ ω.
4. We define Cons(Γ,≈) = AC(Γ,≈) ∪AgC(Γ,≈) ∪ LgC(Γ,≈).

We outline a way in which a set Cons(BMI ↑↑ Diastolic,⇒0.75,30) can be
defined. Note that the 4ft-quantifier ⇒0.75,30 is used in the example in section
5. A rule BMI(low) ⇒0.75,30 Diastolic(low) saying that at least 75 per cent of
patients satisfying BMI(low) satisfy also Diastolic(low) and that there are at
least 30 patients satisfying both BMI(low) and Diastolic(low) can be consid-
ered as a simple consequence of BMI ↑↑ Diastolic. In addition, if we consider
BMI(low) ⇒0.75,80 Diastolic(low) as a consequence of BMI ↑↑ Diastolic, then
also each rule BMI(low)⇒p,B Diastolic(low) where p ≥ 0.75 ∧B ≥ 30 is a con-
sequence of BMI ↑↑ Diastolic. The only problem is to define suitable coefficients
low for both attributes BMI and Diastolic.

Attribute BMI has 13 categories: (16; 21〉, (21; 22〉, (22; 23〉, (23; 24〉, . . . ,
(31; 32〉, > 32. Attribute Diastolic has 7 categories: 〈50; 70), 〈70; 80), 〈80; 90), . . . ,



〈110; 120), 〈120; 150). We can decide that each basic Boolean attribute BMI(α)
satisfying condition α ⊆ {(16; 21〉, (21; 22〉, (22; 23〉, (23; 24〉} will be considered
as BMI(low), and similarly, each basic Boolean attribute Diastolic(β) where
β ⊆ {〈50; 70), 〈70; 80), 〈80; 90)} will be considered as Syst(low). We can say that
rules BMI(low)⇒0.75,30 Diastolic(low) are defined by a rectangle Alow × Slow:

Alow ×Slow = {(16; 21〉, (21; 22〉, (22; 23〉 (23; 24〉}× {〈50; 70), 〈70; 80), 〈80; 90)} .

The 4ft-Miner procedure is accompanied by the LMDataSource module which
makes possible to define the set AC(BMI ↑↑ Diastolic, ⇒0.75,30) as a union of
several similar, possibly overlapping, rectangles A1×S1, . . . ,AR×SR such that
BMI(α) ⇒p,B Diastolic(β) ∈ AC(BMI ↑↑ Diastolic,⇒0.75,30) if and only if it
holds p ≥ 0.75 ∧ B ≥ 30 and there is an i ∈ {1, . . . , R } such that α ⊆ Ai
and β ⊆ Si. An example is in Fig. 5, four rectangles are used. Very informally
speaking, we can see AC(BMI ↑↑ Diastolic,⇒0.75,30) as a union

Alow×Slow ∪Abelow avrg×Sbelow avrg ∪Aabove avrg×Sabove avrg ∪Ahigh×Shigh
where avrg abbreviates average.

Fig. 5. Definition of AC(BMI ↑↑ Syst,⇒0.7,80)

The rule BMI(16; 22〉 ∧Alcohol(occasionally)⇒0.87,34 Diastolic〈70; 90) is an
example of an agreed consequence. This rule does not logically follow from an
atomic consequence BMI(16; 22〉 ⇒0.87,34 Diastolic〈70; 90) but it is possible to
agree that it says nothing new to the rule BMI(16; 22〉 ⇒0.87,34 Diastolic〈70; 90).

The rule BMI(16; 22〉 ∧M Status(married) ⇒0.78,31 Diastolic〈80; 100) is an
example of a logical consequence of an agreed consequence. This is because
BMI(16; 22〉 ⇒0.78,31 Diastolic〈80; 90) is an atomic consequence, BMI(16; 22〉 ∧
M Status(married) ⇒0.78,31 Diastolic〈80; 90) is its agreed consequence and
BMI(16; 22〉 ∧M Status(married) ⇒0.78,31 Diastolic〈80; 100) is a logical conse-
quence of BMI(16; 22〉 ∧M Status(married)⇒0.78,31 Diastolic〈80; 90).

This way, a set Cons(BMI ↑↑ Diastolic,⇒0.75,30) is produced. Let us note

that deduction rules
ϕ⇒p,Bψ
ϕ′⇒p,Bψ′ (see end of section 3.1) play a crucial role in these



considerations. Additional examples of these considerations are in [8, 12]. Similar
considerations are valid for additional 4ft-quantifiers.

We can summarise: The input of the 4ft-Miner is a triple 〈ANT,≈, SUC〉
and a data matrixM. The triple 〈ANT,≈, SUC〉 defines a set S(ANT,≈, SUC)
of rules. Output of the 4ft-Miner is a set True(S(ANT,≈, SUC),M) of all rules
from S(ANT,≈, SUC) which are true in M. We have outlined that there is a
procedure CONS input of which is an SI-formula Γ and a 4ft-quantifier ≈ and
output of CONS is a set Cons(Γ,≈) of all rules belonging to S(ANT,≈, SUC)
which can be considered as consequences of Γ . In addition, we have introduced
a set Cons(BMI ↑↑ Diastolic,⇒0.75,30).

7 Language of Conclusions

The goal of this section is to introduce formulas of the language LConcl which
represent conclusions of analysis. The conclusions are formulated on the basis
of a comparison of a set True(S(ANT,≈, SUC),M) resulting from the run of
the procedure 4ft-Miner and sets Cons(Γ,≈) for relevant SI-formulas Γ . An
SI-formula Γ is relevant if it is used in the analytical question or if it can be
formulated from the attributes which occur in True(S(ANT,≈, SUC),M).

When dealing with a particular SI-formula Γ , we are interested in relations of
sets of rules True(S(ANT,≈, SUC),M) and Cons(Γ,≈). The conclusions can
be formulated on the basis of their intersection True(S(ANT,≈, SUC),M) ∩
Cons(Γ,≈) and difference True(S(ANT,≈, SUC),M) \ Cons(Γ,≈). These
can be also produced by the 4ft-Miner procedure. In addition, it is possible to
sort and filter rules of these sets in various ways. Relations of True(S(ANT,≈
, SUC),M) and Cons(Γ,≈) can be also investigated by SQL tools. This can lead
to variety of conclusions on result of application of the procedure 4ft-Miner.

We outline four of them. We use the analytical question Θ2 introduced in sec-
tion 4 as Θ2 = [Entry : BMI ↑↑ Diastolic 6→ Personal ≈? Measurement]. A for-
mula AQ RAR(Θ2) of language LRAR is introduced in sections 5.1 and 5.2. It de-
fines a set S(AQ RAR(Θ2)) of association rules we consider relevant to the ques-
tion Θ2. The formula AQ RAR(Θ2) is specified as 〈ANTΘ2

,⇒0.75,30, SUCΘ2
〉

where B(ANTΘ2) = B(Personal) and B(SUCΘ2) = B(Measurement). The pro-
cedure 4ft-Miner produces the set True(S(ANTΘ2 ,⇒0.75,30, SUCΘ2),Entry) of
all relevant association rules true in the data matrix Entry. We denote it as
True(Θ2,Entry).

We denote a difference True(Θ2,Entry) \Cons(BMI ↑↑ Diastolic,⇒0.75,30)
of sets True(Θ2,Entry) and Cons(BMI ↑↑ Diastolic,⇒0.75,30) as Dif Tr Con.
We assume that both the set Cons(BMI ↑↑ Diastolic,⇒0.75,30) and the set
True(Θ2,⇒0.75,30,Entry) are not empty. Then one or more from the following
possibilities P1, P2, P3, P4 can occur:

P1: True(Θ2,⇒0.75,30,Entry) = Cons(BMI ↑↑ Diastolic,⇒0.75,30). This
means that the conclusion can be: In the data matrix Entry, all potentially in-
teresting relations between combinations of values of attributes of group Personal



on one side and combinations of values of attributes of group Measurement on
the other side are consequences of BMI ↑↑ Diastolic.

P2: There is a rule ϕ ⇒p,B ψ ∈ Dif Tr Con (where p ≥ 0.75 and B ≥ 30)
such that attribute BMI does not occur in ϕ or attribute Diastolic does not occur
in ψ. The rule Education(apprentice) ∧ Responsibility(independent) ⇒0.78,54

Diastolic〈80; 100) is an example. This means that the conclusion can be: In
the data matrix Entry, there are the following interesting true rules which are
not consequences of BMI ↑↑ Diastolic: a list of rules ϕ ⇒p,B ψ ∈ Dif Tr Con
satisfying that attribute BMI does not occur in ϕ or attribute Diastolic does
not occur in ψ follows.

P3: There is a rule ϕ ⇒p,B ψ ∈ Dif Tr Con (where p ≥ 0.75 and B ≥ 30)
such that attribute BMI occurs in ϕ and attribute Diastolic occurs in ψ. This rule
is then true in data matrix Entry and it is not a consequence BMI ↑↑ Diastolic,
thus we can consider it as an exception to BMI ↑↑ Diastolic. This means that the
conclusion can be: In the data matrix Entry, there are the following interesting
true rules which can be considered as exceptions from BMI ↑↑ Diastolic: a list
of rules ϕ ⇒p,B ψ ∈ Dif Tr Con such that attribute BMI occurs in ϕ and
attribute Diastolic occurs in ψ follows.

This approach to exceptions differs from that in [15]. Let us note that we can
modify the definition of Cons(BMI ↑↑ Diastolic,⇒0.75,30) such that the rule
BMI(21; 22〉 ∧M Status(married) ⇒0.77,36 Diastolic〈80; 100) which is true in
Entry does not belong to Cons(BMI ↑↑ Diastolic,⇒0.75,30).

P4: There is an additional SI-formula Γ ′ such that there are enough rules
in Cons(Γ ′,⇒0.75,30)∩True(Θ2,⇒0.75,30,Entry). An example is the SI-formula
BMI ↑↑ Systolic. We can define a set Cons(BMI ↑↑ Systolic,⇒0.75,30) such that
there are 182 rules ϕ ⇒p,B ψ true in Entry where p ≥ 0.75, B ≥ 30, attribute
BMI occurs in ϕ and attribute Systolic occurs in ψ and all of these rules belong
to Cons(BMI ↑↑ Systolic,⇒0.75,30). This means that the conclusion can be
(here we consider BMI ↑↑ Systolic as an unknown item of domain knowledge):
In the data matrix Entry, there are lot of rules which can be considered as con-
sequences of yet unknown item of knowledge BMI ↑↑ Systolic. It is reasonable
to investigate BMI ↑↑ Systolic as a working hypothesis.

Let us note that additional conclusions can be formulated on the basis of
a difference Cons(Γ,≈) \ True(S(ANT,≈, SUC),M) of sets Cons(Γ,≈) and
True(S(ANT,≈, SUC),M).

8 Related work

The FOFRADAR framework deals with association rules of the form ϕ ≈ ψ
where ϕ and ψ are general Boolean attributes derived from columns of analysed
data matrices and ≈ stands for a general condition concerning a contingency
table of ϕ and ψ. A crucial feature of this approach is dealing with basic Boolean
attributes of the form A(α) where α is a subset of categories. This makes possible
to deal with rules like BMI(low) ⇒p,B Diastolic(low) where ”low” stands for a
suitable subsets of categories. This way, dealing with items of domain knowledge



like BMI ↑↑ Diastolic can be converted to dealing with suitable association rules
when suitable deduction rules ϕ≈ψ

ϕ′≈ψ′ are applied, see section 6 and also section
5.2.

An additional important feature of rules ϕ ≈ ψ is a possibility to deal with
disjunction of basic Boolean attributes. This is especially important when deal-
ing with attributes with low frequencies. Examples of such attributes of data
matrix Entry are Hyperlipidemia(yes) – with frequency 54, Diabetes(yes) – 30,
Ictus(yes) – 2, Infarction(yes) – 34. All these frequencies are very low and thus
it is crucial to deal with disjunction of these attributes instead of with conjunc-
tions, the frequencies of conjunctions are almost null. In addition, disjunctions
Hyperlipidemia(yes)∨Diabetes(yes), Hyperlipidemia(yes)∨Ictus(yes), . . . can be
interpreted as ”patient has problems”. An example of dealing with such conjunc-
tions is in [12]. Disjunctions of basic Boolean attributes are also involved in the
FOFRADAR approach, deduction rules ϕ≈ψ

ϕ′≈ψ′ are very important in this case.

”Classical” association rules introduced in [1] deal neither with basic Boolean
attributes A(α) nor disjunctions of basic Boolean attributes. Thus the approach
to dealing with domain knowledge used in FOFRADAR cannot be fully applied
when dealing with ”classical” association rules. Let us note that the procedure
4FT introduced in [6] mines even for more general rules than the 4ft-Miner
procedure used in this paper.

An approach to use ontologies expressing a hierarchy to interpret a resulting
set of ”classical” association rules is described in [4]. Very informally speaking,
this is based on partitioning a set of resulting rules to sets of known rules, novel
rules, missing rules and contradictory rules depending on their relation to an
ontology in question. This is similar to assigning a set of consequences to an
SI-formula as described in section 6. However, domain knowledge expressed by
SI-formulas differs from domain knowledge expressed by a given ontology.

The goal of FOFRADAR is to be a formal description of the data mining
process with association rules. Thus, using ontologies in FOFRADAR approach
is a challenge. Additional challenge is related to inclusion of suitable means of
inductive databases languages [13] as well as the additional approaches to deal
with domain knowledge in data mining with ”classical” association rules, see e.g.
[2, 5].

9 Conclusions

We have presented new considerations on language LConcl. Formulas of this
language correspond to conclusions of data mining process with association rules.
LConcl is one of languages of the formal framework FOFRADAR the goal of
which is to formally describe the whole process of data mining with association
rules. FOFRADAR is intended as a theoretical basis for automation of data
mining process with association rules. The results presented here will be used
together with former results [7, 8, 11, 12] to start experiments with automation
of data mining process with association rules.



The FOFRADAR framework deals with association rules which are substan-
tially more general than ”classical” association rules defined in [1] and used in
mainstream applications of association rules. There are various approaches to
deal with domain knowledge in ”classical” association rules data mining which
can be included to FOFRADAR. However, this is rather a long process requiring
additional effort.
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Abstract. Canonical encoding is one of the key operations required
by subgraph mining algorithms for candidates generation. They enable
to query the exact number of frequent subgraphs. Existing approaches
make use of canonical encodings with an exponential time complexity.
As a consequence, mining all frequent patterns for large graphs is com-
putationally expensive. In this paper, we propose to relax the canonicity
property, leading to two encodings, lower and upper encodings, with a
polynomial time complexity, allowing to tightly enclose the exact set
of frequent subgraphs. These two encodings allow two kinds of queries,
lower and upper queries, to get respectively a subset and a superset of
frequent patterns.

Lower and upper encodings have been integrated in Gaston. Experiments
performed on large and dense synthetic graphs show that, these two
encodings are very effective compared to Gaston and gSpan, while on
large real world sparse graphs they remain very competitive.

1 Introduction

Frequent subgraph pattern mining is one of the most well-studied problems in
the graph mining domain. It concerns the discovery of subgraph patterns that
occur frequently in a collection of graphs or in a single large graph. This problem
arises in many data mining tasks that include: chemoinformatics [13] and com-
putational biology [6], to name but a few. In [10], an approach based on closed
graphs is proposed, to predict biological activity of chemical compounds. Closed
sets of graphs allow one to adapt standard approaches from applied lattice theory
and Formal Concept Analysis to graph mining. An other approach is proposed
in [2], where graphs are represented by (multi)sets of standard subgraphs repre-
senting substructures which are biologically meaningful, given by domain expert.
In this paper, we consider a database of graphs, where each graph represents a
transaction.

⋆ This work is supported by TASSILI research program 11MDU839 (France, Algeria).
This work is also supported by PNR research project 70/TIC/2011 (Algeria).



There are two general approaches used to solve the frequent subgraph pattern
mining problem. The first approach, represented by [8,9], extends the Apriori-
based candidate generation approach [1] to graph pattern mining. The second
approach, represented by [3,7,11,15], adopt a pattern-growth principle [5] by
growing patterns from a single graph directly. All these algorithms are complete:
they are guaranteed to discover all frequent subgraphs.

Due to the completeness requirements, most of these algorithms need to
perform graph isomorphism operations in order to check whether two subgraphs
are identical or not in the candidate generation. This problem is equivalent to
compare canonical encodings [4] of graphs. Even though these two problems
are not known to be either in P or in NP-complete, in practice however, most
existing canonical encodings have complexities which are of exponential nature.
As a consequence, many existing complete algorithms impose strong limitations
on the types of graph datasets that can be mined in a reasonable amount of time,
as those derived from chemical compounds [3,7,8,13,15]: graphs that are sparse,
contain small frequent subgraphs, and have very few vertex and edge labels.
For large and dense graphs that contain frequent cyclic subgraphs, mining the
complete set of frequent patterns is computationally expensive, since numerous
subgraph isomorphisms are performed, making these algorithms not effective.

To overcome these limitations, we propose in this paper a relaxation of the
canonicity property, leading to two encodings, lower and upper encodings, with a
polynomial time complexity. The two encodings have been integrated in Gaston,
leading to two approximate algorithms, called Gaston-Low and Gaston-Up. Be-
cause of its incomplete nature, the number of patterns discovered by Gaston-Low

(resp. Gaston-Up) is a lower (resp. upper) bound of the exact number of frequent
graphs. Thus, these two encodings allow one to enclose the number of frequent
graphs generated by a canonical encoding. The lower and upper encodings allow
two kinds of queries: lower and upper queries. The lower query uses the lower
encoding and enables to get a subset of frequent patterns. And the upper query
uses the upper encoding and enables to get a superset of frequent patterns.

Experiments performed on synthetic and real world datasets show that, on
large and dense graphs, Gaston-Low and Gaston-Up are very effective compared
to Gaston and gSpan, while on large real-life sparse graphs it remains very
competitive.

This paper is organized as follows. Section 2 introduces preliminaries on
graph mining. Section 3 reviews some canonical encodings. Section 4 motivates
our proposals. Section 5 explains our two encodings. Section 6 is devoted to
experimentations. Finally, we conclude and draw some perspectives.

2 Preliminaries

In this section we briefly review some basic concepts and fix the notations.
A labelled graph can be represented by a 4-tuple, G = (V, E, L, l), where V

is a finite set of vertices, E ⊂ V × V is a set of edges, L is a set of labels, and
l : V ∪ E → L is a function assigning a label to every element of V ∪ E.



A dense graph is a graph in which the number of edges is close to the maximal
number of edges. The graph density D is defined as: D = 2|E|/(|V |(|V | − 1)).
(|V |(|V | − 1)/2) is the number of edges in a complete graph. Clearly, the given
formula of D computes the proximity of the number of edges to the maximum
number of edges. A graph is cyclic if it has many cycles. As the number of cycles
increases, the number of edges increases, and then the density of the graph
increases too.

Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected graphs.

– G1 and G2 are isomorphic if there is a bijection function f : V1 → V2 satis-
fying: (i) ∀ u ∈ V1, lG1

(u) = lG2
(f(u)), (ii) ∀ {u, v} ∈ E(G1), {f(u), f(v)} ∈

E(G2), and (iii) ∀ {u, v} ∈ E(G1) lG1
({u, v}) = lG2

({f(u), f(v)}).
– G2 is a subgraph of G1, iff V2 ⊂ V1, and E2 ⊂ E1∧(∀{v1, v2} ∈ E2 ⇒ v1 ∈ V2

and v2 ∈ V2).
– G1 is subgraph isomorphic to G2, denoted G1 ⊆ G2, if G1 is isomorphic

to a subgraph of G2. Deciding whether a graph is subgraph isomorphic to
another graph is NP-complete [14].

An encoding function is a function that assigns to a given graph a code (i.e.
a sequence of bits, a string, or a sequence of numbers).

Definition 1 (Canonical encoding). The encoding function φ is canonical
when for any two graphs G1, G2: G1 and G2 are isomorphic iff φ(G1) = φ(G2).

Given a transaction database D which contains a family of graphs. The fre-
quency of a graph G in D is defined by freq(G, D) = #{GD ∈ D | G ⊆ GD}.
The support of a graph is defined by

support(G, D) =
freq(G, D)

|D|
Let smin be some predefined minimum support. The Frequent Subgraph Dis-

covery Problem FSDP consists in finding connected undirected graphs G′ that
are subgraphs of at least (smin × |D|) graphs of D:

FSDP (D, smin) = {G′|support(G′, D) ≥ smin}.

The query FSDPquery(D, smin, φ) consists in finding graphs FSDP (D, smin)
by using some encoding function φ.

Generally, we can distinguish between the algorithms for computing frequent
subgraphs according to the way the three following problems are handled:

1. Candidates generation problem: The candidates are initialized with
frequent edges (1-candidates). The k-candidates (i.e., having k edges) are
generated, by adding one edge to each (k − 1)-candidate. This process can
be done with a breadth-first strategy as well as a depth-first strategy.

2. Subgraph encoding problem: A canonical encoding is assigned to each
generated graph. Verifying that the candidate is new, consists in checking
that its encoding does not belong to the encodings of the generated candi-
dates. This paper contributes in this step (see section 5).



3. Frequency computation problem: Once a new candidate is generated,
we have to compute its frequency. It can be achieved by finding all the
transactions of the database that contain this new candidate.

3 Canonical encoding

Developing algorithms that can efficiently compute the canonical encoding is
critical to ensure the scalability to very large and dense graph datasets. It is
not proven if the canonical encoding of graphs is in the class of NP-complete
problems, nor in polynomial class [4].

The encoding function of the FSG algorithm [9] is based on exploring the
adjacency matrices of the considered graph. To get the canonical encoding, gSpan
algorithm [15] performs various DFS searches on the graph. In [11], the authors
have proposed an efficient miner algorithm in which they used an appropriate
canonical encoding for the three graph structures: paths, trees and cycles. Paths
and trees are encoded efficiently in polynomial time. But for cyclic graphs, the
encoding is of exponential nature. As pointed out in [12], the more there are
cycles in the graph, the more its encoding is expensive. In fact, for cyclic graphs,
the complexity of the encoding in Gaston is O(|C|(2|C|)!|V ||E||C|), where E
represents the number of edges in the cyclic graph, |C] is the minimal number
of edges to remove to obtain a spanning tree. Clearly, |C| is strongly related to
the number of cycles in the graph.

So, to overcome this limitation, we propose in this paper two efficient en-
codings for cyclic graphs: lower-encoding and upper-encoding (see section 5).
Lower-encoding allows one to generate a significant subset of the frequent cyclic
graphs, whereas the upper-encoding allows one to generate all frequent graphs
with duplicates. Roughly speaking, these two encodings define an interval en-
closing the exact frequent graphs. The following section shows the effectiveness
of our approach for dense graph datasets.

4 Motivating example

Let us consider the graph database shown in Figure 1. When executing the state
of the art Gaston miner [11] to extract all subgraphs with a support smin =
50%, it takes 10 minutes, and the number of frequent cyclic graphs found is
1, 334, 095, which is very considerable compared to the size of the database.
This is essentially due to the canonical encoding which is expensive for these
graphs. Our main idea is to use a non-canonical encodings, called lower and
upper encodings, to enclose the complete frequent subgraphs, whilst ensuring
reasonable computing times. Applying our lower and upper encodings on the
example of Figure 1 gives rise to the following results: (i) the lower query enables
to generate 1, 309, 066 cyclic graphs in 1.1 minutes. Moreover, the percentage of
missed frequent cyclic subgraphs is about 1.87%, which remains reasonably small
compared to the saved CPU time, (ii) the upper query allows one to generate
1, 468, 364 subgraphs in 2.43 minutes.
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Fig. 1. An example of a dense graph transaction database

5 Lower and upper queries

Due to the incomplete nature of the lower encoding, the number of discovered
frequent graphs is a lower bound of the exact number of frequent graphs, and
the converse for the upper encoding. These two encodings allow two kinds of
queries on the transaction database: the lower query and the upper query.

5.1 A lower-bounding graph encoding and the lower query

Definition 2 (Lower Encoding).
Let φL be an encoding function. φL is lower if the following property holds:
Given two graphs G1 and G2, if G1 and G2 are isomorphic then φL(G1) =

φL(G2).

Definition 2 establishes the main property of a lower encoding. Based on this
definition, we propose an instance of a lower encoding, called Node-Seq, that
fully makes use of different invariants (i.e., degrees and labels). It is built by
concatenating codes of all vertices of the graph, vcode(vi), i = 1..|V |, according
to a lexicographic order.

Definition 3 (Node-Seq). The node sequence code of G = (V, E) is obtained
by concatenating codes of all its vertices: Node-Seq(G) = ( vcode(v1), ...,

vcode(v|V |)), where vcode(vi) <l vcode(vi+1), and the relation <l defines a
lexicographic order among vertices. The vertex code is defined by vcode(vi) =
(deg(vi), lab(vi), 〈lab(ei1), deg(vi1), lab(vi1)〉, . . . , 〈lab(eim), deg(vim), lab(vim)〉), where:

– deg(vi) is the degree of vi,
– 〈lab(eij), deg(vij), lab(vij)〉 is defined as follows: lab(eij) is the label of the

jthe edge incident to vi, and m is the number of its incident edges; deg(vij)
(resp. lab(vij)) is the degree (resp. label) of the vertex associated to the end-
point of the edge eij incident to vi.



Let us note that edges eij incident to vi are ordered according to their labels.
If these labels are equal, we consider the degrees and the labels of their endpoint
vertices.
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vi ∈ SG1 vi ∈ SG2 vcode(vi)
v4 v4 (2, 1, 1, 2, 1, 1, 3, 1)
v5 v6 (2, 1, 1, 2, 1, 1, 3, 1)
v6 v5 (3, 1, 2, 1, 1, 2, 1, 1, 3, 1)
v7 v8 (3, 1, 2, 1, 1, 2, 1, 1, 3, 1)
v8 v7 (2, 1, 1, 2, 1, 1, 3, 1)
v9 v9 (2, 1, 1, 2, 1, 1, 3, 1)

Fig. 2. Example of two non-isomorphic graphs having the same encoding Node-Seq

Proposition 1. Node-Seq is a lower encoding and it computes a lower bound
of the exact number of frequent graphs. It can be achieved in O(n m log(m) +
n log(n)) in the worst case, where n = |V | and m = |E|.

Sketch of the proof: Since Node-seq encoding uses only labels, degrees, and
a lexicographic sorting, it is necessarily a lower-encoding. Its non-canonicity is
stated by the counter-example given in Figure 2. In fact, (SG1) and (SG2) are
non-isomorphic, but have the same Node-seq encoding. Traversing the vertices
is done in O(n). The incident edges of each vertex are enumerated and sorted
at most O(m log(m)) times. The whole n encodings are sorted. Thus, the time
complexity is O(n m log(m) + n log(n)).�

Let be φL some lower encoding function, and φC a canonical encoding. The
lower query FSDPquery(D, smin, φL) computes a subset of frequent subgraphs:

FSDPquery(D, smin, φL) ⊆ FSDPquery(D, smin, φC).

5.2 An upper-bounding graph encoding and the upper query

Definition 4 (Upper Encoding). Let φU be an encoding function. φU is upper
if the following property holds: Given two graphs G1 and G2, if G1 and G2 are
not isomorphic then φU (G1) 6= φU (G2).

We propose an upper encoding function which is inspired from the lower
encoding, in three steps:

1. Let n be the number of vertices of the considered graph G(V, E) to encode.
We associate to each vertex vi a code lst(vi) containing respectively, its



degree, its label, and a sorted list of degrees and labels of its incident vertices.
Then, the n vertices are sorted according to their codes lst(vi), i = 1..n.
Following the given order, the first vertex receives identifier 1, the second
vertex identifier 2, and so on until the last vertex which receives the identifier
n.

2. Each vertex vi is represented with the following code vcode(vi) = (Id(vi),
lab(vi), 〈lab(ei1), Id(vi1)〉, . . . , 〈lab(eim), Id(vim)〉), where:

– Id(vi) is the identifier of vi, generated in the previous step,

– lab(eij) is the label of the jthe edge incident to vi, and m is the number
of its incident edges,

– The incident edges eij , i = 1..m are ordered according to their labels and
degrees.

3. Finally, the upper encoding, called ID-Seq , is built by concatenating codes
of all vertices of the graph, according to the order found in the first step.

Proposition 2. ID-Seq is an upper encoding and it computes an upper bound
of the exact number of frequent graphs. It can be achieved in O(n log(n) +
2n m log(m)) in the worst case, where n = |V | and m = |E|.

Sketch of the proof: This upper encoding uses the identifiers of the vertices,
which allows one to encode the topological structure of the graph. That is why
we can not find two non isomorphic graphs with the same ID-Seq. The proof of
the complexity is the same as the one given for Node-Seq encoding except that
we should take additionally into account the first step. For each vertex vi, the
sorting operation to generate lst(vi) requires O(m log(m)). The complexity of
the first step is n m log(m), which is the additional processing time compared
to the complexity of the lower encoding Node-Seq. �

Since assigning identifiers to vertices may be done in different ways, two iso-
morphic graphs can be explored multiple times giving rise to different ID-Seq

encodings. Thus, the way the vertices are ordered and then numbered, is essen-
tial to avoid duplicates. Our vertices ordering seems a good compromise in our
experimentations. But, if we want a canonical encoding, we should explore all
of the orderings, which is clearly of exponential nature.

Let be φU some upper encoding function, and φC a canonical encoding. As
stated for the lower encoding functions, the upper query FSDPquery(D, smin, φU )
computes a superset of frequent subgraphs:

FSDPquery(D, smin, φC) ⊆ FSDPquery(D, smin, φU ).

6 Experimental evaluation

In this section, we study the performance of the proposed encodings. We used
both real and synthetic datasets. For comparison, we considered two algorithms,
gSpan and Gaston.



We have integrated our lower and upper encodings in the Gaston algorithm
to encode cyclic graphs through Gaston-Low 1 and Gaston-Up respectively.
Gaston-Low enables to compute a lower query with Node-Seq encoding, whereas
Gaston-Up an upper query with ID-Seq encoding. First, we generated a series of
synthetic graph datasets with different settings of parameters of our graph gen-
erator DenseGraphGen. We study the influence of different parameters (density,
frequency and the number of edge and node labels) on the performances of our
encodings on synthetic datasets and we compare our results with those obtained
by Gaston and gSpan (Section 6.1). Second, we compare the results of the four
algorithms on real datasets (Section 6.2).

For each experiment, we report the CPU time (in seconds), the number of
frequent cyclic graphs and their densities. For all experiments, we impose a
time limit of 3, 600 seconds. When an algorithm cannot complete the extraction
within the time limit, it will be indicated by the symbol (−) in the table. All
experiments were conducted on 2.50GHz Intel core i5-321M machines with 8GB
main memory, running the Linux operating system.

6.1 Performances evaluation on synthetic datasets

The synthetic datasets are generated using our graph generator DenseGraphGen.
The datasets are obtained as follows: First, we generate a dense graph GD to
guarantee that potentially frequent subgraphs are enough dense. Second, we
generate |N | transactions. Each transaction uses GD as a kernel. Third, to make
different all the transactions of the dataset, for each transaction, we add |V |
nodes and |E| edges connecting randomly nodes of V with those of GD. Then,
|EI| edges are added randomly between nodes of Gd. Finally, |Lv| and |Le| labels
are chosen randomly.

GD. Name cyclic0 cyclic1 cyclic2 cyclic3 cyclic4 cyclic5 cyclic6 cyclic7 cyclic8

Avg. #edges 38 50 62 73 85 96 107 118 134
Avg. density 0.2 0.26 0.32 0.38 0.44 0.50 0.56 0.62 0.70

Table 1. Characteristics of the graph datasets used for our experiments: |N | = 1, 000,
|V | = 10, |EI| = 5, and |Lv| = |Le| = 10.

We generated a series of graph datasets using different graph kernels (with
different densities: |E| is varying). Such a choice enables us to obtain increasing
cyclic graphs in each dataset. Their main characteristics are given in Table 1.

6.1.1 Influence of the density Table 2 compares the performances of the
four algorithms on the datasets illustrated in Table 1, with smin = 100%. In all
of these experiments, |N | = 1, 000, |V | = 10, |EI| = 5, |Lv| = |Le| = 10.

From table 2, we can draw the following remarks. First, for small values of
the density, Gaston-Low, Gaston-Up and Gaston perform quite similarly both in
terms of runtime and number of frequent cyclic subgraphs discovered. Second,

1 The implementation of Gaston-LB and Gaston-UB can be downloaded from
https://sites.google.com/site/akemmar/LUmining



runtime (s) # cyclic Gr.
GD. Name Gaston-Low Gaston Gaston-Up gSpan Gaston-Low Gaston Gaston-Up

cyclic0 0.24 0.2 0.3 22.03 1,496 1,496 1,496
cyclic1 1.19 0.88 1.6 117.67 10,729 10,729 10,729
cyclic2 5.73 4.89 8.03 − 59,996 59,997 59,997
cyclic3 13.03 13.02 18.04 − 132,915 132,915 132,915
cyclic4 58.38 115.93 80.35 − 619,081 619,081 620,446
cyclic5 122.39 387.97 168.19 − 1,221,435 1,223,554 1,223,862
cyclic6 303.46 1,516.99 409.4 − 2,999,054 2,999,054 2,999,054
cyclic7 744.19 − 1,045.94 − 6,928,308 − 6,928,308
cyclic8 − − − − − − −

Table 2. Characteristics of the graph datasets used for our experiments: |N | = 1, 000,
|V | = 10, |EI| = 5, and |Lv| = |Le| = 10. Performances of Gaston, gSpan, Gaston-Low
and Gaston-Up on different synthetic datasets of increasing density (smin = 100%).

gSpan is not competitive, even for very low densities. Third, for high values of the
density (≥ 0.44), the difference in performance between Gaston-Low, Gaston-Up
and Gaston widens considerably: Gaston-Low (resp. Gaston-Up) is up to 5 (resp.
4) times faster than Gaston. Moreover, the percentage of frequent cyclic sub-
graphs omitted by Gaston-Low is very negligible. For all datasets, Gaston-Low
finds at least 99.82% of all frequent cyclic subgraphs. For the cyclic7 dataset,
Gaston is not able to complete the extraction of all frequent subgraphs in one
hour. Indeed, with the increase of density value, the search space of graph isomor-
phism for the candidate generation and the running time increases drastically
and Gaston spends more time to encode these cyclic graphs. This is not the
case for Gaston-Low, which requires less time thanks to its polynomial time en-
coding. For Gaston-Up, the number of frequent cyclic graphs is the same for all
datasets, except for cyclic4 and cyclic5 for which the percentage of duplicates is
at most 0.2%. From these results, the two encodings succeeded to enclose tightly
the exact number of subgraphs within a very competitive runtime.

6.1.2 Influence of the support threshold Table 3 shows the results ob-
tained by the three algorithms on the dataset cyclic5 with values of smin ranging
from 100% to 40%. The results of gSpan are not reported since it fails to com-
plete the extraction of all frequent subgraphs in the time limit. As we can see,
as smin decreases, the running time of Gaston increases drastically and becomes
prohibitively expensive below a certain threshold, while Gaston-Low remains ef-
fective: it outperforms Gaston by a factor from 2 to 3. Moreover, Gaston-Low
finds a significant number of frequent cyclic subgraphs with a percentage of
missed subgraphs of at most 0.17%. For Gaston-Up, the upper encoding gener-
ates more graphs than Gaston, particularly for small values of smin. However,
Gaston-Up takes less time than Gaston thanks to its polynomial time encoding.

6.1.3 Influence of the number of edge and node labels For these series
of experiments, we considered the same number of labels for nodes and edges,
given by the parameter |L|. Table 4 shows the results obtained by the three



runtime (s) # cyclic Gr.
smin(%) Gaston-Low Gaston Gaston-Up Gaston-Low Gaston Gaston-Up

100 186.05 476.94 210.78 1,221,435 1,223,554 1,223,862
80 163.44 464.55 190.43 1,225,059 1,225,678 1,225,830
70 248.5s 584.49 257.13 1,484,175 1,484,175 1,805,651
65 219.72s 494.67 252.62 1,228,323 1,228,323 1,517,283
60 482.45s 842.23 554.09 1,819,606 1,819,606 3,132,861
50 1,743.58 2,156.34 1,787.1 4,104,185 4,104,185 6,671,993
40 − − − − − −

Table 3. Comparing the performances of Gaston, Gaston-Low and Gaston-Up on the
cyclic5 dataset for different minimum support threshold smin.

algorithms on the dataset cyclic6 with values of |L| ranging from 1 to max.
|L| = max means that all node and edge labels are different.

Algorithm runtime (s) # cyclic Gr.
GD. Name Gaston-Low Gaston Gaston-Up Gaston-Low Gaston Gaston-Up

cyclic6-Lmax 299.9 1,679.33 496.6 3,200,963 3,200,963 3,200,963
cyclic6-L20 279.09 1,489.16 432.33 3,200,963 3,200,963 3,200,963
cyclic6-L15 291.87 1,488.12 518.57 3,200,963 3,200,963 3,200,963
cyclic6-L10 287.32 1,494.4 503.14 3,200,963 3,200,963 3,200,963
cyclic6-L5 650.27 − 641.33 3,157,417 − 3,171,563
cyclic6-L3 1,704.35 2,939.96 1,933.91 3,057,301 3,057,301 3,192,363
cyclic6-L2 − − − − − −
cyclic6-L1 − − − − − −

Table 4. Comparing the performances of Gaston, Gaston-Low and Gaston-Up on the
cyclic6 dataset for different values of labels. Smin = 100%, |N | = 1, 000, |V | = 10,
|E| = 5 and |EI| = 5.

From the results of Table 4, we can observe three interesting points. First, as
|L| increases, the overall running time of the three algorithms decreases. Indeed,
the higher this value, the less the number of isomorphisms are performed, lead-
ing to fast candidate generation. Second, compared with Gaston, Gaston-Low
performs faster. For |L| ≥ 10, Gaston-Low finds the exact number of frequent
cyclic subgraphs and it is up to 5 orders of magnitude faster than Gaston. For
|L| = 5, Gaston cannot complete the extraction of all frequent subgraphs in the
time limit (i.e. one hour), while Gaston-Low finds a great number of frequent
cyclic subgraphs in a reasonable amount of time. Third, again, Gaston-Up clearly
outperforms Gaston. Moreover, it finds the exact number of frequent cyclic sub-
graphs, except for cyclic6-L3 where the percentage of duplicates is at most
4%.

6.2 Real world datasets

To study the behaviour of our encoding on datasets which are not dense and
contain a few number of frequent cyclic graphs, we performed experiments on
real world datasets coming from the biological domain encoding molecules. Each
molecule corresponds to a graph where atoms are represented using nodes and
bonds between them are represented by edges. They are obtained from different



sites: (a) The National Cancer Institute (NCI); (b) Developmental Therapeutics
Program (DTP); (c) The Prediction of Ames Mutagenicity(PAM) 2.

Algorithm runtime (s) # cyclic Gr.
GD. Name |N | |V | |Lv| |Le| D Gaston-Low Gaston Gaston-Up gSpan Gaston-Low Gaston Gaston-Up

CAN2DA99 5,210 25 82 3 0.06 1.38 1.34 1.50 25.41 51 52 139
(13/2) (13/2)

Open- 189 28 20 3 0.09 1.63 0.41 5.12 − 8,098 10,532 59,333
2012-05-01 (23/2) (23/2)
new-oct99 1,170 50 23 3 0.08 2.33 2.26 3.03 104.15 632 721 2,195
-aug00-3D (15/7) (15/9)
2DA99 108,954 19 131 3 0.06 9.21 8.86 11.15 146.70 17 17 49
2012-05-01 (10/1) (10/1)
aug00-2D 188,937 38 186 3 0.06 208.57 207.66 246.58 − 239 271 909

(12/21) (12/21)

Chemical- 340 26 161 3 0.13 0.02 0.02 0.04 0.62 64 65 210
340 (11/10) (11/10)
Compound- 422 39 21 4 0.10 0.44 0.22 0.92 7.68 2,529 2,533 3,794
422 (20/1) (20/1)
mechset3d 1,536 46 42 4 0.03 2.77 2.77 3.5 100.00 513 573 1,788

(13/10) (13/11)
cans03sd 4,2247 26 161 3 0.13 9.57 9.43 10.72 131.08 39 39 107

(13/1) (13/1)
divii 29 22 8 2 0.09 75.98 16.26 261.68 − 411,922 429,009 1,198,933

(28/2) (28/2)

N6512 6,512 17 28 4 0.32 1.65 1.62 2.42 34.40 66 72 220
(14/7) (14/8)

Table 5. Comparing the performances of Gaston-Lower, Gaston-Upper, Gaston and
gSpan on real world datasets for smin = 10%. |N |: number of graphs, |V |: the average
number of vertices and D: the average density of the dataset.

Table 5 shows the runtime and the number of frequent patterns found by
the four algorithms for different datasets. We also report for each algorithm,
the size of the largest frequent patterns obtained (number of its edges) and
the number of its occurrence (in parenthesis). Comparing the relative perfor-
mance of Gaston-Low and Gaston on the NCI datasets, we can see that overall,
they perform quite similarly in terms of runtime even on large datasets (i.e.
NCI-2DA99 and NCI-aug00-2D). Moreover, the percentage of patterns missed by
Gaston-Low remains reasonably low, except for NCI-Open dataset where this
percentage is about 23%. Even though Gaston-Low is incomplete, the size of the
greatest subgraph is practically the same than the one found by Gaston. Despite
the great number of duplicates generated, Gaston-Up remains comparable with
Gaston-Low and Gaston in terms of runtime. Finally, compared to gSpan, the
three other algorithms achieve better performance, with a factor from 16 to 45.
The same conclusions can be drawn for DTP and PAM datasets.

7 Conclusion

In this paper, we have proposed a relaxation of the canonicity property, leading
to lower and upper encodings, giving rise to lower and upper queries, for the

2 (a) http://cactus.nci.nih.gov/download/nci/; (b) http://dtp.nci.nih.gov/;
(c) http://doc.ml.tu-berlin.de/toxbenchmark/index.html#v2



frequent subgraph discovery problem. Our encodings can be achieved in a poly-
nomial time complexity. The two encodings have been integrated in the state
of the art Gaston miner. Experiments we performed on synthetic databases as
well as on a real world dataset from the biological domain show that our lower
encoding is very effective on dense graphs: the lower query is able to extract
a larger number of frequent cyclic subgraphs in a reasonable amount of time,
while Gaston needs much more time to extract the complete set of frequent
subgraphs. On the other hand, the upper query allows one to have a tight and
valid approximation of the missed graphs using the upper-encoding. As future
works, we intend to improve our lower and upper encodings in order to enhance
their performances on non-dense graphs. We should also investigate more deeply
real world datasets, in order to show the effectiveness of our approach on dense
graphs.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proceedings of VLDB’94, pages 487–499. Morgan Kaufmann, 1994.

2. V. G. Blinova, D. A. Dobrynin, V. K. Finn, Sergei O. Kuznetsov, and E. S.
Pankratova. Toxicology analysis by means of the jsm-method. Bioinformatics,
19(10):1201–1207, 2003.

3. C. Borgelt and M. Berthold. Mining molecular fragments: Finding relevant sub-
structures of molecules. In Proceedings of ICDM ’02, pages 51–58, Washington,
DC, USA, 2002. IEEE Computer Society.

4. Scott Fortin. The graph isomorphism problem. Technical report, TR-96-20, De-
partement of computer science, University of Alberta, Canada, 1996.

5. J. Han and J. Pei. Mining frequent patterns by pattern-growth: methodology and
implications. SIGKDD Explor. Newsl., 2(2):14–20, December 2000.

6. J. Huan, D. Bandyopadhyay, W. Wang, J. Snoeyink, J. Prins, and A. Tropsha.
Comparing graph representations of protein structure for mining family-specific
residue-based packing motifs. J. of Computational Biology, 12(6):657–671, 2005.

7. J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in the pres-
ence of isomorphism. In Proceedings of I ICDM ’03, pages 549–552, Washington,
DC, USA, 2003. IEEE Computer Society.

8. A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In Proceedings of ECML-PKDD’00, pages
13–23, London, UK, 2000. Springer-Verlag.

9. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proceedings of
ICDM’01, pages 313–320, Washington, DC, USA, 2001. IEEE Computer Society.

10. Sergei O. Kuznetsov and Mikhail V. Samokhin. Learning closed sets of labeled
graphs for chemical applications. In Proceedings of the 15th international confer-
ence on Inductive Logic Programming, ILP’05, pages 190–208, Berlin, Heidelberg,
2005. Springer-Verlag.

11. S. Nijssen and J. Kok. The gaston tool for frequent subgraph mining. Electron.
Notes Theor. Comput. Sci., 127:77–87, March 2005.

12. Siegfried Nijssen. Mining Structured Data. PhD thesis, Leiden University, 2006.
13. G. Poezevara, B. Cuissart, and B. Crémilleux. Extracting and summarizing the

frequent emerging graph patterns from a dataset of graphs. J. Intell. Inf. Syst.,
37(3):333–353, 2011.



14. Ronald C. Read and Derek G. Corneil. The graph isomorphism disease. Journal
of Graph Theory, 1:339–363, 1977.

15. X. Yan and J. Han. gspan: Graph-based substructure pattern mining. Order A
Journal On The Theory Of Ordered Sets And Its Applications, 02:721–724, 2002.



API design for machine learning software:
experiences from the scikit-learn project

Lars Buitinck1, Gilles Louppe2, Mathieu Blondel3, Fabian Pedregosa4,
Andreas C. Müller5, Olivier Grisel6, Vlad Niculae7, Peter Prettenhofer8,

Alexandre Gramfort4,9, Jaques Grobler4, Robert Layton10, Jake Vanderplas11,
Arnaud Joly2, Brian Holt12, and Gaël Varoquaux4
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Abstract. scikit-learn is an increasingly popular machine learning li-
brary. Written in Python, it is designed to be simple and efficient, acces-
sible to non-experts, and reusable in various contexts. In this paper, we
present and discuss our design choices for the application programming
interface (API) of the project. In particular, we describe the simple and
elegant interface shared by all learning and processing units in the library
and then discuss its advantages in terms of composition and reusabil-
ity. The paper also comments on implementation details specific to the
Python ecosystem and analyzes obstacles faced by users and developers
of the library.

1 Introduction

The scikit-learn project1 (Pedregosa et al., 2011) provides an open source ma-
chine learning library for the Python programming language. The ambition of the
project is to provide efficient and well-established machine learning tools within
a programming environment that is accessible to non-machine learning experts
and reusable in various scientific areas. The project is not a novel domain-specific
language, but a library that provides machine learning idioms to a general-
purpose high-level language. Among other things, it includes classical learning
algorithms, model evaluation and selection tools, as well as preprocessing proce-
dures. The library is distributed under the simplified BSD license, encouraging
its use in both academic and commercial settings.

1 http://scikit-learn.org
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scikit-learn is a library, i.e. a collection of classes and functions that users
import into Python programs. Using scikit-learn therefore requires basic Python
programming knowledge. No command-line interface, let alone a graphical user
interface, is offered for non-programmer users. Instead, interactive use is made
possible by the Python interactive interpreter, and its enhanced replacement
IPython (Perez and Granger, 2007), which offer a matlab-like working environ-
ment specifically designed for scientific use.

The library has been designed to tie in with the set of numeric and scientific
packages centered around the NumPy and SciPy libraries. NumPy (Van der Walt
et al., 2011) augments Python with a contiguous numeric array datatype and
fast array computing primitives, while SciPy (Haenel et al., 2013) extends it
further with common numerical operations, either by implementing these in
Python/NumPy or by wrapping existing C/C++/Fortran implementations. Build-
ing upon this stack, a series of libraries called scikits were created, to comple-
ment SciPy with domain-specific toolkits. Currently, the two most popular and
feature-complete ones are by far scikit-learn and scikit-image,2 which does image
processing.

Started in 2007, scikit-learn is developed by an international team of over
a dozen core developers, mostly researchers from various fields (e.g., computer
science, neuroscience, astrophysics). The project also benefits from many oc-
casional contributors proposing small bugfixes or improvements. Development
proceeds on GitHub3, a platform which greatly facilitates this kind of collabora-
tion. Because of the large number of developers, emphasis is put on keeping the
project maintainable. In particular, code must follow specific quality guidelines,
such as style consistency and unit-test coverage. Documentation and examples
are required for all features, and major changes must pass code review by at
least two developers not involved in the implementation of the proposed change.

scikit-learn’s popularity can be gauged from various indicators such as the
hundreds of citations in scientific publications, successes in various machine
learning challenges (e.g., Kaggle), and statistics derived from our repositories
and mailing list. At the time of writing, the project is watched by 1365 people
and forked 693 times on GitHub; the mailing list receives more than 300 mails
per month; version control logs show 183 unique contributors to the codebase and
the online documentation receives 37,000 unique visitors and 295,000 pageviews
per month.

Pedregosa et al. (2011) briefly presented scikit-learn and benchmarked it
against several competitors. In this paper, we instead present an in-depth analy-
sis of design choices made when building the library, detailing how we organized
and operationalized common machine learning concepts. We first present in sec-
tion 2 the central application programming interface (API) and then describe,
in section 3, advanced API mechanisms built on the core interface. Section 4
briefly describes the implementation. Section 5 then compares scikit-learn to
other major projects in terms of API. Section 6 outlines some of the objectives

2 http://scikit-image.org
3 https://github.com/scikit-learn
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for a scikit-learn 1.0 release. We conclude by summarizing the major points of
this paper in section 7.

2 Core API

All objects within scikit-learn share a uniform common basic API consisting of
three complementary interfaces: an estimator interface for building and fitting
models, a predictor interface for making predictions and a transformer interface
for converting data. In this section, we describe these three interfaces, after
reviewing our general principles and data representation choices.

2.1 General principles

As much as possible, our design choices have been guided so as to avoid the
proliferation of framework code. We try to adopt simple conventions and to
limit to a minimum the number of methods an object must implement. The API
is designed to adhere to the following broad principles:

Consistency. All objects (basic or composite) share a consistent interface com-
posed of a limited set of methods. This interface is documented in a consis-
tent manner for all objects.

Inspection. Constructor parameters and parameter values determined by learn-
ing algorithms are stored and exposed as public attributes.

Non-proliferation of classes. Learning algorithms are the only objects to be
represented using custom classes. Datasets are represented as NumPy arrays
or SciPy sparse matrices. Hyper-parameter names and values are represented
as standard Python strings or numbers whenever possible. This keeps scikit-
learn easy to use and easy to combine with other libraries.

Composition. Many machine learning tasks are expressible as sequences or
combinations of transformations to data. Some learning algorithms are also
naturally viewed as meta-algorithms parametrized on other algorithms. When-
ever feasible, such algorithms are implemented and composed from existing
building blocks.

Sensible defaults. Whenever an operation requires a user-defined parameter,
an appropriate default value is defined by the library. The default value
should cause the operation to be performed in a sensible way (giving a base-
line solution for the task at hand).

2.2 Data representation

In most machine learning tasks, data is modeled as a set of variables. For ex-
ample, in a supervised learning task, the goal is to find a mapping from input
variables X1, . . . Xp, called features, to some output variables Y . A sample is
then defined as a pair of values ([x1, . . . , xp]

T, y) of these variables. A widely
used representation of a dataset, a collection of such samples, is a pair of ma-
trices with numerical values: one for the input values and one for the output
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values. Each row of these matrices corresponds to one sample of the dataset and
each column to one variable of the problem.

In scikit-learn, we chose a representation of data that is as close as possible
to the matrix representation: datasets are encoded as NumPy multidimensional
arrays for dense data and as SciPy sparse matrices for sparse data. While these
may seem rather unsophisticated data representations when compared to more
object-oriented constructs, such as the ones used by Weka (Hall et al., 2009),
they bring the prime advantage of allowing us to rely on efficient NumPy and
SciPy vectorized operations while keeping the code short and readable. This
design choice has also been motivated by the fact that, given their pervasiveness
in many other scientific Python packages, many scientific users of Python are
already familiar with NumPy dense arrays and SciPy sparse matrices. From a
practical point of view, these formats also provide a collection of data loading and
conversion tools which make them very easy to use in many contexts. Moreover,
for tasks where the inputs are text files or semi-structured objects, we provide
vectorizer objects that efficiently convert such data to the NumPy or SciPy
formats.

For efficiency reasons, the public interface is oriented towards processing
batches of samples rather than single samples per API call. While classifica-
tion and regression algorithms can indeed make predictions for single samples,
scikit-learn objects are not optimized for this use case. (The few online learning
algorithms implemented are intended to take mini-batches.) Batch processing
makes optimal use of NumPy and SciPy by preventing the overhead inherent to
Python function calls or due to per-element dynamic type checking. Although
this might seem to be an artifact of the Python language, and therefore an imple-
mentation detail that leaks into the API, we argue that APIs should be designed
so as not to tie a library to a suboptimal implementation strategy. As such, batch
processing enables fast implementations in lower-level languages (where memory
hierarchy effects and the possibility of internal parallelization come into play).

2.3 Estimators

The estimator interface is at the core of the library. It defines instantiation
mechanisms of objects and exposes a fit method for learning a model from
training data. All supervised and unsupervised learning algorithms (e.g., for
classification, regression or clustering) are offered as objects implementing this
interface. Machine learning tasks like feature extraction, feature selection or
dimensionality reduction are also provided as estimators.

Estimator initialization and actual learning are strictly separated, in a way
that is similar to partial function application: an estimator is initialized from a
set of named constant hyper-parameter values (e.g., the C constant in SVMs)
and can be considered as a function that maps these values to actual learning
algorithms. The constructor of an estimator does not see any actual data, nor
does it perform any actual learning. All it does is attach the given parameters
to the object. For the sake of convenient model inspection, hyper-parameters
are set as public attributes, which is especially important in model selection
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settings. For ease of use, default hyper-parameter values are also provided for all
built-in estimators. These default values are set to be relevant in many common
situations in order to make estimators as effective as possible out-of-box for
non-experts.

Actual learning is performed by the fit method. This method is called with
training data (e.g., supplied as two arrays X train and y train in supervised
learning estimators). Its task is to run a learning algorithm and to determine
model-specific parameters from the training data and set these as attributes on
the estimator object. As a convention, the parameters learned by an estimator
are exposed as public attributes with names suffixed with a trailing underscore
(e.g., coef for the learned coefficients of a linear model), again to facilitate
model inspection. In the partial application view, fit is a function from data
to a model of that data. It always returns the estimator object it was called on,
which now serves as a model of its input and can be used to perform predictions
or transformations of input data.

From the start, the choice to let a single object serve dual purpose as estima-
tor and model has mostly been driven by usability and technical considerations.
From the user point of view, having two coupled instances (i.e., an estimator
object, used as a factory, and a model object, produced by the estimator) in-
deed decreases the ease of use and is also more likely to unnecessarily confuse
newcomers. From the developer point of view, decoupling estimators from mod-
els also creates parallel class hierarchies and increases the overall maintenance
complexity of the project. For these practical reasons, we believe that decoupling
estimators from models is not worth the effort. A good reason for decoupling
however, would be that it makes it possible to ship a model in a new environment
without having to deal with potentially complex software dependencies. Such a
feature could however still be implemented in scikit-learn by making estimators
able to export a fitted model, using the information from its public attributes,
to an agnostic model description such as PMML (Guazzelli et al., 2009).

To illustrate the initialize-fit sequence, let us consider a supervised learning
task using logistic regression. Given the API defined above, solving this problem
is as simple as the following example.

from sklearn.linear_model import LogisticRegression

clf = LogisticRegression(penalty="l1")

clf.fit(X_train, y_train)

In this snippet, a LogisticRegression estimator is first initialized by setting the
penalty hyper-parameter to "l1" for `1 regularization. Other hyper-parameters
(such as C, the strength of the regularization) are not explicitly given and thus
set to the default values. Upon calling fit, a model is learned from the training
arrays X train and y train, and stored within the object for later use. Since
all estimators share the same interface, using a different learning algorithm is as
simple as replacing the constructor (the class name); to build a random forest on
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the same data, one would simply replace LogisticRegression(penalty="l1")

in the snippet above by RandomForestClassifier().
In scikit-learn, classical learning algorithms are not the only objects to be

implemented as estimators. For example, preprocessing routines (e.g., scaling of
features) or feature extraction techniques (e.g., vectorization of text documents)
also implement the estimator interface. Even stateless processing steps, that do
not require the fit method to perform useful work, implement the estimator
interface. As we will illustrate in the next sections, this design pattern is indeed
of prime importance for consistency, composition and model selection reasons.

2.4 Predictors

The predictor interface extends the notion of an estimator by adding a predict

method that takes an array X test and produces predictions for X test, based on
the learned parameters of the estimator (we call the input to predict “X test”
in order to emphasize that predict generalizes to new data). In the case of
supervised learning estimators, this method typically returns the predicted la-
bels or values computed by the model. Continuing with the previous example,
predicted labels for X test can be obtained using the following snippet:

y_pred = clf.predict(X_test)

Some unsupervised learning estimators may also implement the predict in-
terface. The code in the snippet below fits a k-means model with k = 10 on
training data X train, and then uses the predict method to obtain cluster
labels (integer indices) for unseen data X test.

from sklearn.cluster import KMeans

km = KMeans(n_clusters=10)

km.fit(X_train)

clust_pred = km.predict(X_test)

Apart from predict, predictors may also implement methods that quantify
the confidence of predictions. In the case of linear models, the decision function

method returns the distance of samples to the separating hyperplane. Some pre-
dictors also provide a predict proba method which returns class probabilities.

Finally, predictors must provide a score function to assess their performance
on a batch of input data. In supervised estimators, this method takes as input
arrays X test and y test and typically computes the coefficient of determi-
nation between y test and predict(X test) in regression, or the accuracy in
classification. The only requirement is that the score method return a value
that quantifies the quality of its predictions (the higher, the better). An unsu-
pervised estimator may also expose a score function to compute, for instance,
the likelihood of the given data under its model.
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2.5 Transformers

Since it is common to modify or filter data before feeding it to a learning algo-
rithm, some estimators in the library implement a transformer interface which
defines a transform method. It takes as input some new data X test and yields
as output a transformed version of X test. Preprocessing, feature selection,
feature extraction and dimensionality reduction algorithms are all provided as
transformers within the library. In our example, to standardize the input X train

to zero mean and unit variance before fitting the logistic regression estimator,
one would write:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

Of course, in practice, it is important to apply the same preprocessing to the test
data X test. Since a StandardScaler estimator stores the mean and standard
deviation that it computed for the training set, transforming an unseen test set
X test maps it into the appropriate region of feature space:

X_test = scaler.transform(X_test)

Transformers also include a variety of learning algorithms, such as dimension
reduction (PCA, manifold learning), kernel approximation, and other mappings
from one feature space to another.

Additionally, by leveraging the fact that fit always returns the estimator it
was called on, the StandardScaler example above can be rewritten in a single
line using method chaining:

X_train = StandardScaler().fit(X_train).transform(X_train)

Furthermore, every transformer allows fit(X train).transform(X train)

to be written as fit transform(X train). The combined fit transform method
prevents repeated computations. Depending on the transformer, it may skip only
an input validation step, or in fact use a more efficient algorithm for the transfor-
mation. In the same spirit, clustering algorithms provide a fit predict method
that is equivalent to fit followed by predict, returning cluster labels assigned
to the training samples.

3 Advanced API

Building on the core interface introduced in the previous section, we now present
advanced API mechanisms for building meta-estimators, composing complex
estimators and selecting models. We also discuss design choices allowing for easy
usage and extension of scikit-learn.
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3.1 Meta-estimators

Some machine learning algorithms are expressed naturally as meta-algorithms
parametrized on simpler algorithms. Examples include ensemble methods which
build and combine several simpler models (e.g., decision trees), or multiclass and
multilabel classification schemes which can be used to turn a binary classifier
into a multiclass or multilabel classifier. In scikit-learn, such algorithms are im-
plemented as meta-estimators. They take as input an existing base estimator
and use it internally for learning and making predictions. All meta-estimators
implement the regular estimator interface.

As an example, a logistic regression classifier uses by default a one-vs.-
rest scheme for performing multiclass classification. A different scheme can be
achieved by a meta-estimator wrapping a logistic regression estimator:

from sklearn.multiclass import OneVsOneClassifier

ovo_lr = OneVsOneClassifier(LogisticRegression(penalty="l1"))

For learning, the OneVsOneClassifier object clones the logistic regression esti-

mator multiple times, resulting in a set of K(K−1)
2 estimator objects for K-way

classification, all with the same settings. For predictions, all estimators perform
a binary classification and then vote to make the final decision. The snippet ex-
emplifies the importance of separating object instantiation and actual learning.

Since meta-estimators require users to construct nested objects, the decision
to implement a meta-estimator rather than integrate the behavior it implements
into existing estimators classes is always based on a trade-off between generality
and ease of use. Relating to the example just given, all scikit-learn classifiers are
designed to do multiclass classification and the use of the multiclass module
is only necessary in advanced use cases.

3.2 Pipelines and feature unions

A distinguishing feature of the scikit-learn API is its ability to compose new
estimators from several base estimators. Composition mechanisms can be used
to combine typical machine learning workflows into a single object which is
itself an estimator, and can be employed wherever usual estimators can be used.
In particular, scikit-learn’s model selection routines can be applied to composite
estimators, allowing global optimization of all parameters in a complex workflow.
Composition of estimators can be done in two ways: either sequentially through
Pipeline objects, or in a parallel fashion through FeatureUnion objects.

Pipeline objects chain multiple estimators into a single one. This is useful
since a machine learning workflow typically involves a fixed sequence of process-
ing steps (e.g., feature extraction, dimensionality reduction, learning and making
predictions), many of which perform some kind of learning. A sequence of N such
steps can be combined into a Pipeline if the first N − 1 steps are transformers;
the last can be either a predictor, a transformer or both.
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Conceptually, fitting a pipeline to a training set amounts to the following
recursive procedure: i) when only one step remains, call its fit method; ii)
otherwise, fit the first step, use it to transform the training set and fit the
rest of the pipeline with the transformed data. The pipeline exposes all the
methods the last estimator in the pipe exposes. That is, if the last estimator is
a predictor, the pipeline can itself be used as a predictor. If the last estimator is
a transformer, then the pipeline is itself a transformer.

FeatureUnion objects combine multiple transformers into a single one that
concatenates their outputs. A union of two transformers that map input having
d features to d′ and d′′ features respectively is a transformer that maps its d
input features to d′ + d′′ features. This generalizes in the obvious way to more
than two transformers. In terms of API, a FeatureUnion takes as input a list of
transformers. Calling fit on the union is the same as calling fit independently
on each of the transformers and then joining their outputs.

Pipeline and FeatureUnion can be combined to create complex and nested
workflows. The following snippet illustrates how to create a complex estimator
that computes both linear PCA and kernel PCA features on X train (through a
FeatureUnion), selects the 10 best features in the combination according to an
ANOVA test and feeds those to an `2-regularized logistic regression model.

from sklearn.pipeline import FeatureUnion, Pipeline

from sklearn.decomposition import PCA, KernelPCA

from sklearn.feature_selection import SelectKBest

union = FeatureUnion([("pca", PCA()),

("kpca", KernelPCA(kernel="rbf"))])

Pipeline([("feat_union", union),

("feat_sel", SelectKBest(k=10)),

("log_reg", LogisticRegression(penalty="l2"))

]).fit(X_train, y_train).predict(X_test)

3.3 Model selection

As introduced in Section 2.3, hyper-parameters set in the constructor of an
estimator determine the behavior of the learning algorithm and hence the per-
formance of the resulting model on unseen data. The problem of model selection
is therefore to find, within some hyper-parameter space, the best combination of
hyper-parameters, with respect to some user-specified criterion. For example, a
decision tree with too small a value for the maximal tree depth parameter will
tend to underfit, while too large a value will make it overfit.

In scikit-learn, model selection is supported in two distinct meta-estimators,
GridSearchCV and RandomizedSearchCV. They take as input an estimator (basic
or composite), whose hyper-parameters must be optimized, and a set of hyper-
parameter settings to search through. This set is represented as a mapping of
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parameter names to a set of discrete choices in the case of grid search, which
exhaustively enumerates the “grid” (cartesian product) of complete parameter
combinations. Randomized search is a smarter algorithm that avoids the com-
binatorial explosion in grid search by sampling a fixed number of times from its
parameter distributions (see Bergstra and Bengio, 2012).

Optionally, the model selection algorithms also take a cross-validation scheme
and a score function. scikit-learn provides various such cross-validation schemes,
including k-fold (default), stratified k-fold and leave-one-out. The score function
used by default is the estimator’s score method, but the library provides a
variety of alternatives that the user can choose from, including accuracy, AUC
and F1 score for classification, R2 score and mean squared error for regression.

For each hyper-parameter combination and each train/validation split gen-
erated by the cross-validation scheme, GridSearchCV and RandomizedSearchCV

fit their base estimator on the training set and evaluate its performance on the
validation set. In the end, the best performing model on average is retained and
exposed as the public attribute best estimator .

The snippet below illustrates how to find hyper-parameter settings for an
SVM classifier (SVC) that maximize F1 score through 10-fold cross-validation
on the training set.

from sklearn.grid_search import GridSearchCV

from sklearn.svm import SVC

param_grid = [

{"kernel": ["linear"], "C": [1, 10, 100, 1000]},

{"kernel": ["rbf"], "C": [1, 10, 100, 1000],

"gamma": [0.001, 0.0001]}

]

clf = GridSearchCV(SVC(), param_grid, scoring="f1", cv=10)

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

In this example, two distinct hyper-parameter grids are considered for the linear
and radial basis function (RBF) kernels; an SVM with a linear kernel accepts
a γ parameter, but ignores it, so using a single parameter grid would waste
computing time trying out effectively equivalent settings. Additionally, we see
that GridSearchCV has a predict method, just like any other classifier: it dele-
gates the predict, predict proba, transform and score methods to the best
estimator (optionally after re-fitting it on the whole training set).

3.4 Extending scikit-learn

To ease code reuse, simplify implementation and skip the introduction of su-
perfluous classes, the Python principle of duck typing is exploited throughout
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the codebase. This means that estimators are defined by interface, not by in-
heritance, where the interface is entirely implicit as far as the programming
language is concerned. Duck typing allows both for extensibility and flexibility:
as long as an estimator follows the API and conventions outlined in Section 2,
then it can be used in lieu of a built-in estimator (e.g., it can be plugged into
pipelines or grid search) and external developers are not forced to inherit from
any scikit-learn class.

In other places of the library, in particular in the vectorization code for
unstructured input, the toolkit is also designed to be extensible. Here, estimators
provide hooks for user-defined code: objects or functions that follow a specific
API can be given as arguments at vectorizer construction time. The library
then calls into this code, communicating with it by passing objects of standard
Python/NumPy types. Again, such external user code can be kept agnostic of
the scikit-learn class hierarchy.

Our rule of thumb is that user code should not be tied to scikit-learn—which
is a library, and not a framework. This principle indeed avoids a well-known prob-
lem with object-oriented design, which is that users wanting a “banana” should
not get “a gorilla holding the banana and the entire jungle” (J. Armstrong, cited
by Seibel, 2009, p. 213). That is, programs using scikit-learn should not be inti-
mately tied to it, so that their code can be reused with other toolkits or in other
contexts.

4 Implementation

Our implementation guidelines emphasize writing efficient but readable code. In
particular, we focus on making the codebase easily maintainable and understand-
able in order to favor external contributions. Whenever practicable, algorithms
implemented in scikit-learn are written in Python, using NumPy vector opera-
tions for numerical work. This allows for the code to remain concise, readable and
efficient. For critical algorithms that cannot be easily and efficiently expressed as
NumPy operations, we rely on Cython (Behnel et al., 2011) to achieve compet-
itive performance and scalability. Cython is a compiled programming language
that extends Python with static typing. It produces efficient C extension mod-
ules that are directly importable from the Python run-time system. Examples
of algorithms written in Cython include stochastic gradient descent for linear
models, some graph-based clustering algorithms and decision trees.

To facilitate the installation and thus adoption of scikit-learn, the set of
external dependencies is kept to a bare minimum: only Python, NumPy and
SciPy are required for a functioning installation. Binary distributions of these
are available for the major platforms. Visualization functionality depends on
Matplotlib (Hunter, 2007) and/or Graphviz (Gansner and North, 2000), but
neither is required to perform machine learning or prediction. When feasible,
external libraries are integrated into the codebase. In particular, scikit-learn
includes modified versions of LIBSVM and LIBLINEAR (Chang and Lin, 2011;
Fan et al., 2008), both written in C++ and wrapped using Cython modules.
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5 Related software

Recent years have witnessed a rising interest in machine learning and data mining
with applications in many fields. With this rise comes a host of machine learning
packages (both open source and proprietary) with which scikit-learn competes.
Some of those, including Weka (Hall et al., 2009) or Orange (Demšar et al.,
2004), offer APIs but actually focus on the use of a graphical user interface (GUI)
which allows novices to easily apply machine learning algorithms. By contrast,
the target audience of scikit-learn is capable of programming, and therefore
we focus on developing a usable and consistent API, rather than expend effort
into creating a GUI. In addition, while GUIs are useful tools, they sometimes
make reproducibility difficult in the case of complex workflows (although those
packages usually have developed a GUI for managing complex tasks).

Other existing machine learning packages such as SofiaML4 (Sculley, 2009)
and Vowpal Wabbit5 are intended to be used as command-line tools (and some-
times do not offer any type of API). While these packages have the advantage
that their users are not tied to a particular programming language, the users will
find that they still need programming to process input/output, and will do so in
a variety of languages. By contrast, scikit-learn allows users to implement that
entire workflow in a single program, written in a single language, and developed
in a single working environment. This also makes it easier for researchers and
developers to exchange and collaborate on software, as dependencies and setup
are kept to a minimum.

Similar benefits hold in the case of specialized languages for numeric and
statistical programming such as matlab and R (R Core Team, 2013). In com-
parison to these, though, Python has the distinct advantage that it is a general
purpose language, while NumPy and SciPy extend it with functionality similar
to that offered by matlab and R. Python has strong language and standard
library support for such tasks as string/text processing, interprocess communi-
cation, networking and many of the other auxiliary tasks that machine learning
programs (whether academic or commercial) routinely need to perform. While
support for many of these tasks is improving in languages such as matlab and
R, they still lag behind Python in their general purpose applicability. In many
applications of machine learning these tasks, such as data access, data prepro-
cessing and reporting, can be a more significant task than applying the actual
learning algorithm.

Within the realm of Python, a package that deserves mention is the Gensim
topic modeling toolkit (Řeh̊uřek and Sojka, 2010), which exemplifies a different
style of API design geared toward scalable processing of “big data”. Gensim’s
method of dealing with large datasets is to use algorithms that have O(1) space
complexity and can be updated online. The API is designed around the Python
concept of an iterable (supported in the language by a restricted form of co-
routines called generators). While the text vectorizers part of scikit-learn also

4 https://code.google.com/p/sofia-ml
5 http://hunch.net/∼vw
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use iterables to some extent, they still produce entire sparse matrices, intended
to be used for batch or mini-batch learning. This is the case even in the stateless,
O(1) memory vectorizers that implement the hashing trick of Weinberger et al.
(2009). This way of processing, as argued earlier in Section 2.2, reduces various
forms of overhead and allows effective use of the vectorized operations provided
by NumPy and SciPy. We make no attempt to hide this batch-oriented processing
from the user, allowing control over the amount of memory actually dedicated
to scikit-learn algorithms.

6 Future directions

There are several directions that the scikit-learn project aims to focus on in
future development. At present, the library does not support some classical ma-
chine learning algorithms, including neural networks, ensemble meta-estimators
for bagging or subsampling strategies and missing value completion algorithms.
However, tasks like structured prediction or reinforcement learning are consid-
ered out of scope for the project, since they would require quite different data
representations and APIs.

At a lower-level, parallel processing is a potential point of improvement. Some
estimators in scikit-learn are already able to leverage multicore processors, but
only in a coarse-grained fashion. At present, parallel processing is difficult to
accomplish in the Python environment; scikit-learn targets the main implemen-
tation, CPython, which cannot execute Python code on multiple CPUs simul-
taneously. It follows that any parallel task decomposition must either be done
inside Cython modules, or at a level high enough to warrant the overhead of
creating multiple OS-level processes, and the ensuing inter-process communica-
tion. Parallel grid search is an example of the latter approach which has already
been implemented. Recent versions of Cython include support for the OpenMP
standard (Dagum and Menon, 1998), which is a viable candidate technology for
more fine-grained multicore support in scikit-learn.

Finally, a long-term solution for model persistence is missing. Currently,
Python’s pickle module is recommended for serialization, but this only offers a
file format, not a way of preserving compatibility between versions. Also, it has
security problems because its deserializer may execute arbitrary Python code,
so models from untrusted sources cannot be safely “unpickled”.

These API issues will be addressed in the future in preparation for the 1.0
release of scikit-learn.

7 Conclusion

We have discussed the scikit-learn API and the way it maps machine learning
concepts and tasks onto objects and operations in the Python programming
language. We have shown how a consistent API across the package makes scikit-
learn very usable in practice: experimenting with different learning algorithm is
as simple as substituting a new class definition. Through composition interfaces



14

such as Pipelines, Feature Unions, and meta-estimators, these simple building
blocks lead to an API which is powerful, and can accomplish a wide variety of
learning tasks within a small amount of easy-to-read code. Through duck-typing,
the consistent API leads to a library that is easily extensible, and allows user-
defined estimators to be incorporated into the scikit-learn workflow without any
explicit object inheritance.

While part of the scikit-learn API is necessarily Python-specific, core con-
cepts may be applicable to machine learning applications and toolkits written
in other (dynamic) programming languages. The power, and extensibility of the
scikit-learn API is evidenced by the large and growing user-base, its use to
solve real problems across a wide array of fields, as well as the appearance of
third-party packages that follow the scikit-learn conventions. Examples of such
packages include astroML6 (Vanderplas et al., 2012), a package providing ma-
chine learning tools for astronomers, and wiseRF 7, a commercial random forest
implementation. The source code of the recently-proposed sparse multiclass al-
gorithm of Blondel et al. (2013), released as part of the lightning8 package, also
follows the scikit-learn conventions. To maximize ease of use, we encourage more
researchers to follow these conventions when releasing their software.
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A declarative query language for statistical
inference

Gitte Vanwinckelen, Hendrik Blockeel

Department of Computer Science, KU Leuven, Belgium

1 Introduction

Large volumes of experimental data are generated each day in computational
sciences such as bioinformatics, chemistry, and physics. Statistical analyses are
no longer only restricted to statisticians, but are increasingly being performed
by non-experts [8]. The process is not only labor-intensive but also error-prone.
Statistics provides us with a plethora of data analysis and inference methods,
making it practically impossible for a scientist to have full knowledge of the
existing methods and statistical assumptions that have to be satisfied to apply
them. Scientists are often even unaware when a statistical assumption is violated.

We propose to tackle these problems with a formal declarative language in
which experimental questions, and the necessary background information, can
be formulated. A scientist could then formulate a hypothesis as a query, after
which the remainder of the experimental process is performed automatically.
This approach allows a scientist to focus on a correct understanding of high
level concepts from statistics rather than technical details.

To clarify our goal, we start by comparing this idea to those underlying
existing systems. Next, we propose a preliminary design of the language by
looking into one specific task, namely, the computation of a confidence interval
for the population mean of a random variable.

2 Related work

A great amount of software exists for machine learning and statistics, e.g., Weka
and R. These packages require a thorough understanding of statistics to per-
form meaningful inferences. For instance, they will not give a warning if a user
performs a hypothesis test on a sample that is too small to get useful results.

Statistical expert systems aim to remedy these problems by giving advice on
the design and analysis of an experiment [5]. While they have the same goal as
our declarative experimentation system, the implementation differs. Statistical
expert systems are often based on interaction with natural language yes/no
questions, and the control system is typically implemented with IF THEN rules.
Our solution, on the contrary, allows the user to formulate a query in a formal
declarative language together with the necessary constraints and assumptions.
A database is used to perform statistical inference and answer the query.

While our system is database oriented, it is different from a statistical database
system. Such a system allows the user to perform statistical analyses on a
database by computing statistical aggregates, but it disallows access to indi-
vidual records. Research in this area focuses mostly on data anonymization [2].



Also related are probabilistic databases, which represent uncertainty in the
database [4]. It should be noted that our approach is not concerned with uncer-
tainty in the database itself. We assume a given deterministic database that is
seen as a sample from a population, and want to query that population, not the
database itself. This crucially sets apart the two approaches.

An idea that is more closely related, is the construction of probabilistic mod-
els from a relational database by Singh and Graepel [9]; these models then de-
scribe the population that the database is a sample from. Methods such as this
one will play a role in any implementation of our approach. We here focus, how-
ever, on creating a language and execution mechanism that supports a general
type of queries, thus offering flexibility and ease of use to the user.

Lastly, our system is related to inductive database systems, which aim to
integrate data mining and machine learning into database management systems
[6]. They allow for users to query a database for patterns by formulating ques-
tions in a declarative language rather than running a predefined algorithm. An
inductive database system for constraint based clustering was recently proposed
by Adam and Blockeel [1]. While inductive database systems focus on inference
with machine learning models, our focus is on statistical inference.

3 Query language design

The language requirements can be looked at from two viewpoints. From the
statistical viewpoint, we want to formulate queries in a declarative manner to
shield the user from low level choices, e.g., the choice of the method to
compute a confidence interval for a population parameter. From the database
viewpoint, our query language is based on SQL, but we want to query
statistical populations, instead of a finite database. We illustrate the language
design by introducing and explaining the ‘ESTIMATE’ statement.

〈ExpQL〉 ::= ESTIMATE 〈population statistic〉
FROM 〈sample〉
[ WHERE 〈condition〉 ]
[ ENSURING 〈statistical accuracy〉 ]

〈population statistic〉 ::= PROP 〈data〉 | MEAN 〈data〉
〈statistical accuracy〉 ::= CONF 〈confidence〉

The population parameter that we want to estimate is given by 〈population statistic〉.
〈sample〉 is the data that we have available to estimate the population pa-
rameter. It is a database table that has an attribute-value structure. With the
WHERE 〈condition〉 clause we can specify a subpopulation. The ENSURING
〈statistical accuracy〉 clause imposes constraints on the population parameter
estimator. For now, we focus on confidence intervals, and the constraints can
apply to the confidence level, the width, or a combination of both.

4 Query execution

We illustrate the query execution with an example. Consider a database table
employee that contains employees of a multinational corporation. Each record



consists of the following properties: Id, name, length, gender, nationality, and
hair color. We are interested in a 95% confidence interval with a maximum width
of 5cm for the expected length of all Swedish male employees with blond hair:

ESTIMATE MEAN length

FROM employee

WHERE gender= ‘male’ AND nationality=‘Swedish’ AND haircolor=‘blond’

ENSURING CONF=0.95 AND WIDTH <= 5;

If a user specifies both a confidence level and a maximum width, this puts a
constraint on the minimum size of the sample. If the sample is too small, we
propose two alternative execution strategies to still answer the query.

First, it may be possible to couple the query system to a data generator, and
use active learning to generate the necessary data. The data generator may be
an actual physical experimentation system. An existing example is the Robot
Scientist, which combines physical execution with active learning and automated
hypothesis generation [7]. If this is not possible, the system can notify the user
about the shortage of data, and request him or her to collect more data. It
can still assist the user with the data collection, for instance, by computing the
minimum number of samples needed.

Second, we can try to incorporate more data in an intelligent manner by
relaxing the constraints. In our example query, the user assumes length is de-
pendent on hair color, gender, and nationality, but perhaps one or more of these
dependencies is very weak. For instance, some relationship exists between hair
color and length; Scandinavians are on average taller than South Europeans, and
are also blond more often. However, it is unclear if this relationship still holds for
Swedish men only. If we know hair color and length are independent for Swedish
men, we can remove the condition for blond hair and take into account men of
any hair color to compute the confidence interval for the mean length.

To apply this approach, we need a method to detect independence between
two variables. Many different tests are known for this purpose: The Chi-square
test, the Student t-test, etc. Which should be used depends on the types of
variables, i.e, categorical or continuous, and their distributions.

In our preliminary experiments on data collected from the UCI repository [3],
we investigate constructing a confidence interval for the mean of a continuous
variable, which is dependent on a binary variable. A first approach is to test for
independence with a t-test that tests for the difference between the means of
two independent samples. However, one should be careful with null hypothesis
testing. If the null hypothesis is not rejected we have not proven it, instead have
insufficient evidence to disprove it. An alternative procedure, which we are still
looking into, that does not suffer from this problem is equivalence testing [10].

There is a probability that the test will not detect dependence. This will
cause a discrepancy between the imposed confidence level from the query, and
the true confidence level. To still provide the user with a correct answer, we aim
to quantify this difference.o Our experiments are a first step towards this goal.

The experiments indicate that when a t-test does not detect a difference be-
tween the two means for different values of the binary variable, we can safely



include the extra data to compute the confidence interval. Because of the addi-
tional data, the interval width decreases and this helps us provide a confidence
interval with both the required confidence level and maximum width. When the
t-test does detect a difference between the means, however, the confidence level is
significantly smaller than the requested level, so the approach is not applicable.

5 Conclusion
We presented preliminary ideas on the design of an experimentation system that
consists of a declarative language and an inference engine. The language would
allow to formulate a hypothesis about a data population, whereafter the infer-
ence engine automatically provides an answer, based on a limited sample,. In
a first stage of this research we introduced the ESTIMATE statement that can
be used to formulate a query about a population statistic. We focused on the
computation of a confidence interval for the population mean. The system is
responsible for choosing the appropriate execution strategy to satisfy the re-
quested confidence level and width. To this purpose, we proposed two different
approaches; supplementing the database with new data, or attempting to relax
some of the constraints that the user imposed on the data.

We plan to extend this work with additional queries in order to arrive at a
complete the language. Our focus lies on queries relevant to machine learning
researchers. Furthermore, while the preliminary language design is based on
SQL, we also plan to investigate probabilistic logic programming languages (e.g.,
Problog), and first order knowledge representation languages (e.g., FO(.)).
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