
Guard and Continuation Optimization for

Occurrence Representations of CHR

Jon Sneyers?, Tom Schrijvers??, Bart Demoen

Dept. of Computer Science, K.U.Leuven, Belgium
{jon,toms,bmd}@cs.kuleuven.ac.be

Abstract. Constraint Handling Rules (CHR) is a high-level rule-based
language extension, commonly embedded in Prolog. We introduce a
new occurrence representation of CHR programs, and a new operational
semantics for occurrence representations, equivalent to the widely im-
plemented refined operational semantics. The occurrence representation
allows in a natural way to express guard and continuation optimiza-
tions, which remove redundant guards and eliminate redundant code for
subsumed occurrences. These optimizations allow CHR programmers to
write self-documented rules with a clear logical reading. We show correct-
ness of both optimizations, present an implementation in the K.U.Leuven
CHR compiler, and discuss speedup measurements.

1 Introduction

Constraint Handling Rules (CHR) is a high-level multi-headed rule-based pro-
gramming language extension originally designed for writing constraint solvers.
We assume that the reader is familiar with CHR, referring to [5, 4] for an
overview. Our optimizations are formulated independent of host language, but
the implementation and examples described in this paper are in Prolog.

The original theoretical operational semantics for CHR (ωt), defined in [5],
is nondeterministic since it does not specify the order in which rules are tried.
However, all recent implementations use a more specific operational semantics,
called the refined operational semantics (ωr) [4]. In ωr, the rules are tried in tex-
tual order. In practice, CHR programmers use the ωr semantics. Their programs
possibly are non-terminating or produce unintended results under ωt semantics.

The dilemma CHR programmers face is the following: either they make sure
their programs are valid under ωt semantics, or they write programs that be-
have correctly only under ωr semantics. Sticking to ωt semantics results in more
declarative code with a clear logical reading. Using ωr semantics can result in
more efficient code and allows easier implementation of programming idioms like
key lookup. However, source code readability decreases significantly since rules
not necessarily contain all preconditions for applying it: preconditions that are
implicitly entailed by the rule order are often omitted by the programmer.

? This work was partly supported by project G.0144.03 funded by F.W.O.-Vlaanderen.
?? Research Assistant of the Research Foundation - Flanders (F.W.O.-Vlaanderen).

In this paper, we propose compiler optimizations that are a major step to-
wards allowing CHR programmers to write more readable and declarative pro-
grams without sacrificing efficiency. They automatically remove redundant guard
conditions, on the occurrence level. This paper extends [11, 13], which introduced
guard simplification, a special case of guard optimization for rules.

The optimizations presented here are mainly based on reasoning about the
guards of the CHR rules. This work is orthogonal to other optimization tech-
niques, and they can be combined effortlessly, as we have done in the K.U.Leuven
CHR compiler [8].

The next section intuitively describes the optimizations by discussing some
examples. Section 3 introduces a new operational semantics for occurrence rep-
resentations of CHR programs, equivalent to the refined operational semantics.
Then, in Section 4, the new guard and continuation optimizations are defined
formally, and their correctness is showed w.r.t. this new semantics. Section 5
briefly discusses an implementation of the optimizations in the K.U.Leuven CHR
system, and the speedups we have measured. Finally, we conclude in Section 6.

2 Motivating Examples

Example 1 (guard optimization).

pos @ sign(P,S) <=> P > 0 | S = positive.

zero @ sign(Z,S) <=> Z =:= 0 | S = zero.

neg @ sign(N,S) <=> N < 0 | S = negative.

If the third rule, neg, is tried, we know pos and zero did not fire, because
otherwise, the sign/2 constraint would have been removed. Because the first
rule, pos, did not fire, its guard must have failed, so we know that N ≤ 0. From
the failing of the second rule, zero, we can derive N 6= 0. Now we can combine
these results to get N < 0, which trivially entails the guard of the third rule.
Hence this guard will always succeed, and we can safely remove it. This results
in slightly more efficient generated code, and — maybe more importantly —
it might also be useful for other analyses. In this example, guard optimization
reveals that all sign/2 constraints are removed after the third rule, allowing the
never-stored analysis [10] to detect that sign/2 is never-stored. ut

Example 2 (types and modes).

sum([],S) <=> S = 0.

sum([X|Xs],S) <=> sum(Xs,T), S is X + T.

We consider head matchings to be an implicit part of the guard: the last rule
can be written as “sum(A,S) <=> A = [X|Xs] | sum(Xs,T), S is X + T.”.
Guard optimization can be much more effective if the types (and modes) of
constraint arguments are known. If we know the first argument of constraint
sum/2 is an instantiated list, these two simplification rules cover all possible
cases and thus the constraint is never-stored. In [9], optional mode declarations

2

were introduced to specify the mode of constraint arguments: ground (+) or
unknown (?). Inspired by the Mercury type system [14], we have added optional
type declarations to define types and specify the type of constraint arguments.
For the above example, the CHR programmer would add:

:- chr_type list(T) ---> [] ; [T | list(T)].

:- constraints sum(+list(int), ?int).

The first line is a recursive and generic type definition for lists of type T, where
T can be instantiated with built-in types like int, float, the general type any,
or a user-defined type. The constraint declaration on the second line includes
mode and type information. Using this knowledge, we can rewrite the last rule
to “sum(A,S) <=> true | A = [X|Xs], sum(Xs,S2), S is X + S2.”, keep-
ing its behavior intact while again helping never-stored analysis. ut

Note that it is often crucial to provide type and mode information to get the
optimization results presented in this paper.

Example 3 (occurrence subsumption).

(a) a(X,A,B), a(X,C,D) <=> A < B, C < D | Body.
(b) b(X,Y,Z), b(Y,Z,X), b(Z,X,Y) <=> Body.
(c) c(X,Y,Z), c(Y,Z,X), c(Z,X,Y) <=> (p(X); p(Y)) | Body.
(d) d(A,B), d(B,C) <=> A \== C | Body.

d(A,B), d(B,C) <=> Body.

In examples (a) to (d) above, underlined occurrences are subsumed by earlier
occurrences: the head constraints and guard are symmetric. Because a constraint
is removed by a rule application the subsumed occurrences are redundant. The
underlined occurrences are derived to be passive, meaning they can be skipped
in the execution of the program. In the occurrence representation (introduced in
the next section) we can express this by setting the guard for these occurrences
to fail.

A strong occurrence subsumption analysis takes away the need for CHR
programmers to write pragma passive declarations to improve efficiency, since
the compiler automatically adds such declarations. As a result, the CHR source
code contains less non-declarative operational pragmas, improving compactness
and readability. ut

Examples 1 and 2 may seem trivial, and similar optimizations have been
proposed in the context of Prolog, but example 3 is very specific for CHR. They
are all covered by the optimizations introduced in Section 4.

3 Semantics for Occurrence Representations

We will use [H|T] to denote a list where the first element is H and remaining
elements are T ; ++ for list concatenation and � or [] for the empty list;] for
multiset union, C for multiset intersection, and F for multiset subset. We will

3

sometimes abuse notation by implicitly converting between lists and multisets,
sets and multisets, and lists and conjunctions (where the conjunction is evaluated
in the same order as the order of the list elements). We use vars(E) to denote
the variables of a syntactic expression E.

3.1 CHR Programs

CHR constraint symbols are drawn from the set of predicate symbols, denoted by
a functor/arity pair. CHR constraints are atoms constructed from these symbols.
To improve readability, we will often omit the arguments of CHR constraints.
Constraints are either CHR constraints or built-in constraints in some constraint
domain D. The former are manipulated by the CHR execution mechanism while
the latter are handled by the underlying constraint solver of the host language.
We will assume this underlying solver supports at least equality, true and fail.

Definition 1 (CHR program). A CHR program P is a list of CHR rules Ri

of the form Hk
i \ Hr

i ⇐⇒ gi | Bi where Hk
i and Hr

i (kept/removed heads) are
lists of CHR constraints (Hi = Hk

i ++ Hr
i 6= �); gi (guard) is a list of built-in

constraints; Bi (body) is a list of constraints.

If Hk
i is empty, then the rule Ri is a simplification rule. If Hr

i is empty, then
Ri is a propagation rule. Otherwise it is a simpagation rule. The guard and body
of a rule are often treated as conjunctions. We assume all arguments of the CHR
constraints in Hi to be unique variables, making any head matchings explicit in
the guard. This head normalization procedure is explained in [3].

Note that built-in constraints used in the guard are always ask -constraints
when variables occurring in the head are involved. For example, the rule p(X)

<=> X = foo | B is identical to the rule p(X) <=> X == foo | B. In other
words, guards cannot modify variable bindings of constraint arguments.

3.2 Occurrence Representation

Most CHR compilers generate one block of host-language code (e.g. one Prolog
clause) for every occurrence of a constraint in the head of a rule. Therefore
it makes sense to represent a CHR program on the occurrence-level instead of
the rule-level. This occurrence representation corresponds more closely to the
generated code of current compilers. Its finer granularity allows the formulation
of more powerful optimizations.

The head constraint occurrences are numbered from top to bottom and from
left to right (but first the removed constraints, then the kept constraints). The
i-th occurrence of a constraint c is denoted as c : i, the number of the rule in
which it occurs as rnum(c : i). We will write Occ = Occk ∪ Occr for the set of
all occurrences of a given CHR program, where Occk are occurrences from the
kept heads Hk

i and Occr are occurrences from the removed heads Hr
i .

Definition 2 (Occurrence representation). An occurrence representation
O = (g, b, pr, pk, ns, nf) of a CHR program P is a 6-tuple of functions:

4

– g maps occurrences to lists of built-in constraints;
– b maps occurrences to lists of any constraints;
– pr (pk) map occurrences to subsets of Occr (Occk);
– ns and nf map occurrences to occurrences.

We say g returns the guard for an occurrence, b returns the body, pr returns
the removed partner constraint occurrences and pk returns the kept partner con-
straint occurrences, ns returns the success continuation occurrence and nf re-
turns the fail continuation occurrence. For an occurrence o ∈ Occ, we will write
p(o) to denote pk(o) ++ pr(o) and h(o) to denote [o|p(o)].

3.3 The ωo Semantics for Occurrence Representations

In this section we will introduce the call-based refined operational semantics for
occurrence representations, referred to as ωo semantics. It is a variant of the
call-based refined operational semantics ωc [10], formulated in terms of occur-
rence representations. The ωc semantics is an equivalent variant of the refined
operational semantics ωr [4]. The difference between these two semantics lies in
their formulation. The transition system of ωr linearizes the dynamic call-graph
of CHR constraints into the execution stack of its execution states. However, in
ωc (and ωo), constraints are treated as procedure calls: each newly added active
constraint searches for possible matching rules in order, until all matching rules
have been executed or the constraint is deleted from the store. As with a pro-
cedure, when a matching rule fires, other CHR constraints may be executed as
subcomputations and, when they finish, the execution returns to finding rules
for the current active constraint. The latter semantics are much closer to the
procedure-based target languages of current CHR compilers, like Prolog and
HAL. This makes the ωc (and ωo) semantics much more suitable for reasoning
about optimizations.

Execution State of ωo. An identified CHR constraint c#i is a CHR constraint
c associated with some unique integer i. This number serves to differentiate
among copies of the same constraint. An occurrenced identified CHR constraint
c : j#i is an identified CHR constraint associated with an integer j, indicating
that only matches with occurrence c : j should be considered (in other work, the
notation c#i : j is used). We introduce functions ξ(c#i : j) = ξ(c#i) = ξ(c) = c
and id(c#i : j) = id(c#i) = i, and extend them to lists, sets and multisets of
(identified) CHR constraints in the obvious manner.

The execution state of the ωo semantics is identical to the execution state
of the ωc semantics: it is a tuple 〈G,A, S,B, T 〉n where G, A, S, B, T and n,
represent the goal, call stack, CHR store, built-in store, propagation history and
next free identifier respectively. We use σi to denote execution states.

The goal G is a list of CHR constraints and built-in constraints. The ex-
ecution stack A is a list of identified CHR constraints, with a strict ordering
where the top-most constraint is called active. The CHR constraint store S is a

5

multiset of identified CHR constraints. The built-in constraint store B is a con-
junction of built-in constraints that have been passed to the underlying solver.
The propagation history T is a set of lists, each recording the identities of the
CHR constraints which fired a rule, and the number of the rule itself. This is
necessary to prevent trivial non-termination for propagation rules: a propaga-
tion rule is allowed to fire on a set of constraints only once. Finally, the next
free identifier n represents the next integer which can be used to identify a CHR
constraint. Given an initial goal G, the initial state is 〈G,�, ∅, ∅, ∅〉1.

Definition 3 (Matching conditions). Given an occurrence representation O.
For every occurrence o ∈ Occ and multisets S, K and R of CHR constraints
(possibly identified and/or occurrenced), we define the following two conditions:

satkr(o, S) , g(o) ∧
(

ξ(h(o)) F ξ(S)
)

sath(o,K,R) , g(o) ∧
(

ξ(pk(o)) = ξ(K)
)

∧
(

ξ(pr(o)) = ξ(R)
)

If S is the CHR store and the built-in store entails satkr(o, S), then the rule
of occurrence o can be applied. The condition sath(o,K,R) is used when we
need to distinguish between the kept and removed partner constraints. Note
that satkr(o, S) ⇔ ∃K,R

(

sath(o,K,R) ∧ ξ(K] R] {o}) F ξ(S)
)

.

Transition Rules of ωo. Execution proceeds by exhaustively applying transi-
tions to the initial execution state until the built-in solver state is unsatisfiable
or no transitions are applicable. We denote transitions from state σ0 to σ1 with
σ0 �N σ1 where N is the (shorthand) name of the transition. We define �∗ to
be the reflexive transitive closure of �.

We define solutionsV (B) to be the set of all substitutions (unordered assign-
ments to all variables of V) satisfying B. We say a set of variables I ⊆ V is
independent for c w.r.t. B iff solutionsI(B) = solutionsI(B∧c) = Y and X1 and
X2 exist such that X1 × Y = solutionsV (B) and X2 × Y = solutionsV (B ∧ c)
where × denotes the Cartesian product of two sets (ignoring order). We define
affected varsB(c) , vars(B ∧ c) \ I, where I a maximal independent (for c w.r.t.
B) subset of vars(B ∧ c). Intuitively, when adding a built-in constraint c to the
built-in store B, we have to trigger at least the CHR constraints containing one
or more affected variables (variables from affected varsB(c)).

The possible transitions are defined in Figure 1. The actual definition of the
solve function will depend on the built-in solver. The lower bound of the ωc se-
mantics is a subset of the lower bound defined here. However, for the Herbrand
solver (the built-in solver of Prolog), this lower bound corresponds to current
implementations: it boils down to triggering the constraints containing a vari-
able that is touched (instantiated or bound to another variable) by adding c.
For other host languages, it might not be feasible (or worth the overhead) to
implement this lower bound. The new lower bound for Solve is closer to current
implementations, and avoids references to guards. Because of this change, ωo

semantics may demand more constraints to be triggered (without causing any

6

additional rule applications). However, the lower bound of ωc is much harder
to compute, possibly causing more overhead than what is gained by avoiding
redundant constraint triggering.

The transitions in Figure 1 are a formulation of the ωc semantics in terms of
occurrences, except for the Solve transition. In the following, we will consider the
original definitions of ωc semantics [10] and ωr semantics [4], where the definition

for Solve has been replaced by the one described above. We will use
ωo7−→O to

denote �∗ under ωo semantics for an occurrence representation O, and
ωc7−→P

(
ωr7−→P) to denote �∗ under ωc (ωr) semantics for a CHR program P .

3.4 Properties of ωo semantics

Definition 4 (Refined Occurrence Representation). The refined occur-
rence representation Oref(P) = (g, b, pr, pk, ns, nf) for a CHR program P (nota-
tion as in definition 1) is defined as follows: for every occurrence c : i ∈ Occ:

g(c : i) = grnum(c:i) b(c : i) = Brnum(c:i)

pr(c : i) = Hr
rnum(c:i) \ {c : i} pk(c : i) = Hk

rnum(c:i) \ {c : i}

ns(c : i) = nf (c : i) = c : (i + 1).

Theorem 1 (ωr is equivalent to ωo for Oref). For any CHR program P :

〈G,�, ∅, ∅, ∅〉1
ωo7−→Oref (P) 〈�,�, S,B, T 〉n ⇔ 〈G, ∅, ∅, ∅〉1

ωr7−→P 〈�, S,B, T 〉n

Proof. For a refined occurrence representation Oref(P), the definition of ωo tran-
sitions corresponds trivially to the definition of ωc transitions. In [2], a proof is
given for the equivalence of ωc and ωr semantics. Hence, P under ωr and Oref(P)
under ωo are equivalent. ut

Note that pragma passive constructions can be expressed using occurrence
representations: if occurrence o is declared to be passive, it suffices to modify the
continuation functions: all occurrences with (fail/success) continuation o should
get a new (fail/success) continuation nf (o). If o is the first occurrence of some
constraint, this approach will not prevent o from becoming active. An alternative
way to express pragma passive is by replacing the guard of o by fail.

4 Guard and Continuation Optimizations

In this section, we will present optimizations that simplify the guard function
and the continuation functions of (originally refined) occurrence representations,
improving efficiency without affecting the behavior of the resulting program.

Definition 5 (Condition Simplification). Given a condition g which is a
conjunction of built-in constraints g = g1 ∧ g2 ∧ . . . ∧ gn and a condition D, we
define simpl(g,D) = g′ = g′1 ∧ g′2 ∧ . . . ∧ g′n, where

g′i ,

fail if D |= D ∧
∧

j<i gj → ¬gi

true if D |= D ∧
∧

j<i gj → giandD 6|= D ∧
∧

j<i gj → ¬gi

gi otherwise.

7

1. Solve: 〈c, A, S, B, T 〉n �So 〈�, A, S′, B′, T ′〉n′

where c is a built-in constraint. If D |= ¬∃̄∅c ∧ B, then S′ , S, B′ , c ∧ B, T ′ , T ,
n′ , n. Otherwise (D |= ∃̄∅c∧B), there is a series of transitions 〈S1, A, S, c∧B, T 〉n �∗

〈�, A, S′, B′, T ′〉n′ , where the triggered constraints S1 , solve(S, B, c) are a subset of
S such that L ⊆ S1 ⊆ U , where
• Lower bound : L , {x ∈ S | vars(x) ∩ affected varsB(c) 6= ∅}
• Upper bound : U , {x ∈ S | vars(x) 6⊆ fixed(B)} where fixed(B) is the set of vari-
ables fixed by B (v ∈ fixed(B) if D |= ∃̄v(B) ∧ ∃̄ρ(v)ρ(B) → v = ρ(v) for arbitrary
renaming ρ). Hence, ground constraints are not triggered.

2a. Activate: 〈c, A, S, B, T 〉n �A 〈c : 1#n, A, {c#n}] S, B, T 〉(n+1)

where c is a (non-identified) CHR constraint.

2b. Reactivate: 〈c#i, A, S, B, T 〉n �R 〈c : 1#i, A, S, B, T 〉n

where c#i is a CHR constraint in the store (back in the queue through Solve).

3. Drop: 〈c : j#i, A, S, B, T 〉n �Dp 〈�, A, S, B, T 〉n where c : j 6∈ Occ.

4. Simplify: 〈o#i, A, H ∪ S, B, T 〉n �Si 〈�, A, S′, B′, T ′〉n′

where o = c : j ∈ Occr and H = Pk ∪ Pl ∪ {c#i), and

〈θ(b(o)), A, Pk ∪ S, θ ∧ B, T ∪ {h}〉n �
∗ 〈�, A, S

′
, B

′
, T

′〉n′

where θ is a matching substitution such that D |= B → ∃̄Hθ(sath(o, Pk, Pr)). Fur-
thermore, h , (id(H), rnum(o)) 6∈ T . If no such matching substitution exists then
〈o#i, A, S, B, T 〉n �¬Si 〈nf (o)#i, A, S, B, T 〉n

5. Propagate: 〈o#i, A, {c#i} ∪ S, B, T 〉n �Pr 〈G, A, Sk, Bk, Tk〉nk

where o = c : j ∈ Occk. Let S0 , {c#i} ∪ S, B0 , B, T0 , T, n0 , n.
Now assume, for 1 ≤ l ≤ k and k ≥ 0, there is a series of transitions

〈Cl, [o#i|A], Sl−1 \ P
l
r, Bl−1, Tl−1 ∪ {hl}〉nl−1

�
∗ 〈�, [o#i|A], Sl, Bl, Tl〉nl

where H = {c#i} ∪P l
k ∪P l

r ⊆ Sl−1 and hl = (id(H), rnum(o)) 6∈ Tl−1, and a matching
substitution θl exists such that D |= Bl−1 → ∃̄Hθl(sath(o, P l

k, P l
r)) and Cl = θl(b(o)),

where θl renames apart all variables only appearing in g(o) and b(o) (separately for
each l). Furthermore, for k + 1 no such transition is possible. The resulting goal G is
G , � if D |= ∃̄∅(¬Bk) (i.e. failure occurred), G , nf (o)#i if k = 0 (i.e. the rule
was not applied; in this case we annotate the transition with ¬Pr instead of Pr) and
otherwise (k ≥ 1) G , ns(o)#i.

6. Goal: 〈[c|C], A, S, B, T 〉n �G 〈G, A, S′, B′, T ′〉n′ where [c|C] is a list of built-in and
CHR constraints, 〈c, A, S, B, T 〉n �∗ 〈�, A, S′, B′, T ′〉n′ , and G , � if D |= ¬∃̄∅B

′

(i.e. calling c caused failure), otherwise G , C.

Fig. 1. Transition rules of ωo.

8

In other words, simpl(g,D) returns the result of removing parts of g that are
entailed by D and earlier parts of g. For example:

simpl(X > 3 ∧ Y < 1 ∧ X > 2, X ≤ 3 ∨ Y < 0) = X > 3 ∧ true ∧ true

The following implication is obviously satisfied:

D |= D → (g ↔ simpl(g,D))

Definition 6 (Earlier occurrences condition). For every occurrence o ∈
Occ and multiset S, we define the following condition:

EOC(o, S) , ξ(h(o)) F ξ(S) ∧
∧

{

¬θ(satkr(o
′, S)) | o′ ≺ o ∧ ξ(θ(o′)) ∈ ξ(h(o))

}

where c : i ≺ c : j iff i < j and (pr(c : i) 6= ∅ ∨ c : i ∈ Occr), and d : i ≺ c : j (for
d 6= c) iff rnum(d : i) < rnum(c : j) and (pr(d : i) 6= ∅ ∨ d : i ∈ Occr).

This is a conjunction of negated matching conditions, for all possible match-
ing substitutions θ and earlier occurrences o′. Intuitively, if S is (a subset of)
the constraint store, the EOC(o, S) condition expresses that no earlier rules were
applicable that would have removed a partner-constraint of o. Note that dif-
ferent matching substitutions θ must be considered for a previous occurrence
o′ = c : i if the head constraints h(o′) contain at least two other occurrences of
the constraint c or at least two occurrences of another constraint.

If mode or type information is available, it can be added to the EOC(o, S)
conjunction without affecting the following results, as long as this information
is correct at any given point in any derivation. For example, the EOC condition
for the second occurrence of sum/2 in Example 2 from Section 2 could be the
following (the last part is derived from type information) :

EOC(sum(A, B), S) = sum(A, B) ∈ ξ(S)∧¬
(

A=[]∧sum(A,B) ∈ ξ(S)
)

∧
(

A=[]∨A=[|]
)

4.1 Optimizations

Definition 7 (Guard optimization). Given an occurrence representation O =
(g, b, pr, pk, ns, nf). Optimizing the guard of occurrence o results in an occurrence
representation G(O, o) = (g′, b, pr, pk, ns, nf), where ∀o′ 6= o : g′(o′) = g(o′) and
g′(o) = simpl(g(o),EOC(o, h(o))).

Let us illustrate this definition by considering the following example:

X in1 A:B <=> A>B | fail.

X in2 A:B <=> A =:= B | X is A.

X in3 A:B, X in4 C:D <=> A<B, C<D | X in max(A,C):min(B,D).

Computing EOC(X in3 A:B, h(X in3 A:B)), we get ¬(A > B) ∧ ¬(A =:= B) ∧
¬(C > D) ∧ ¬(C =:= D). Optimizing the guard of the third occurrence of in/2

results in the empty guard true, because both A<B and C<D are entailed by the

9

above EOC condition. The (partial) entailment checker we have implemented is
strong enough to discover such entailed conditions.

Now consider the EOC condition for occurrence in4: EOC(X in4 C : D, S) =
¬(C > D) ∧ ¬(C =:= D) ∧ ¬(C < D) ∧ . . . = fail. Because anything is entailed by
fail, the guard of the fourth occurrence is optimized to fail. This means we can
skip this always-failing occurrence. Note that if we would have used the optimized
guard for the third occurrence, we would get an EOC condition containing ¬true.
The following continuation optimizations modify the continuation functions to
skip occurrences like in4.

Definition 8 (Failure Continuation optimization). Given an occurrence
representation O = (g, b, pr, pk, ns, nf). Optimizing the failure continuation of
occurrence o results in an occurrence representation Cf (O, o) = (g, b, pr, pk, ns, n

′

f),
where ∀o′ 6= o : n′

f (o′) = nf (o′), and n′

f (o) = nf (nf (o)) if

D |= EOC(nf (o), h(nf (o))) ∧ ¬∃θ satkr(o, θ(h(nf (o)))) → ¬g(nf (o))

(otherwise n′

f (o) = nf (o)).

In the above example, optimizing the failure continuation of in3 results in
n′

f (in3) = in5. Note that in5 may be a non-existent occurrence.

Definition 9 (Success Continuation optimization). Given an occurrence
representation O = (g, b, pr, pk, ns, nf). Optimizing the success continuation of
occurrence o results in an occurrence representation Cs(O, o) = (g, b, pr, pk, n′

s, nf),
where ∀o′ 6= o : n′

s(o
′) = ns(o

′), and n′

s(o) = nf (ns(o)) if

D |= EOC(ns(o), h(ns(o))) ∧ g(o) → ¬θ(g(ns(o)))

where ξ(o) = ξ(θ(ns(o))); otherwise n′

s(o) = ns(o).

Consider the following example:

fib1(0,M) ==> M = 1.

fib2(1,M) ==> M = 1.

fib3(N,M) ==> N > 1 | fib(N-1,M1), fib(N-2,M2), M is M1 + M2.

Optimizing the success continuation of fibi (for i ∈ {1, 2}) results in n′

s(fibi) =
fib4. Note that it is not meaningful to optimize the success continuation of an
occurrence that is removed by applying its rule.

Note that the definitions of these optimizations crucially depend on entail-
ments. This may be problematic because of the undecidability (in general) and
complexity properties of testing entailment. We have implemented an incomplete
entailment checker, which exhaustively propagates conditions entailed from the
left hand side until the right hand side is found. Its worst-case time complexity
is quite bad, but this seems not to be a problem in practice: in most CHR pro-
grams, constraints are defined by a small number of rules, so the EOC condition
in the left hand side of the entailment is often small.

10

4.2 Correctness

Because of limited space, we will only present some results, without proof. The
proofs are given in [12]. First we introduce the auxiliary notion of EOC-satisfying
occurrence representations. Intuitively, such representations have increasing con-
tinuation functions and at any point in a derivation, the EOC condition for the
active constraint is entailed by the built-in store.

Definition 10 (EOC-satisfying). An EOC-satisfying occurrence representa-
tion O = (g, b, pr, pk, ns, nf) is an occurrence representation where

– ∀ c : i ∈ Occ : nf (c : i) = c : j and ns(c : i) = c : k where j > i and k > i ;
– If a derivation reaches an execution state σk = 〈c : j#i, A,H] S,B, T 〉n,

and ξ(H) = ξ(θ(h(c : j))), then D |= B → EOC(c : j,H).

Intuitively it should be clear that the refined occurrence representations from
definition 4 have this property.

Lemma 1. Refined occurrence representations are EOC-satisfying.

We can show that for EOC-satisfying occurrence representations, the opti-
mizations preserve applicability of ωo transitions and EOC-satisfiability.

Lemma 2. Any EOC-satisfying occurrence representation O is operationally
equivalent w.r.t. ωo semantics (in the strong sense: exactly the same transitions
are applicable to any execution state in a derivation) to G(O, o), Cs(O, o) and
Cf (O, o), for every occurrence o.

Lemma 3. If an occurrence representation O is EOC-satisfying, then G(O, o),
Cs(O, o) and Cf (O, o) are also EOC-satisfying (for every occurrence o).

Combining these results, we get the following correctness result:

Theorem 2 (Correctness). Repeated application of G, Cs and Cf to a refined
occurrence representation O results in an occurrence representation O′ which is
operationally equivalent to O w.r.t. ωo semantics.

5 Implementation and Experimental evaluation

We have implemented the optimizations in the K.U.Leuven CHR compiler [8],
which can be found in recent releases of SWI-Prolog [15]. In our implementation,
replacing parts of a rule guard by true is called guard simplification (see [13]),
while replacing part of an occurrence guard by fail is called occurrence sub-
sumption, and it basically causes the occurrence to be declared passive. Guard
simplification is a special case of guard optimization, and occurrence subsump-
tion corresponds to failure continuation optimization. Figure 2 illustrates the
effect of the optimizations on a small example.

11

Experimental results. To get an idea of the efficiency gain obtained by our
optimizations, we have measured the performance of several CHR benchmarks,
both with and without the optimizations. All benchmarks were performed with
SWI-Prolog [15] version 5.5.2, on a Pentium 4 (1.7 GHz) GNU/Linux machine
with a low load. We have measured similar results [11] in hProlog [1].

:- op(700,xfx,in).

:- constraints

in(?int,+interval).

:- chr_type

interval ---> int:int.

X in A:B <=>

A > B |

fail.

X in A:B <=>

A =:= B |

X is A.

X in A:B, X in C:D <=>

A < B, C < D |

X in min(A,C):max(B,D).

(a) Example CHR program.

X in I :-
’in/2__0’(X,I,_).

’in/2__0’(_,A:B,Z) :-
A > B, !,
remove_constraint(Z),
fail.

’in/2__0’(X,A:B,Z) :-
A =:= B, !,
remove_constraint(Z),
X is A.

’in/2__0’(X,A:B,Z) :-
A < B,
find_partner(in(Y,I)),
Y == X,
I = C:D, C < D, !,
remove_constraint(Z),
X in min(A,C):max(B,D).

’in/2__0’(X,C:D,Z) :-
C < D,
find_partner(in(Y,I)),
Y == X,
I = A:B, A < B, !,
remove_constraint(Z),
X in min(A,C):max(B,D).

’in/2__0’(X,I,Z) :-
insert_constraint(Z)

(b) Not optimized.

X in I :-
’in/2__0’(X,I,_).

’in/2__0’(_,A:B,Z) :-
A > B, !,
remove_constraint(Z),
fail.

’in/2__0’(X,A:B,Z) :-
A =:= B, !,
remove_constraint(Z),
X is A.

’in/2__0’(X,J,Z) :-

find_partner(in(Y,I)),
Y == X,
!,
remove_constraint(Z),
J = A:B, I = C:D,
X in min(A,C):max(B,D).

’in/2__0’(X,I,Z) :-
insert_constraint(Z)

(c) Optimized.

Fig. 2. Comparing generated code. Note that the redundant clause for the fourth oc-
currence of in/2 and the redundant guard of the last rule are removed in (c).

Figure 3 gives an overview of our results. The first column indicates the
benchmark name and the parameters that were used. These benchmarks are
available at [7]. The second column indicates whether the optimizations were en-
abled, where “type” means “yes and additional type information was provided”.
Mode declarations were provided for all programs, which allows a speedup factor
of two to three [13] in these cases. We have measured the additional speedups on
top of the speedups we get from using mode information. The next two columns
show the size of the generated Prolog code, not including constraint-store re-
lated auxiliary predicates. The last column shows the runtime in seconds and a
percentage comparing it to the non-optimized version.

12

Benchmark Optimize # clauses # lines Runtime (%)

sum no 3 10 5.03 (100)
(10000,500) type 2 6 4.49 (89)

nrev no 6 20 13.97 (100)
(30,50000) type 4 11 8.44 (60)

dfsearch no 4 16 37.58 (100)
(16,500) yes 4 15 31.63 (84)

type 3 11 29.97 (80)

bool chain no 180 2861 12.8 (100)
(200) yes 147 2463 7.0 (55)

fib no 10 154 11.2 (100)
(22) yes 9 125 8.5 (76)

leq no 18 218 14.1 (100)
(60) yes 13 162 11.7 (83)

Fig. 3. Benchmark results.

We compared the sum, nrev and dfsearch benchmarks to a native Prolog
version of the program. The native Prolog version turned out to be almost iden-
tical to the generated code for the CHR program, the only difference being some
redundant cuts (!/0) in the latter. We could not measure any difference in run-
time. There is no straightforward way to make a native Prolog version of the
bool chain, fib and leq benchmarks, since they crucially depend on storing
constraints.

Overall, for these benchmarks, doing guard simplification and occurrence
subsumption — combined with never-stored analysis and use of mode informa-
tion to remove redundant variable triggering code — results in cleaner and more
efficient code which is much closer to what a Prolog programmer would write.
As a result, a major performance improvement is observed in these benchmarks.

Writing auxiliary predicates in Prolog. CHR programs that implement
deterministic algorithms (like the first three benchmarks) have a relatively low
performance when compiled naively using the general schema, compared to na-
tive Prolog versions. For that reason, CHR programmers usually write such al-
gorithms as auxiliary predicates in Prolog instead of formulating them as CHR
constraints. Such mixed-language programs often use inelegant constructs, like
rules of the form foo(X) \ getFoo(Y) <=> Y = X, to read information from
the constraint store in the host-language parts when this information is needed.
By implementing these parts as multi-headed CHR rules, the need for ‘host-
language interface’ constraints like getFoo/1 is drastically reduced. Thanks to
our new optimizations and other analyses, the programmer can now implement
the entire program in CHR, relying on the compiler to generate efficient code.

13

6 Conclusion

We have described new guard and continuation optimizations. We have defined
them formally and showed their correctness, implemented them in K.U.Leuven
CHR compiler and evaluated them experimentally. Guard optimization encour-
ages CHR programmers to include all preconditions for rule application in the
rule guards, since redundant tests are compiled out. Continuation optimization
dramatically reduces the need for pragma passive directives. Hence, the opti-
mizations allow writing CHR programs that are more declarative, readable and
self-documenting, without sacrificing efficiency.

Our new optimizations contribute to the state-of-the-art level of performance
of code generated by the K.U.Leuven CHR compiler. Guard optimization reduces
the overhead of testing redundant guard conditions, while continuation optimiza-
tion reduces the overhead of trying rules that are not applicable. Furthermore,
our optimization helps other analyses (like the never-stored analysis) to reduce
constraint store related overhead. Earlier work introduced mode declarations
used for hash tabling and other optimizations. We have added type declarations
for CHR programs. Using both mode and type information we have realized
further optimization of the generated code.

Related work. The idea of continuation optimization was originally introduced
in [6]. Guard optimization originates from [11, 13], where a weaker optimiza-
tion called guard simplification was introduced. Guard simplification is basically
guard optimization for every occurrence in a rule, which is weaker than guard
optimization in the case of multi-headed rules.

Future work. It would be interesting to implement a stronger version of
simpl(g,D) (Definition 5, page 7) by replacing an expensive condition gj by
a cheaper condition g′

j , as long as D |= D ∧
∧

k<j gk → (gj ↔ g′j). For example,
consider the following program:

p(X) <=> X >= 0, g(X) | ...

p(X) <=> X < 0, \+ g(X) | ...

p(X) <=> g(X) | ...

If g/1 is a predicate that takes a very long time to evaluate, we could change the
guard of the last rule to X<0, because ¬(X >= 0 ∧ g(X)) ∧ ¬(X < 0 ∧ ¬g(X))
entails g(X) ↔ X < 0.

Our current knowledge base for entailment checking is limited to the most
common Prolog built-ins. To be able to recognize more redundant guards, one
could extend this knowledge base, add support for additional declarations that
would be added to the knowledge base during the program analysis, and even
analyze the host-language implementation of user-defined predicates used in
guards, inferring extensions to the knowledge base automatically.

When the “earlier occurrences condition” is large, compilation time may
become an issue. We intend to improve the scalability of our implementation,
although it does not present an immediate problem.

14

The information entailed by the failure and success of guards seems also use-
ful in other program analyses and transformations. One application is program
specialization: the code for executing a constraint is specialized for a partic-
ular call from an occurrence body. This may lead to the elimination of more
redundant guards (and even redundant rules) for the specialized case.

Finally we would like to integrate our optimizations into the bootstrapped
CHR compiler which is currently being developed by Christian Holzbaur et al.

References

1. Bart Demoen. hProlog home page. http://www.cs.kuleuven.ac.be/˜bmd/hProlog.
2. Gregory Duck, Tom Schrijvers, and Peter Stuckey. Abstract Interpretation for Con-

straint Handling Rules. Report CW 391, K.U.Leuven, Department of Computer
Science, Leuven, Belgium, September 2004.

3. Gregory Duck, Peter Stuckey, Maŕıa Garćıa de la Banda, and Christian Holzbaur.
Extending Arbitrary Solvers with Constraint Handling Rules. In D. Miller, edi-
tor, Proceedings of the 5th International Conference on Principles and Practice of
Declarative Programming (PPDP’03). ACM Press, 2003.

4. Gregory Duck, Peter Stuckey, Maŕıa Garćıa de la Banda, and Christian Holzbaur.
The Refined Operational Semantics of Constraint Handling Rules. In Proceedings
of the 20th Intl. Conference on Logic Programming (ICLP’04), September 2004.

5. Thom Frühwirth. Theory and Practice of Constraint Handling Rules. In P. Stuckey
and K. Marriot, editors, Special Issue on Constraint Logic Programming, Journal
of Logic Programming, volume 37 (1–3), October 1998.

6. Christian Holzbaur, Maŕıa Garćıa de la Banda, Peter Stuckey, and Gregory Duck.
Optimizing compilation of Constraint Handling Rules in HAL. In Special Issue of
Theory and Practice of Logic Programming on CHR, 2005. To appear.

7. Tom Schrijvers. CHR benchmarks and programs. Available at the K.U.Leuven
CHR home page at http://www.cs.kuleuven.ac.be/˜toms/Research/CHR/.

8. Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: implementation
and application. In T. Frühwirth and M. Meister, editors, First Workshop on
Constraint Handling Rules: Selected Contributions, number 2004-01, 2004.

9. Tom Schrijvers and Thom Früwirth. Implementing and Analysing Union-Find in
CHR. Technical Report CW 389, K.U.Leuven, Dept. Computer Science, July 2004.

10. Tom Schrijvers, Peter Stuckey, and Gregory Duck. Abstract Interpretation for
Constraint Handling Rules. In Proceedings of the 7th Intl. Conference on Principles
and Practice of Declarative Programming (PPDP’05), Lisbon, Portugal, July 2005.

11. Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard Simplification in CHR
programs. Technical Report CW 396, K.U.Leuven, Dept. CS, November 2004.

12. Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard and Continuation Op-
timization for Occurrence Representations of CHR. Technical Report CW 420,
K.U.Leuven, Dept. CS, July 2005.

13. Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard Simplification in CHR
programs. In Proceedings of the 19th Workshop on (Constraint) Logic Programming
(W(C)LP’05), Ulm, Germany, February 2005.

14. Zoltan Somogyi, Fergus Henderson, and Thomas Conway. Mercury: an efficient
purely declarative logic programming language. In Proceedings of the 18th Aus-
tralian Computer Science Conference, pages 499–512, Glenelg, Australia, 1995.

15. Jan Wielemaker. SWI-Prolog home page. http://www.swi-prolog.org.

15

