The Second Answer Set Programming Competition

Marc Denecker Joost Vennekens Stephen Bond Martin Gebser Mirosław Truszczyński

Katholieke Universiteit Leuven

University of Potsdam

University of Kentucky

17 Sept 2009

Marc Denecker et al.

The Second Answer Set Programming Competition

17 Sept 2009 1 / 48

The Second Answer Set Programming Competition

Marc Denecker Joost Vennekens Stephen Bond Martin Gebser Mirosław Truszczyński

Katholieke Universiteit Leuven

University of Potsdam

University of Kentucky

17 Sept 2009

University of Angers CUNY Brooklyn College Helsinki University of Technology Katholieke Universiteit Leuven University of Potsdam University of Texas at Austin University of Bath University of Calabria University of Kentucky Microsoft Corporation Simon Fraser University University of Texas at Tyler

Marc Denecker et al.

The Second Answer Set Programming Competition

17 Sept 2009 1 / 48

Outline

1 Background

- 2 The 2nd ASP-competition
- 3 Benchmarks
- 4 Competitors
- 5 Format of the competition
- 6 Results
- 7 Discussion

8 Summary

Marc Denecker et al.

Answer Set Programming

Answer set programming is an emerging programming/problem solving paradigm. The fundamental underlying idea is to describe a problem declaratively in such a way that models of the description provide solutions to problems. One particular instance of this paradigm are logic programs under stable model semantics (respectively answer set semantics if an extended class of logic programs is used).

(G. Brewka, I. Niemelä, T. Schaub, M. Truszczyński; 2002)

Answer Set Programming

Answer set programming is an emerging programming/problem solving paradigm. The fundamental underlying idea is to describe a problem declaratively in such a way that models of the description provide solutions to problems. One particular instance of this paradigm are logic programs under stable model semantics (respectively answer set semantics if an extended class of logic programs is used).

(G. Brewka, I. Niemelä, T. Schaub, M. Truszczyński; 2002)

What has ASP to offer?

Marc Denecker et al.

The Second Answer Set Programming Competition

17 Sept 2009 3 / 48

In many constraint problems, we search for complex objects that satisfy certain properties

■ schedules, assignments, plans, diagnoses, etc.

In many constraint problems, we search for complex objects that satisfy certain properties

■ schedules, assignments, plans, diagnoses, etc.

 Different constraint programming paradigms, different ways of representing these complex objects

In many constraint problems, we search for complex objects that satisfy certain properties

■ schedules, assignments, plans, diagnoses, etc.

 Different constraint programming paradigms, different ways of representing these complex objects

■ In CLP, SAT: by sets of constraint variables:

 Programs generate constraint variables, store them in datastructures (lists, trees, ...) and generate the constraints over them.

In many constraint problems, we search for complex objects that satisfy certain properties

■ schedules, assignments, plans, diagnoses, etc.

 Different constraint programming paradigms, different ways of representing these complex objects

■ In CLP, SAT: by sets of constraint variables:

 Programs generate constraint variables, store them in datastructures (lists, trees, ...) and generate the constraints over them.

In the ASP-computational paradigm : by a structure, an answer set
 Properties of structures expressed by logical formulas

In many constraint problems, we search for complex objects that satisfy certain properties

■ schedules, assignments, plans, diagnoses, etc.

 Different constraint programming paradigms, different ways of representing these complex objects

■ In CLP, SAT: by sets of constraint variables:

 Programs generate constraint variables, store them in datastructures (lists, trees, ...) and generate the constraints over them.

In the ASP-computational paradigm : by a structure, an answer set
 Properties of structures expressed by logical formulas

 This idea was pioneered using Answer Set Programming formalisms (smodels, dlv) but is also possible for other KR-languages

Marc Denecker et al.

Using KR-logics for Answer Set Programming

 Knowledge representation logics are designed for representing knowledge about the world

- The world is a very complex object
- Formally represented as a structure

Using KR-logics for Answer Set Programming

 Knowledge representation logics are designed for representing knowledge about the world

- The world is a very complex object
- Formally represented as a structure

KR-languages offer a clear modeling advantage compared to CP, CLP, CSP, SAT, but there is a implementation disadvantage

ASP tries to close the gap with SAT, CLP

Using KR-logics for Answer Set Programming

 Knowledge representation logics are designed for representing knowledge about the world

- The world is a very complex object
- Formally represented as a structure

KR-languages offer a clear modeling advantage compared to CP, CLP, CSP, SAT, but there is a implementation disadvantage

■ ASP tries to close the gap with SAT, CLP

 \Rightarrow ASP-Programming Competition !!!

Marc Denecker et al.

The Second Answer Set Programming Competition

17 Sept 2009 5 / 48

(First) Competitions

- 1994 Prolog Programming Competition
- 1996 CADE ATP System Competition
- 2002 SAT Competition/Race
- 2005 CSP Solver Competition PB Evaluation
 - SMT Competition
- 2006 QBF Solver Evaluation
- 2007 ASP System Competition

(First) Competitions

- 1994 Prolog Programming Competition
- 1996 CADE ATP System Competition
- 2002 SAT Competition/Race
- 2005 CSP Solver Competition PB Evaluation
 - SMT Competition
- 2006 QBF Solver Evaluation
- 2007 ASP System Competition

Many communities established competitions to evaluate modeling skills, systems and tools!

A Success Story from SAT 2009

Application/Industrial category of SAT 2007 competition

Won by the Rsat solver

A Success Story from SAT 2009

Application/Industrial category of SAT 2007 competition

Won by the Rsat solver

Congratulations to the champion!

Application/Industrial category of SAT 2009 competition

■ Rsat 2007 version (entered for comparison) came in

A Success Story from SAT 2009

Application/Industrial category of SAT 2007 competition

Won by the Rsat solver

Congratulations to the champion!

Application/Industrial category of SAT 2009 competition

Rsat 2007 version (entered for comparison) came in ... 13th
 Congratulations to 12 new solvers beating the former champion!

Marc Denecker et al.

The Second Answer Set Programming Competition

17 Sept 2009 7 / 48

Outline

1 Background

- 2 The 2nd ASP-competition
- 3 Benchmarks
- 4 Competitors
- 5 Format of the competition
- 6 Results
- 7 Discussion

8 Summary

Marc Denecker et al.

The 2nd ASP-competition

• Organized by the KRR-group of the K.U.Leuven, Belgium

- Modelgeneration using $FO(\cdot)$
- Inside the ASP-paradigm, outside ASP-language

Invitation by steering committee of ASP-competition

The 2nd ASP-competition

Organized by the KRR-group of the K.U.Leuven, Belgium

- Modelgeneration using FO(·)
- Inside the ASP-paradigm, outside ASP-language

Invitation by steering committee of ASP-competition <u>Several</u> invitations actually :-)

The 2nd ASP-competition

Organized by the KRR-group of the K.U.Leuven, Belgium

- Modelgeneration using $FO(\cdot)$
- Inside the ASP-paradigm, outside ASP-language

Invitation by steering committee of ASP-competition Several invitations actually :-)

• We accepted on some conditions — (\neq 1st ASP-competition)

Model and Solve competition only

- Open to all constraint programming paradigms
- Decision problems and optimisation problems

Opening up ASP: a trend

 Answer Set Programming and Other Computing Paradigms (ASPOCP) (2008,2009)

Logic and Search (LaSh) (2006,2008)

To bring together researchers from all fields that share the problem solving methodology based on model generation

Chronology of the competition

Collection of Benchmarks (December 2008 - March 2009)

Participants registered and installed solutions (April - May 2009)

Competition was run (June)

Outline

1 Background

- 2 The 2nd ASP-competition
- 3 Benchmarks
- 4 Competitors
- 5 Format of the competition
- 6 Results
- 7 Discussion

8 Summary

Marc Denecker et al.

Benchmarks: discussions developed

Industrial size benchmarks

- Nicola Leone and Jack Minker at LPNMR07 had made an urgent appeal to submit real application problems for this ASP competition
- This was in the call for benchmarks
- Not much response
- To be discussed . . .

Benchmarks: discussions developed

Industrial size benchmarks

- Nicola Leone and Jack Minker at LPNMR07 had made an urgent appeal to submit real application problems for this ASP competition
- This was in the call for benchmarks
- Not much response
- To be discussed . . .

• Objections against P and Σ_2^p benchmarks

- Some feel that the competition should focus on NP problems
- Many smaller teams do not have systems for handling large P problems and do not have the expressivity for Σ^p₂ problems.
- To be discussed ...

The compromise

Philosophy of this competition:

Getting as much information out of the competition as possible

The compromise

Philosophy of this competition:

Getting as much information out of the competition as possible

Measuring different kind of qualities:

- NP-problems : inherent speed of the solver
- P, NP, Σ_2^{p} -problems : broad applicability

The compromise

Philosophy of this competition:

Getting as much information out of the competition as possible

Measuring different kind of qualities:

- NP-problems : inherent speed of the solver
- P, NP, Σ_2^{p} -problems : broad applicability

We opted for:

- Allowing all types of benchmarks
- Splitting up in different categories

Categories

obal	
Decision	
Problems in P (5)	
Problems in NP (23)	(not known to be in P)
Σ_2^P -complete (Strategic Co	ompanies)
Optimization (9)	

Marc Denecker et al.

Benchmarks

Decision Problems

Benchmark	Benchmark Class Contributors #Instances			
HydraulicPlanning	P	M. Gelfond, R. Morales and Y. Zhang	#instances	
HydraulicLeaking	P	M. Gelfond, R. Morales and Y. Zhang M. Gelfond, R. Morales and Y. Zhang	15	
	P	Mario Alviano	15	
GrammarBasedInformationExtraction	P	Marco Manna	29	
Reachability	P	Giorgio Terracina	15	
BlockedNQueens	NP	Giorgio Terracina G. Namasivayam and M. Truszczyński	29	
Sokoban			29	
	NP	Wolfgang Faber		
15Puzzle	NP	L. Liu, M. Truszczyński and M. Gebser	16	
HamiltonianPath	NP	L. Liu, M. Truszczyński and M. Gebser	29	
SchurNumbers	NP	L. Liu, M. Truszczyński and M. Gebser	29	
TravellingSalesperson	NP	L. Liu, M. Truszczyński and M. Gebser	29	
WeightBoundedDominatingSet	NP	L. Liu, M. Truszczyński and M. Gebser	29	
Labyrinth	NP	Martin Gebser	29	
GeneralizedSlitherlink	NP	Wolfgang Faber	29	
HierarchicalClustering	NP	G. Namasivayam and M. Truszczyński	12	
ConnectedDominatingSet	NP	G. Namasivayam and M. Truszczyński	21	
GraphPartitioning	NP	G. Namasivayam and M. Truszczyński	13	
Hanoi	NP	G. Namasivayam, M. Truszczyński and G. Terr		
Fastfood	NP	Wolfgang Faber	29	
WireRouting	NP	G. Namasivayam and M. Truszczyński	23	
Sudoku	NP	Neng-Fa Zhou	10	
DisjunctiveScheduling	NP	Neng-Fa Zhou	10	
KnightTour	NP	Neng-Fa Zhou	10	
ChannelRouting	NP	Neng-Fa Zhou	11	
EdgeMatching	NP	Martin Brain	29	
GraphColouring	NP	Martin Brain	29	
MazeGeneration	NP	Martin Brain	29	
Solitaire	NP	Martin Brain	27	
StrategicCompanies	Σ_2^P	M. Alviano, M. Maratea and F. Ricca	17	
Marc Denecker et al. The Second Answer Set Programming Competition 17 Sept				

/ 48

Optimization Problems

Benchmark	Contributors	#Instances
GolombRuler	Martin Brain	24
MaximalClique	Johan Wittocx	29
15PuzzleOptimize	L. Liu, M. Truszczyński and M. Gebser	16
TravellingSalespersonOptimize	L. Liu, M. Truszczyński and M. Gebser	29
WeightBoundedDominatingSetOptimize	L. Liu, M. Truszczyński and M. Gebser	29
LabyrinthOptimize	Martin Gebser	28
SokobanOptimize	Wolfgang Faber	29
FastfoodOptimize	Wolfgang Faber	29
CompanyControlsOptimize	Mario Alviano	15

Many thanks

to all contributors!

Marc Denecker et al.

The Second Answer Set Programming Competition

17 Sept 2009 18 / 48

Outline

1 Background

- 2 The 2nd ASP-competition
- 3 Benchmarks
- 4 Competitors
- 5 Format of the competition
- 6 Results
- 7 Discussion

8 Summary

Marc Denecker et al.

The Second Answer Set Programming Competition

17 Sept 2009 19 / 48

Competitors

Sixteen Teams

Team	Affiliation	Lang.	Systems		
IDP	K.U. Leuven, KRR	$FO(\cdot)$	idp (gidl+minisatid)		
Potassco	U. of Potsdam	ASP	clasp, claspd, gringo, clingo,		
			iclingo, clingcon, bingo		
DLV	U. of Calabria	ASP	dlv		
Claspfolio	U. of Potsdam	ASP	gringo + clasp		
Smodels-IE	U. of Bath	ASP	gringo + smodelsie		
ASPeRiX	U. of Angers	ASP	asperix		
CMODELS	U. of Texas at Austin	ASP	gringo + cmodels		
SUP	U. of Texas at Austin	ASP	gringo + sup		
BPSolver-CLP(FD)	International B-Prolog team	CLP(FD)	<i>bprolog</i> (tabling, CLP(FD), B_{mv}^{fd})		
Enfragmo	Simon Fraser U.,	FO(·)	enfragmo (grounder + SAT solver)		
	Computational Logic Laboratory	10(.)			
LP2DIFF+BCLT	Helsinki U. of Technology (TKK)	ASP	gringo + smodels + lp2diff + bclt		
LP2SAT+MINISAT	Helsinki U. of Technology (TKK)	ASP	gringo + smodels + lp2exp + minisat		
LP2DIFF+YICES	Helsinki U. of Technology (TKK)	ASP	gringo + smodels + lp2diff + yices		
pbmodels	U. of Kentucky,	ASP	pbmodels (uses minisat+)		
	U. of Texas at Tyler, Microsoft	ASI			
sabe	U. of Kentucky,	ASP	sabe (uses minisat)		
	U. of Texas at Tyler, Microsoft	ASE			
amsolver	U. of Kentucky,	FO(·)	amsolver		
	U. of Texas at Tyler, Microsoft	10(.)			

Marc Denecker et al.

The Second Answer Set Programming Competition

17 Sept 2009 20 / 48

Participants

16 teams - 9 new ones

Participants

16 teams - 9 new ones

Modeling Languages

- ASP (dialects): 12 teams
- FO(·): 3 teams
- CLP(FD): 1 team

Participants

16 teams - 9 new ones

Modeling Languages

ASP (dialects): 12 teams
FO(·): 3 teams
CLP(FD): 1 team

Solving Systems

- "native" ASP solvers: 5 teams
- SAT solvers: 6 teams
- SMT solvers: 2 teams
- PB solvers: 1 team

Marc Denecker et al.

The Second Answer Set Programming Competition

(*asperix* grounding on-the-fly)

17 Sept 2009 21 / 48

In an open competition, rules should be literal:

- Allowing a SAT team to write a separate C++ program turning instances into CNF
- Allowing a CLP-solver to specify labeling strategy

In an open competition, rules should be literal:

- Allowing a SAT team to write a separate C++ program turning instances into CNF
- Allowing a CLP-solver to specify labeling strategy

But such rules also

- allow fine-tuning of a parameters of an ASP-system
- allow different ASP systems in different benchmarks
- allow C++ solutions (originally)

In an open competition, rules should be literal:

- Allowing a SAT team to write a separate C++ program turning instances into CNF
- Allowing a CLP-solver to specify labeling strategy
- But such rules also
 - allow fine-tuning of a parameters of an ASP-system
 - allow different ASP systems in different benchmarks
 - allow C++ solutions (originally)

When it became clear that only two teams used this liberty this turned into a heated debate :-)

- Potassco used different grounders, solvers and runtime parameters
- BPSolver-CLP(FD) varied labeling strategies

Decision to split the competition in two: (a Salomons judgement!?)

- Single-system teams
- Multi-system teams (Marked with a *)

Marc Denecker et al.

In an open competition, rules should be literal:

- Allowing a SAT team to write a separate C++ program turning instances into CNF
- Allowing a CLP-solver to specify labeling strategy
- But such rules also
 - allow fine-tuning of a parameters of an ASP-system
 - allow different ASP systems in different benchmarks
 - allow C++ solutions (originally)

When it became clear that only two teams used this liberty this turned into a heated debate :-)

- Potassco used different grounders, solvers and runtime parameters
- BPSolver-CLP(FD) varied labeling strategies

Decision to split the competition in two: (a Salomons judgement!?)

- Single-system teams
- Multi-system teams (Marked with a *)

Marc Denecker et al.

Many thanks

to all competitors!

Marc Denecker et al.

The Second Answer Set Programming Competition

17 Sept 2009 23 / 48

Input and Output

Input Instances

Atomic clauses over input predicates (facts)

Output Decision Problems

UNSATISFIABLE,

Atomic clauses over output predicates (witness) or
 UNKNOWN

Output Optimization Problems

UNSATISFIABLE or

Sequence of witnesses and, possibly, OPTIMUM FOUND

Marc Denecker et al.

The Second Answer Set Programming Competition

17 Sept 2009 24 / 48

Scoring Decision Problems

Calculate a score per team over all benchmark problems P

score_{team} = ∑_{Problem} _P S^P_{team}/S^P_{some} S^P_{team}: Number of instances of P solved by team S^P_{team} := 0 if solution of team gave some wrong answer on P S^P_{some}: Number of instances of P solved by some team

Scoring Decision Problems

■ Calculate a *score* per *team* over all benchmark problems *P*

score_{team} = ∑_{Problem} P S^P_{team}/S^P_{some}
 S^P_{team}: Number of instances of P solved by team
 S^P_{team} := 0 if solution of team gave some wrong answer on P
 S^P_{some}: Number of instances of P solved by some team
 Same weight for each problem P

The higher score_{team} the better
 Runtime used as tie-breaker

Scoring Optimization Problems

• Calculate a quality Q^B_{team} for each benchmark B and each team

• $Q^B_{team} := 1$ if answer **UNSATISFIABLE** given, otherwise

Scoring Optimization Problems

• Calculate a quality Q^B_{team} for each benchmark B and each team

• $Q^B_{team} := 1$ if answer **UNSATISFIABLE** given, otherwise

Marc Denecker et al.

Scoring Optimization Problems

• Calculate a quality Q^B_{team} for each benchmark B and each team

• $Q^B_{team} := 1$ if answer **UNSATISFIABLE** given, otherwise

Rest of scoring similar to decision problems

Marc Denecker et al.

Platform

Cluster of five identical Linux machines

- One machine accessible to participants
- Four machines running benchmarks
- Identical copies of submitted solutions and benchmarks on all machines

Resources per run

- 600 seconds
- 2.79 GB RAM
- One core (no effective parallelism)

Platform

Cluster of five identical Linux machines

- One machine accessible to participants
- Four machines running benchmarks
- Identical copies of submitted solutions and benchmarks on all machines

Resources per run

- 600 seconds
- 2.79 GB RAM
- One core (no effective parallelism)
- Teams submitted solutions per benchmark problem
 - Installation phase to test solutions on sample benchmarks
- Checker scripts did only polynomial tasks (verifying correctness of solutions)
 - UNSATISFIABLE and OPTIMUM FOUND checked by comparison with other answers

Marc Denecker et al.

Outline

1 Background

2 The 2nd ASP-competition

3 Benchmarks

- 4 Competitors
- 5 Format of the competition
- 6 Results

8 Summary

Marc Denecker et al.

The Second Answer Set Programming Competition

17 Sept 2009 28 / 48

Decision: P

favors grounding/query-answering

Team	Score	#Solved	Time
Potassco*	1.00	$089 \ / \ 089 = 100\%$	000735
BPSolver-CLP(FD)*	1.00	$089 \ / \ 089 = 100\%$	001342
DLV	1.00	$089 \ / \ 089 = 100\%$	004861
Claspfolio	0.80	060 / 089 = 67%	017982
Smodels-IE	0.80	060 / 089 = 67%	018021
LP2SAT+MINISAT	0.80	060 / 089 = 67%	018270
SUP	0.80	060 / 089 = 67%	018606
LP2DIFF+BCLT	0.80	060 / 089 = 67%	018713
CMODELS	0.80	060 / 089 = 67%	019072
LP2DIFF+YICES	0.78	059 / 089 = 66%	018864
Enfragmo	0.76	057 / 089 = 64%	024157
ASPeRiX	0.69	066 / 089 = 74%	018051
IDP	0.54	041 / 089 = 46%	029594
sabe	0.41	031 / 089 = 34%	036426
pbmodels	0.38	029 / 089 = 32%	036656
amsolver	0.00	000 / 089 = 0%	053845

Marc Denecker et al.

Results

Decision: NP

favors search

Team	Score	#Solved	Time
Potassco*	0.97	491 / 516 = 95%	021253
Claspfolio	0.89	451 / 516 = 87%	049513
CMODELS	0.85	434 / 516 = 84%	072283
IDP	0.83	409 / 516 = 79%	077428
LP2SAT+MINISAT	0.82	430 / 516 = 83%	075883
SUP	0.80	405 / 516 = 78%	083749
DLV	0.76	391 / 516 = 75%	100496
LP2DIFF+BCLT	0.73	378 / 516 = 73%	108715
LP2DIFF+YICES	0.72	373 / 516 = 72%	096989
Smodels-IE	0.61	309 / 516 = 59%	137300
Enfragmo	0.59	291 / 516 = 56%	156298
BPSolver-CLP(FD)*	0.57	274 / 516 = 53%	155559
pbmodels	0.44	214 / 516 = 41%	201563
sabe	0.40	203 / 516 = 39%	215250
amsolver	0.12	083 / 516 = 16%	265833
ASPeRiX	0.12	032 / 516 = 06%	293363

Marc Denecker et al.

Decision: Global

favors grounding/query-answering and search

Team	Score	#Solved	Time
Potassco*	0.95	585 / 622 = 94%	029607
Claspfolio	0.84	511 / 622 = 82%	077780
CMODELS	0.82	498 / 622 = 80%	099721
DLV	0.81	497 / 622 = 79%	108448
LP2SAT+MINISAT	0.79	490 / 622 = 78%	104438
SUP	0.77	465 / 622 = 74%	112641
IDP	0.75	450 / 622 = 72%	117223
LP2DIFF+BCLT	0.72	438 / 622 = 70%	137713
LP2DIFF+YICES	0.70	432 / 622 = 69%	126138
BPSolver-CLP(FD)*	0.63	365 / 622 = 58%	165902
Smodels-IE	0.62	369 / 622 = 59%	165607
Enfragmo	0.60	348 / 622 = 55%	190741
pbmodels	0.42	243 / 622 = 39%	248505
sabe	0.39	234 / 622 = 37%	261961
ASPeRiX	0.21	098 / 622 = 15%	321700
amsolver	0.10	083 / 622 = 13%	329963

Marc Denecker et al.

Optimization

favors search

Team	Score	Time
Potassco*	0.81	074317
Claspfolio	0.69	078333
DLV	0.61	092889
IDP	0.50	101081
Smodels-IE	0.49	103176
BPSolver-CLP(FD)*	0.35	113551
sabe	0.06	122848
Enfragmo	0.05	121598
pbmodels	0.01	135883

Global

favors broad applicability

Team	Score	Time
Potassco*	0.88	103925
Claspfolio	0.77	156113
DLV	0.71	201338
IDP	0.63	218304
Smodels-IE	0.56	268783
BPSolver-CLP(FD)*	0.49	279453
CMODELS	0.41	237661
LP2SAT+MINISAT	0.39	242378
SUP	0.38	250581
LP2DIFF+BCLT	0.36	275653
LP2DIFF+YICES	0.35	264078
Enfragmo	0.32	312339
sabe	0.23	384810
pbmodels	0.21	384388
ASPeRiX	0.10	459640
amsolver	0.05	467903

Marc Denecker et al.

And the winner is . . .

Congratulations to the developers of Potsdam!

Marc Denecker et al.

The Second Answer Set Programming Competition

17 Sept 2009 34 / 48

Outline

1 Background

- 2 The 2nd ASP-competition
- 3 Benchmarks
- 4 Competitors
- 5 Format of the competition
- 6 Results

8 Summary

Marc Denecker et al.

Warning: Interpreting the results

- An Model and Solve competition yields only vague information about system efficiency
- The modeling plays a hugh role!
 - Many teams did not submit solutions for all benchmarks.
 - Not all groups spent the same amount of time and care in the modeling
 - (However, this does not play for a group of 8 teams)
- The large groups put great effort in modeling:
 - Potsdam (Potassco)
 - Calabria (dlv)

Potsdam published its modelings at Asparagus

- Eight teams used gringo and could use the Potsdam solutions!!
- Potassco, Claspfolio, CMODELS, SUP, Smodels-IE, LP2DIFF+BCLT, LP2SAT+MINISAT and LP2DIFF+YICES.

Marc Denecker et al.

Discussion

Thanks to

the Potsdam group

for making their solutions available, and for the many other ways that they have supported the organisation of the competition!!

For the future

- The only way to avoid the impact of modeling is a track where the theory is given
- Requires a common language
 - Propositional level?
 - Predicate level

Discussion: CLP-competitor

- Neng-Fa Zhou submitted quite a few typical CLP-benchmarks that should be challenging for the ASP-solvers
- BPSolver-CLP(FD) won five benchmarks
- On some benchmarks it was superior
 - Disjunctive scheduling 60× faster than Potassco
 - On some of its other benchmarks, it lost (sudoku)
- ASP-solvers resisted quite well to the challenge
- To be discussed (impact of instances?)

17 Sept 2009 39 / 48

Gain of fine-tuning

Potascco versus Claspfolio

- A difference of 10% more solved instances
- Larger difference if time is taken into account

A hope giving result for the development of general uniform ASP solvers based. To be followed up.

Industrial benchmarks

Impossible in a model and solve competition

Too complex for modeling, too many ambiguities

• Only possible in a track with a given theory.

Limitation on complexity of benchmarks?

An open competition

Invitations, especially to CP and SAT

Poor response

- Three teams performing modelgeneration for $FO(\cdot)$
 - Enfragmo (SFU)
 - Amsolver (U.Kentucky)
 - IDP (K.U.Leuven)
- Several CP-teams considered participation, only one participated
- At least one SAT team considered but gave up.
- No Abductive logic programming team
- Reason: at least partially due to the difficulty of the modeling (personal communication)!

Participation of SAT

But several SAT and SMT solvers were used in ASP systems
 With a little bit more support, SAT teams could easily participate
 To be discussed ...

Outline

1 Background

- 2 The 2nd ASP-competition
- 3 Benchmarks
- 4 Competitors
- 5 Format of the competition
- 6 Results

7 Discussion

8 Summary

Marc Denecker et al.

Conclusions

This year we had an open modeling and solving competition

- Out of 16 teams, 9 competed for the first time!
- Three teams used $FO(\cdot)$ and one CLP(FD) as (alternative) languages
- SAT and SMT solvers used, but no team modeled in their languages
- KR-languages appear to be particularly well-suited for modeling (the contrary would have been most upsetting!)

Conclusions

This year we had an open modeling and solving competition

- Out of 16 teams, 9 competed for the first time!
- Three teams used $FO(\cdot)$ and one CLP(FD) as (alternative) languages
- SAT and SMT solvers used, but no team modeled in their languages
- KR-languages appear to be particularly well-suited for modeling (the contrary would have been most upsetting!)
- Teams used essentially different
 - Problem modelings and
 - Solving systems

Results indicate trends on the ease of developing effective solutions, but not more

Conclusions

This year we had an open modeling and solving competition

- Out of 16 teams, 9 competed for the first time!
- Three teams used $FO(\cdot)$ and one CLP(FD) as (alternative) languages
- SAT and SMT solvers used, but no team modeled in their languages
- KR-languages appear to be particularly well-suited for modeling (the contrary would have been most upsetting!)
- Teams used essentially different
 - Problem modelings and
 - Solving systems

 - Results indicate trends on the ease of developing effective solutions, but not more

Much more efforts on developing benchmarks/solutions¹ than in 2007

- Many new benchmark problems, in particular, for optimization
- Teams developed individual solutions for their solving systems
- Problems and solutions provide showcase for declarative programming, but real application benchmarks were still missing

¹Find out more at: www.cs.kuleuven.be/~dtai/ASP-competition

Marc Denecker et al.

My personal thanks to

 Joost Vennekens, Stephen Bond, Pieter Wuille for organisation stuff!
 Johan Wittocx for running in the competition!

Two KRR people left — unexpectedly
Others had to take over

Marc Denecker et al.

The Second Answer Set Programming Competition

17 Sept 2009 46 / 48

And last but not least

Thank you all so much for your support and patience!!

Marc Denecker et al.

The Second Answer Set Programming Competition

17 Sept 2009 47 / 48

Questions

- Industrial benchmarks?
- Complexity of benchmarks?
- How can we attract people to make use of declarative programming?
- Single-system versus Multi-system teams? Fine-tuning?
- Can we develop a uniform language propositional , predicate?
- How can we attract neighboring communities to participate?
- What are your questions?